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Finite weakly divisible nearrings

Abstract. In [5] the algebraic structure called weakly divisible nearring (wd-
nearring) was defined and studied. In [1, 2] a special class of wd-nearrings was
constructed and its combinatorial properties was investigated. In [3] PBIBDs were
derived from a class of wd-nearrings and their parameters were calculated thanks to
the knowledge of the algebraic structure. In [9] a generalization of the construction
of [1, 2] was given. In order to generalize the construction of [3] to more general
cases, this paper is devoted to a more in depth study of the algebraic structure of any
finite wd-nearring N, especially with regard to determining the size of the elements
of significant structures in N, as partitions, normal chains and products.
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1 - Introduction

In [5] we defined and studied the algebraic structure called weakly divisible
nearring (wd-nearring). In [1, 2] a special class of finite wd-nearrings on 7., p
prime, was constructed: on the group (Z,.,+) of the residue classes (modp") a
multiplication “«” can be defined in such a way that (Z,., +, %) becomes a wd-near-
ring. Afterwards, in [3, 4] Partially Balanced Incomplete Block Designs (PBIBDs)
and codes were obtained starting from the wd-nearrings of [1, 2] and formulae for
computing their parameters could be derived just making use of the combinatorial
properties of the constructed algebraic structure.

In [9] the construction of [1, 2] was generalized to any wd-nearring. Applying
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Prop. 1 of [9], in Example 2.1 of this paper a wd-nearring N = (Z%, +,x%) is con-
structed on the elementary abelian group (Z%, +) and a PBIBD is obtained from N.
Using the algebraic properties of N = (72, +, %), all the parameters of the PBIBD
are computed.

Since it seems reasonable to think the construction and the method to compute all
the parameters in [3] could be extended to some additional classes of wd-nearrings,
the aim of this paper is to study in more depth the algebraic structure of any finite
wd-nearring, especially with regard to determining the size of the elements of sig-
nificant structures in N, as partitions, normal chains and products. In the next
paragraph, the main definitions and properties of a finite wd-nearring are recalled
(Remark 2.1) and the most significant results presented in this paper are summar-
ized (Remark 2.2).

2 - Finite weakly divisible nearrings

A left nearring is an algebraic structure (V, +, %) such that (V, +) is an additive
group, (N, x) is a multiplicative semigroup, and the left distributive low holds (see [6],
[10]). An additive normal subgroup I of (N, +) is called left ideal if N « I C I, right
ideal if (y +1)xx —y+x € I,Ve,y € N,i € 1. In this paper we always consider left
zerosymmetric nearrings, that is 0 x ¢ = 0, for all x € N.

In the sequel the subset {1,2,...,m} C N could be denoted by I,, and a|b will be
sometimes used as a divides b.

Definition 2.1. A nearring N is called weakly divisible (wd-nearring) if the
following condition is satisfied:

Va,be N IxeN | axx=b or bxx=a.

Remark 2.1. In [5] it is proved that a finite wd-nearring N is the disjoint
union of @, the set of all the wilpotent elements, and C, the set of all the left
cancellable elements, that is N = CUQ and CNQ = 0.* In the finite case, from
Theorem 8 of [5] we know that:

(a) The set C of the left cancellable elements is the disjoint union of m isomorphic
groups. We will call them “the B,,s”, e; being the identity of B,, and a left identity of
N, for i €l,. The map n: B, — B, defined by n(x) =x*e) for x € B, is a
(multiplicative) group isomorphism, for i,h € L,

! In the following, X UY will denote the disjoint union of X and Y.
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(b) The set Q of the nilpotent elements is the prime radical of N, it coincides with
the Jacobson radicals and contains every right invariant subset, that is any subset
H of N such that HN C H. Obviously, any zero divisor belongs to Q.

Remark 2.2. In Paragraph 3 we find that, for a finite wd-nearring N,
there ave integers t and v such that |N|=t" and |Q|=t"1, so
|IC| = @t — Dt"™~L. Moreover, for j € I._1, we are able to find partitions for the
right annihilators of q’, q being any wilpotent such that q«N =Q and
Ann(g’) ={y € N |¢/ xy =0}. More precisely, we have Ann(q) = q ' + C U{0}
and Ann(@’) =q"7 « C U Ann(g’~Y). So, since Q can be seen as the right
annihilator of ¢, it results in @ =g+ C Ug*xC U ... Ug" 1 xC U{0}. Also
|Ann(g))| =t/ and |¢/ xC| = (¢t — DEr~~1,

In Paragraph 4 we study the algebraic structure of one of the B,s, say
B.. We know that |B.| = hk, where h|(t—1) and k|t"1. We prove that B,
contains two normal chains of subgroups: F.(q) C F.(q?) C ... C F.(¢"") and
Ulg) CULQ> C ... C Uq"), so we investigate the orders of their elements.
In particular we obtain |F.(q" )| = h._1k, where h. 1|k, and |U.q" )| =k,
thus B, results in the semidirect product between U,q"') and a suitable
complement of order h.

In Paragraph 5, in addition, t is a prime and, consequently, |B.|= ht’
|Uo(@" V)| =t* and |F(g" V)| = hy_1t*. Hence U,(q"™') results in the t-Sylow sub-

|U.(q")|

group of both B, and F.(q"™') and Ui )] € {1,t}.

2.1 - Example

First step - Construction of a wd-nearring

Here is what we need:
e the elementary abelian group (7?, +),
e an automorphism group of (73, +), @ := {id,y : (x,y) — (x, -y},
e a nilpotent endomorphism of (Z%, ), v @,y — (y,0).
We begin by choosing the representatives of the ®-orbits:

®-orbits, x € 77 |representatives

{(x,1), (x,6)} (x,1)
{(,2),(x,5)} (%,2)
{(,3),(x,4)} (%,3)
{(x,0)} (x,0)
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Let E denote the set of the chosen representatives for @ on Z% \ Imy. We can verify
that all the conditions required in [9] Prop.1 are satisfied, in particular:

for all n € 7% there are i = 0,1, ¢ € @ and e € E such that n = y'p(e)

so that a multiplication “ x” on (Z? +) can be defined in the following way:
nxm = yple) x m = yp(m).
Now N = (7;43, +, %) results in a wd-nearring with:

the set of the nilpotent elements @ = Kery = Imy = {(y,0) € 72 | y € 7a};
the set of the cancellable elements C = N \ @ = |J ®(e).
eck
@ acts fixed point free on C and C is partitioned into @-orbits, each of them results in
a multiplicative group with the representative as identity.

Second step - Construction of a tactical configuration on N

We will proceed with adapting the method of Hall (see [8]). The raw materials
needed are a finite non empty set X, a transitive permutation group G on X with an
intransitive subgroup S. Now:

o« X =75
o (G = (Z%, +) x @, the natural semidirect sum

((n7 ¢1) + N (m7 ¢2) - (’ﬂ + ¢1(m)7 ¢1¢2))a
o S={0,4)cGxd ¢c D).

We choose an element in E, say e = (0,1), and we consider the set N x(0,1)
={(0,1),(0,6),(1,0),(6,0),(0,0)}. Itis easy to see that N * (0, 1) is a union of orbits of
®, being N  (0,1) = &(0, 1)) U 2((1, 0)) U #((6, 0) U 2((0, 0)).

A direct computation shows that S results in the stabilizer of N x (0,1) in G, hence
distinet elements of (7%, +) determine distinct cosets of S in G. Thereby, when
(x,y) € A%, the sets N x(0,1) + (x,y) are the distinct blocks of a tactical config-
uration whose parameters are (v, b, r, k) = (49,49,5,5).

Third step - Construction of an association scheme on N

We will continue to apply the method of Hall. The raw materials needed are
the stabilizer G,, of any element n € N, the G,-orbits partitioning N and the sets
U = A|J(— 4) obtained by forming the union of any orbit 4 and the orbit —4.
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Now:

e n=(0,00 and G,=;

e U; = {(0,1),(0,6)} = MHh=—-4 self paired
U; = {(0,2),(0,5)} = o= ”
Us = {(0,3),(0,4)} = A3=—43 ”
Uy, = {1,1),1Q,6)}U{6,6),6,1)} = A,J(— 4y) paired

Us = {(1,2),(1,5)} U{6,5),6,2)} = 45J(— 45) 7
Us = {1,3),1,9} U{6,4),6,3)} = 4s{J(— 46) 7
Ur = {2,1,2,6}U{(5,6),5, 1D} = UJ(-40) 7
Us = {2,2),2,5)}U{(5,5),56,2)} = LU(-4d5) 7
Uy = {2,3),2,1)} | U{(5,4),5,3)} = dglJ(— 4y) ”
U = {B,1),68,6)}U{4,6),4,1)} = 40— 410) 7

Ui = {3,2),3,5}U{4,5),4,2)} = 41 J(— 411) ”
U = {8,3),8,9}1U{4,49),4,3)} = d2J(—412) ”
Uiz = {(1,0)} J{6,0)} = disU(— 43) 7
Ui = {2,0} U{5,0)} = MU (= 1) ”
Uis = {6,0} U{¢4,0)} = M5 U(— M5) ”

Two elements will be called ith-associates if their difference belongs to U;, for
1=1,...,15. Hence, we obtain 15 relations which constitute an Association Scheme
whose parameters are

e the numbers 7; of the ith-associates of any element
%12%227’&3:%13:%14:7&15:2, 7’L4=...=7’L12=4

e the numbers pg. of the elements which are ith-associates of (a,b) and jth-as-
sociates of (c,d) when (a, b) and (c, d) are kth-associates.

These parameters are organized into 15 symmetric squared matrices of order 15,
denoted by P* = (pf) with k =1,...,15. The values of the pfjs were calculated di-
rectly, using the algebraic properties of (Z%, +, %). Below you can find a way to obtain
Ptforanyk=1,...,15.

Let O and I denote the zero matrix and the identity matrix of order 3 respectively.
Let A’ denote the transpose of A. Moreover, let:

A 0O 0 0 o0
0 24 0 0 24
A=|0 0 24 0 24,
0O 0 0 24 244
0 241 24, 24% O
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0O A 0 0 Ay O 21 O O O
A O A 0 As 21 O 2I O O
Bi=| 0 A 0 A A1+ As Ci=10 21 O 2I O
0O O A A Ap + Ag O O 2I 21 O
Al AL A4 AL ALrAL O 0 0 0 0 4
0 0 A 0 As O O 21 O O
0 A 0 A A+ A3 O 2 O 2I O
Bo=1] A 0 0 A As Co=1|2 O O 2I O
0 A A 0 A1+ A O 2 21 O O
AL AL+ Al AL ALyAL O 0 0 0 0 A
0 0 0 A As O O O 21 O
0 0 A A A+ A3 O O 2I 21 O
Bs=|lo a A 0 A+A cs=|0 21 21 0 0O
A A 0 0 Ay 2 21 O O O
Al AL+AL AL AL AL O 0 0 0 0 4
Then:

=By, P =B,, P = By, P = C; with

=A, P

010 1 00 010 00

1 0 1),4=(0 0 0]),4=(0 0 0],4=10 0 0
011 000 0 00 0 00
=A,

= By, P8 = By, P! = B3, P = Cy with

000 0 00 000
A= O 0 1 ,Ar=11 0),4={01 0],A=(0 0 1]|.
110 000 0 0O 000

P3=A, P°=B;, PP =By, P?=B; P“=_C_;with

011 000 0 00 0 00
A=(11 0],4=10 0 0),4=(0 0 0],A4=1]0 0].
1 00 1 00 010 0 1

Forth step - The partial balance

—
N————

)

S O

Finally, from [8] the tactical configuration results in partially balanced with re-
spect to the association scheme, that is any two ith-associate elements belong exactly
to A; blocks. We can compute easily the parameters of the partial balance:

),1 = )»4 = /113 = 2, /12 = 114 = 1, j-z =0 otherwise. |
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Notice that our ability to compute the parameters of the PBIBD depends both on
the small size and the algebraic properties of the nearring N. The more the size of N
increases, the more the knowledge of the algebraic structure becomes essential. This
is why we want to know more about the algebraic structure of any finite wd-nearring.

3 - The set () of the nilpotent elements

Hereinafter N denotes a wd-nearring, @ is the set of its nilpotent elements and C
is the set of its cancellable ones. We will always assume @ # {0}.

The smallest positive integer » such that " = 0 (H" = {0}) will be denoted by
v(x) (v(H)). From [5] we learn that () is monogenic, that is there exists ¢ € @ such that
@ = q * N. Such an element will be called generator of Q. Obviously, if v(g) = n, for
anyp € Qwehavep = ¢’ * ¢, for somet € I, and ¢ € C. Following propositions state
a lot of useful properties of the generators of Q.

Proposition 3.1. Let q be a generator of Q and let v(q) = r, then W(Q) = r.

Proof. Consider H x; where x; € Q for all ¢ € I,. We have H X = H q*n;,
i=1
where nz € Nforalli e I Asq” = 0 and the L.F.P.Z holds in a finite wd- nearrmg, we

obtain H x; = 0. O
i=1
Proposition 3.2. Let q be a generator of Q and let v(q) = r, then the following
statements are equivalent

(a) p is an element of Q and v(p) = 7r;
(b) p is of the form q = ¢, where c € C;
(c) p is a generator of Q.

Proof. (a) = (b) Letp be an element of @. Thenp = ¢’ * ¢, for some ¢ € I, and
¢ € C. Applying Proposition 3.1 we obtain p" 1 = (p"* x ¢) x ¢ = 0 x ¢ = 0. Hence
it must be » —t + 1 > 7, and this implies ¢t = 1.

(b) = (¢) Obvious, because (g x¢)* N =q+(cx*xN)=q+« N = Q, for c € C.

(c) = (a) Let p be a generator of @ and v(p) = s. Applying Proposition 3.1 we have
Q) = s. But we know that v(Q) = r,so s = 7. O

2 A nearring N has the LF.P. if for every a,b,n € N, a x b = 0 implies @ 1 b = 0.
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Proposition 3.3. Let p and q be generators of Q and v(q) = v(p) =, then
P +xC=q'«C, foralljel.

Proof. For every c € C, p/ x ¢ belongs to @, so p’ xc = ¢ x ¢, for some t € I,
andc € C.Ifj<t,p" " xc=(p" ' xq") x ¢ = 0xc =0, from previous Proposition
3.1. As a zero divisor of N must belong to @ and ¢ ¢ @, it must be p"~ ¢ = 0, but
this is impossible. Analogously, if j>t, (@' 7 xp/)xc = (¢"7 xq') xc¢' implies
0xc=0=gq""U"x¢ and again ¢"~U~? = 0 is impossible. So j = t. O

Proposition 3.4. Let q be a generator of Q and v(q) = r. Then, fork,j € I, 4
with k # j,

(@ Cxq’ Cq/+C;

B g’ «Cngks«C=0;

) Ann(@) =q" 7« N =q" 7« CUq" 7t «C U ... Ug" '« C U{0}?

dQR=qg+xCUg?xCU... Ug" 1 xC U{0}.

Proof. (a)Weknow that for any ¢ € C the element ¢ * ¢/ belongs to @, so it is of
the form ¢* x ¢’ for some k € I, and ¢’ € C. As in previous Proposition 3.3, from
c+q’ = q* x ¢’ we obtain j = k. Hence C ¢/ C ¢’ x C.

b Ifrecqg’«Cng*+«C,wehaveq’ xc =x=q"*c forsomec,c’ € Candj =k
follows as before, but now we have k # j.

(¢) We start showing that Ann(q’) =q"7 % N. Obviously ¢’ (q"~7 *N)
=0x N = {0}, thus q" 7« N C Ann(q’). Viceversa,ifx € Ann(q’)thenx mustbelong
to @, so x =¢q' ¢ for some i € I, and ¢ € C. From ¢/ xx = ¢/*" x ¢ = 0 we have
g’ =0, and this forces j +i > . Hence x = q" 7 xq'~" x ¢ € ¢"7 « N, and this
implies "7 « N D Ann(g’). Moreover,q" 7 « N=q¢" 7« (CUQ)=¢" 7 «C Uq"7 x Q
=q"7xC U7 T «N=...=¢7xCUgTxCU... Ug 1 xC U{0}.

(d) Obvious, as @ = Ann(g"~!) and we can apply previous point (c). O

Lemma3.1. LetN be afinite wd-nearring with |N| = n and |Q| = m. Let q be
any generator of Q and r = v(q). Then, forj € I,_1,

(@) |Ann(g))||Ann(g")| = n;

) lg’  C||Annig”)| = n — m;

(©) |Ann(g”)| = (n/mY.

3 Ann(x) = {y € N|ax i = 0} is called the right annihilator of x (here it is an ideal of N).
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Proof. (a) From Proposition 3.4 (c), we know that |[Ann(q’)| = |¢"~ * N|. If
q" 7 «my =q"7 xng, then "7 % (n; — ne) = 0 implies 1, € ng + Ann(g"~) and vice
versa. So |¢"7 « N| = |[N|/|Ann(q" )|, that is |Ann(q’)||Ann(g" )| = n.

(b) Let c1,c2€C. If ¢/ xc; =q’ *cg, then ¢/ *(c; —cz) =0 implies c¢; € ¢z
+Ann(q’) and vice versa. Since ¢+ Ann(g’) CC for all ¢ € C, we obtain
lg’ * C| = |C|/|Ann(g’)| = (n — m)/|Ann(g’)|.

(c) From Proposition 3.4 (c), we have Ann(g’) =q"7 «C U Ann(g’™1), so
|Ann(q))| = |q"~ * C| + |Ann(g’~')|. Applying previous points (a) and (b), we
obtain |[Ann(q)| = n/m, as Ann(@"™") = Q, and |Ann(g’)| = (n/m)|Ann(g’~1)|. So
|Ann(g?)| = (n/my. O

Theorem 3.1. Let N be a finite wd-nearring with |N|=n, |Q|=m and
[N :Ql=n/m =t. Let q be any generator of @ and r = v(q), then

(@) IN| =t"and |Q| =t

(b) |Ann(g)| =t/ and |¢/  C| = ¢ — )L, forj e I,

Proof. (a) Since @ = Ann(q" 1), applying previous Lemma 3.1 (c), we obtain
Q| = |Ann(@" 1) =t"! and |N| = |Q|[N : Q] = t". '

(b) From previous Lemma 3.1 (b) we know that |Ann(g’)| = (n/m) =t/
Moreover, |¢/ * C| = (n —m)/t/ withn = t" and m = "}, s0 |¢/ * C| = (t — D",
Vj S 1771. ]

Notice that, generally, the set £ = {e1,...,e,} results in the set of the left
identities of N and also, from Definition 2.1, every element of N has at least a right
identity. Thus, both the set of the left identities of any element of N and the set of the
right ones are certainly non empty.

Remark 3.1. Inthe Z, case (see[1,2]), if e is an idempotent right identity of
any generator of Q, say q, in B, the sets of the left and right identities of q coincide
and e is the only left (and right) identity of q in B, if and only if the order of B, is a
dwisor of t — 1. From previous Example 2.1 we can see that it is not always true.

Return to the Example 2.1 - Now, we have |Q| =t =T7andt —1 = 6. Each non
zero element of Q results in a generator of Q) itself. So, fixing q = (1,0) as a generator
and without loss of generality, we have

B = ©((0,1)) = {(0,1),(0,6)}
B *(1,0) = {(1,0)} ¢ {(1,0),(6,0)} = (1,0) * B 1) -
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Thus, all the elements of B 1) are left identities of (1, 0) but the only right identity of
(1,0) n By is (0,1). Moreover, By has ovder 2, but even if 2 is a divisor of
t—1=26, (0,1) has more then one left identity.

So, in the following paragraphs 4.1 and 4.2 we are just dealing with the sets of the
left or right identities of ¢/, j = 1,...,r — 1, where q is a generator of @ and » = v(q).

4 - The set C of the left cancellable elements

In what follows we will always assume |N| = ¢" for some integer ¢t > 1. Here we
recall again (see Remark 2.1) that C is a multiplicative semigroup, disjoint union of m
isomorphic groups, the B,,s, e; being the identity of B,,.

Remark 4.1.  From previous Theorem 3.1 we learn that |C| = (t — 1)t"Y, thus
|B,,| = hk, where h divides t — 1 and k divides t"1, for i € L.

4.1 - Left identities of q/
Definition 4.1. Let q be a generator of Q and v(q) = r. The set of all the left
identities of ¢ will be denoted by F(q’), that is
F@/) = {weNexq =g}, forjel, ..
Proposition 4.1. Let q be a generator of @ and vig) =r. Then

Fl@ CF@* C...CF(@") CCisa chain of multiplicative semigroups.

Proof. Obviously, x,y € F(¢q/) implies x « y € F(q7). Moreover F(q’) C F(g’*),
asx * ¢/ = ¢’ impliesx x ¢/*! = ¢/t1,Vj € I_;. Finally,letx € F(¢g"1). Ifx € Q, then
x=¢q°«c, for some se€l,_; and ce C. Hence, ¢ 1 =xxq" 1 =q¢*+xcxq™1 =0,
because the I.F.P. holds now. But ¢"~! = 0 is clearly impossible, so x € C. |

Definition 4.2. Let q be a generator of Q and v(q) = r. The set of all the left
identities of ¢/ belonging to B,, will be denoted by F,.(q’), that is
Fei(q") = F(g) NB,, = {x € By, | * ¢ =q’Y, forjel,_yandicl,.
Remark 4.2. Fei(qj) 1s non empty, because e; € Fei(qj), Vjel, 1, Vi€l

Proposition 4.2. Let q be a generator of Q and wq) = r. Then, for i,h € I,
andj €I, 4,
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(@) Fo,(q) CF..(¢*) C ... CF.(¢"") C By, is a normal chain of multiplicative
subgroups of Be,;
(b) F..(q¢') and F,,(g’) are isomorphic groups.

Proof. (a) Previous Proposition 4.1 implies that F,(g) C ... C Fei(qr‘l) is a
chain of multiplicative subsemigroups of B, Vi € I,,. Now, letx € F, (g/)and x~1 be
the inverse of x in B,. From ¢/ =x+¢q’ we have v lxq/ =a1xxxq’
=e;xq) =¢q/,s0x7! € F,(¢7). Hence F,,(q/) results in a subgroup of B,, with e; as
identity. Moreover, from Proposition 3.4(a) we learn that for all ¢ € C there exists
¢ € C such that ¢ x ¢/ = ¢/ x ¢'. Thus V € B,,,Vy € F,,(¢’) we have v % y x x x ¢
= lsxyxq/xo =xlxg/ v’ =xlxwxq) =e;xq’ =q’. Hence F,(¢’) is a
normal subgroup of B,,.

(b) It can be easily verified that n(F,,(¢’)) = F,,(g’), where 7 is the isomorphism
defined as in Remark 2.1 (a). O

Proposition 4.3. Let q be a generator of @ w@q) =7, |B|=hk and

] k
\Fe,(@”)| = hjk;, wheve hy | ...\ he_y || G —1) and ky |...| ke—y | k| ¢1 Then o
divides t"~U*D for j € I._y and, in particular, k,_1 = k. J

Proof. Firstly, we observe that Cxq’ =Cxe;*q’ = B, x¢’ and, from
Proposition 3.4 (a), B, * ¢/ C ¢’ x C, for i € I,,. Secondly, for any fixed ¢ € C, we can
show that the right translation 6, : B, * ¢/ — B,. * ¢/ * cis abijection for allj € I, ;.
In fact, let by * g/ * ¢ = by * ¢/ * ¢, for by, by € B,,. Obviously ¢ € B,, for some s € I,,,.
Let ¢! be the inverse of ¢ in B,,. Then by * ¢/ * ¢ ¢! = by * ¢/ * ¢ x ¢” implies
by * g/ * e; = by * ¢/ * e,. Multiplying on the right by an idempotent right identity of
¢’ and keeping in mind that e, is a left identity of N, we obtain b; x g/ = by * ¢/, hence
0. results in injective and hence bijective. Moreover, for any fixed ¢ € C, either
B, *q'NBy, xq' xc=0 or B, xq’ =B, *q’+c. In fact, if y belongs to
B.. ¢/ N B, * ¢/ x ¢ we have y = by * ¢/ = by x ¢/ % ¢, for some by, by € B,,. Hence
¢/ =b;lxbyxq/xc implies bxq/ =bxb;'xbyxq/xc€ B, xq/xc, for any
b € B,,. So B,, xq’ C B, ¢’ * ¢ implies B, * ¢/ = B,, * ¢/ x c. We can deduce that
the elements of ¢/ + C are equally shared in each B, xql, Viel,, so |B,, *q|
=By, : F,(¢)] = :7:7 must divide |¢7 * C| = (¢ — 1)t"~U+D (see Proposition 3.1). In

particular, divides 1,s0k._1 =k. O

ka’fl

Remark 4.3. Since F(¢’) = U:ilFei(qj), we have that F(q) C ... C F(g"™)
C C 1is a chain of multiplicative subsemigroups of N, each of them results in a
disjoint union of m isomorphic groups.
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4.2 - Right identities of ¢’

From Definition 2.1 we know that every element of N has at least a right identity,
so the set of all the right identities of any element x of N is certainly non empty. Now
we are dealing with the set of all the right identities of ¢/,j = 1,...,7 — 1, where ¢ is
a generator of ) and v(q) = r.

Definition 4.3. Let q be a generator of Q and v(q) = r. The set of all the right
identities of ¢ will be denoted by Ul(q?), that is

Ulg)) = {x € Nlg’ xx = ¢}, forj eI, ;.

Proposition 4.4. Let q be a generator of Q and v(q) = r. Then, forj € I, 4,
(@U@ CU@»C...CU@Y CCisachain of subsemigroups of C;

(b) Ulg?) = u + Ann(q’), u being any right identity of q’;

© |Ugh| =t

Proof. (a) Obvious, as in Proposition 4.1.

(b) Let u be any right identity of ¢/. Letx € U(q’). Thengq’ « x = q/ = ¢’ x u, thus
q’ « (@ —u) =0 implies & —u € Ann(g’). Conversely, let y¥ be any element of
Ann(q’), then ¢/ + (w +y) = ¢/ xu+¢q/ xy = ¢’.

(¢) From previous point (b) and Theorem 3.1, |U(g’)| = |Ann(g’)| = t/. O

Definition 4.4. Let q be a generator of Q and v(q) = r. The set of all the right
identities of ¢’ belonging to B,, will be denoted by U,,(¢”), that is

U, (@) =U@)NB,, = {x B¢’ xx=q'}, forjcl, andicI,.

Remark 4.4. Forallj € I, 1, U, (q’) is non empty if and only if ¢ x e; = ¢/,
that is if and only if e; € U,,(q").

Remark 4.5. If ¢/ xe; # ¢’ then e; € U, (p), where p = q * e; results in a
generator of Q.

Proposition 4.5. Let q be a generator of Q and v(q) = r. Then, for i,h € I,
and j € I, g,

(@) ifq’ * e; = ¢/, then U,,(¢7) C U,,(¢"*") C --- C U,,(g"™") is a normal chain of
multiplicative subgroups of Be,;

(b) U, ((q = €;))) and U,,((q * e,)’) are isomorphic groups;

() if ¢’ x B,, N q’ By, is non empty, then ¢’ * B,. = g’ * B,,.
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Proof. (@) If ¢/ xe; = ¢/, from previous Proposition 4.4(a) we know that
U.(g’) is a non empty subsemigroup of U, (¢g’*!) with e; as identity (see
Remark 4.4), Vj € I,_o. Let now x € Uei(qj). The inverse of x in B,, belongs to
Uei(qj) because it is an integer power of x (see [5], Th.8), so Uei(qj) results
in a subgroup of B,. In order to show that U, (¢’) is normal in B,, firstly
we prove that an element x of B, belongs to U,(¢/) if and only if
x % (¢ + Ann(g))) = ¢ + Ann(g’), for all c¢eC. In fact x € U,(g/) implies
¢’ xx=¢q’. Thus ¢’ xx *c = ¢’ xc and this implies = * ¢ € ¢ + Ann(q’), Vc € C.
Hence, keeping in mind that xxAnn(q’) = Ann(g’) for all x € C and
jel_i, xx(c+An@)) =x*c+ Ann(g’) = ¢ + Ann(g?), for all ¢ e C. Con-
versely, if x € B, and xx* (c +Ann(g’)) = ¢ + Ann(g’) for all ¢ € C, choosing
c=e; we have xx(e; +Ann(g’)) = e; +Ann(q’). Hence ¢/ xx «(e; +Ann(q’))
= ¢’ = (¢; + Ann(g’)) and this implies ¢/ x x = ¢/, that is x € U,.(¢").

Applying previous characterization, Vy € B,., Vx € U,.(¢’) and Vc e C we
have y lxxxyx(c+Ann@) =y T xxx(yxc+yxAnn(q)) =y 1 xxx@yxc
+Ann(g)) =y 1« (yxc+Ann(g))) =y lxysc+y '« Ann(g’) = ¢ + Ann(g’).
Thus ! * x * y belongs to U,,(¢’) and this implies U,.(g’) is normal.

(b) It can be easily verified that 7z(Uei1 ((q * eil)j)) = U% ((q * eiz)i), where 7 is the
isomorphism defined as in Remark 2.1 (a).

(¢) ¢/ * B,, N ¢’ * B,, # 0 implies ¢’ * & = g/ x y for some « € B,, and y € B,,.
Multiplying by e; on the right we obtain ¢/ « & = ¢/ % y * e;, s0 ¢/ x y * (¢; — ;) = 0.
Let y! be the inverse of y in B,. Applying the LF.P. we obtain
@ xyxy Txnx(—e,)=0, so ¢/ xnxe;=q’xnxe, for all n € N. Hence
¢’ *B,, =q’ xB,, x e, = ¢’ x B,,. O

Remark 4.6. From what precedes we can say that U(g)) is a semigroup
containing exactly m; idempotent right identities of q’, say e, ei,,. .. @iy - Then
U(g)) results in the disjoint union of m; isomorphic groups, the Ue, (q))s, for

_ o . |U(g")|
A€l that is Ulg’) = UT’:1U@Z (7) and m; = m’

forjel, .

Now we are able to state a theorem about the algebraic structure of the B, s.
Since the B,,s are isomorphic groups, we will confine our attention to one of them, say
B,, e being its identity. Since each non zero idempotent is a right identity of some
generator of @, let ¢ be a generator of @ such that ¢ xe = q.

Actually, the following Theorem 4.1 could be inferred from Prop. 4 of [9], chan-
ging the contest appropriately. Anyway, here we give a short direct proof.



114 ANNA BENINI and SILVIA PELLEGRINI [14]

Theorem 4.1. Let q be a generator of Q and v(q) = r. Let e be an idempotent
right identity of q and |B.| = hk, wheve h | (t — 1) and k | t"~L. Then

(@) Uyg™™) is a normal subgroup of B, of order k;

(b) B, results in the semidirect product of U,(qg"1) and a complement U’ of
order h.

Proof. (@) From Proposition 4.5 (a) we know that U,(g"') is a normal sub-
group of B,. Moreover, since the elements of U(g" ') are shared into disjoint sub-
groups isomorphic to U,(g" ') (see Proposition 4.5 (b)), the order of U,(g" ') divides
|U(@" )| =t"! (see Proposition 4.4(c)). In addition, the index of U,(¢"!) in B,
equals the cardinality of ¢"~! * B, and |¢"~! * B,| must divide |¢"! x C| =t — 1 (see
Proposition 4.5 (¢) and Theorem 3.1). Thus, [B,: U.(g" )] divides t—1 and
|Ue(qr_1)| = k.

(b) Uy(q"1) is a normal subgroup of B, whose order and index are coprime, so B,
results in the semidirect product between U,(¢g" 1) and its Schur-Zassenhaus com-
plement (see [7]). O

Corollary 4.1. Let q be a generator of Q, v(q) =r and |B,| = hk where h
divides t — 1 and k divides t"~1. The following statements are equivalent

(@ [Felg M| =15

() |Be| = h and |Fo(g?)| = |Ue(@”)| =1, Vj € I,_1;

() |Bel =hand B, xq’ =¢q’ xB,, Vj€l,_.

Proof. (a) = (b) Obviously |F.(g" 1) =1 implies \Fe(qj)| =1, Vel ;.
Moreover, from Proposition 4.3 we know that |F,(¢"1)| = h,_1k, where &,_; divides
t—1,s0 k= h,_1 = 1. Hence |U,(g"!)| = 1 implies both |B,| = & and |U,.(g’)| = 1,
vj el ;.

() = (¢) |Fq)| = |Usg’))| =1, Vj I, 1 implies |B, xq’| = |Be| = |q’ * B,|.
Since B, * ¢’ C q’ * B, (see Proposition 3.4 (a)), then B, x ¢/ = ¢’ * B,.

(¢) = (a) Bo+q" ' =q" ! % B, implies |Fo(¢"™")| = |Ug"™")|. |Be| = h implies
k=1,50|Ufg" | =1=[F(g" ™). O

In the 7, case the equality B, ¢/ = ¢’ x B, is always satisfied, so |B,| = h
implies |F.(q7)| = |U.(¢?)| = 1,Vj € I._;. Generally, it is not true (see the Example in
Remark 3.1), anyway we can show the following

Proposition 4.6. Let q be a generator of Q and v(q) = 7. If |Be| = h, where h
diwvides t—1, then |UJg)| =1 |F.g)|=h; and hjB,*q’|=|q’*B.|=h,
Vj el 1.
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Proof. Since we know that |B,| = hk, where & divides { — 1 and k divides
=1, our hypothesis forces k =1, hence |Ue(q«7)| =1 (see Proposition 4.5 and
Theorem 4.1) and |F.(¢’)| = hj, where h; divides h, Vj € I,_; (see Proposition

43). So, |/ B.| = [B. : Ug/)) = b and |B. » ¢/ = [B. : Fu(g)) = 1 0
)

5 - Let ¢ be a prime number

If ¢ is a prime number, the orders of N and @ are prime powers, so N and @ are
(additive) t-groups. We also know that |B,| = hk, where h divides ¢ — 1 and k divides
trUsok=t,with0<a<r—1.

Theorem 5.1. Let q be a generator of Q and v(q) = r. Let e be any idempotent
right identity of q and |B.| = ht’, where t is a prime, h divides t—1 and
0<a<r—1 Then |U(q" V)| =t*and Uq"™') C Fo(q" ).

Proof. From previous Theorem 4.1 we know that |U, e(q’"‘1)| = t*. Moreover, as
|Fo(q"1)| = h,_1t*, with t and h,_; relatively prime, we know that F,(¢"~!) contains a
subgroup of order t¢, say F,. Obviously F, is a t-Sylow subgroup of B,. As U,(¢" ') is
normal in B,, it is the only ¢-Sylow subgroup of B,. Hence, U,(g"!) = F,. O

Remark 5.1. Iftis a prime number, from Propositions 4.4, 4.5 and previous
Theorem 5.1 we know that

(@) |Ulg™)| =t%

B U@ =1o0rt

(©) if |Un(g))| = t* then |U(g7*h)| = t* or t**1, forj € I, _».

Thus, we can easily deduce the following

Proposition 5.1. Let q be a generator of Q and v(q) =1r. Let e be any
idempotent right identity of ¢ and |B,| = ht®, where t is a prime, h dividest — 1 and
0<a<r-1If|Uq"| =t* then

forj<a |Ufg)| =t/ and |¢’*B,| = ht*7
forj>a |UJg))| =t* and |¢/ xB,| = h.

If | U@ )| = 1 then

fori<r—a—1 |Ulg)| =1 and |q7 * B,| = ht"
fori>r—a—1 |Ulg))| =t and |¢/ * Be| = ht"71,
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