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Very ampleness of balanced line bundles on stable curves

Abstract. Here we study the spannedness and the very ampleness of balanced
line bundles (in the sense of L. Caporaso) on stable and quasi-stable curves.
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1 - Introduction

L. Caporaso defined, constructed and studied a universal compactified Picard
variety over M, ([1]). In her construction she considered the following notion, first
introduced by D. Gieseker ([6]). Let X be a genus g semistable curve. Let L be a
degree d line bundle on X and C a proper subcurve of X. The pair (L, C) satisfies the
Basic Inequality if and only if

(1) [(deg(L|C) — d(pa(C) — 1+ 4(CNX\C)/2)/(g — 1| < H(C N X\O)/2

L is called semibalanced ([2], Definition 4.6, [7], Definition 1.1) or satisfying the Basic
Inequality ([1], p. 611) if (1) is satisfied for all proper subcurves C of X. Now assume
that X is quasi-stable. The line bundle L is called balanced if it is semibalanced and
deg(L|E) =1 for every exceptional component £ of X, i.e. for every irreducible
component E of X such that £ = P! and #(& N X\E) = 2. A point P of a nodal and
connected projective curve X is called a separating point of X if X\ {P} is not con-
nected. To state our results we introduce the following short-hands. For any sub-
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curve Z C X set wy := deg(wx|Z) and gz :=1 — y(Oy). Set w := wx =29 — 2. For
any proper subcurve Z;X set 07 := #(Z N X\Z). Hence wy = 297 — 2 + 0. For any
quasi-stable curve X such that its stable reduction is reducible let w denote the
minimal integer w; among all proper connected subcurves Z of X which are not
exceptional. Let X be a reducible quasi-stable curve with a disconnecting node, i.e.
with at least one proper connected subecurve Z such that d; = 1; let w; denote the
minimal wy; among all such Z. Notice that w; is always an odd positive integer.

The following result is related to [4], Theorem 2.2.1. Even its proofis only a small
modification of the proof given in [4].

Theorem 1. Let X be a quasi-stable curve of genus g > 3 with a separating
point. and L a balanced line bundle of degree d > 2g. Assume

(2) (d—2g + 2001 > g.

Then L is spanned.

Remark 1. The inequality (2) is satisfied if either d>3¢g—2 or
d>g/3+29—2andw; # 1,i.e.ifd > g/3 + 29 — 2 and X has no connected proper
subcurve Z such that é; = 1 and p,(Z) = 1.

Theorem 2. Let X be a quasi-stable curve of genus g > 3 and L a balanced
line bundle of degree d. Set f:=d — 29+ 2. Assume >3 and pwp + op(g — 1)
> 4g — 3 for every connected proper subcurve B of X, which is not an exceptional
component of X. Then L is very ample.

Assume that X has at least one exceptional component, 7. We have wr = 0 and
or = 2. Hence pwr + o7(g — 1) <4g — 3 even if f is arbitrarly large.

The different cases considered in the proof of Theorem 2 give the following ob-
servation.

Remark 2. Let X be a quasi-stable curve of genus g > 3 and L a balanced line
bundle of degree d. Set § := d — 2¢g + 2 and assume f§ > 3. If either 6, > 4 ordy; =3
and fwyz > g or 67 = 2 and fwyz > 29 — 1 or 6z = 1 and fwyz > 3¢9 — 2 for all proper
connected subcurves Z of X which are not exceptional components, then the re-
striction to X, of the morphism induced by the base point free linear system |L| is
injective and unramified.

R. Pandharipande proved that Caporaso’s compactification has another in-
terpretation ([8], theorem 10.3.1). Fix X € ﬂg and d € 7. In [1] L. Caporaso
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used as the fiber over X of her moduli scheme the set of all degree d balanced
line bundles on all quasi-stable curves Y with X as stable model. Since X is
stable, wy is ample. R. Pandharipande took as the fiber over X of his moduli
scheme all equivalence classes of wy-semistable depth 1 sheaves on X with pure
rank 1 and degree d ([9], chapters VII and VIII). Fix any such sheaf F. It is
obviously interesting to know if F' is spanned. In the non-locally free case there
are several different notions related to “very ampleness”. We explore this topic
in Section 3.

We thank the referee for several essential corrections, remarks and improve-
ments.

2 - Proofs of Theorems 1 and 2

Remark 3. Let U be areduced projective curve. Fix an ordinary node P of U
and let « : £ — U be the partial normalization of U in which we normalize only the
point P. Set {Q1,Q2} := a~}(P). Let W C U be a zero-dimensional subscheme of U
such that W,,q = {P} and lenght(W) = 2. Let my p be the maximal ideal of the local
ring Oy p and J = Zw p the ideal of Oy p associated to W. Thus Oy p/J = Ow.
Since length(W) = 2, m%] p CJ. Hence the pair (Oy p,J) depends only from the
formal completion of U at P. Identify @U, p with K[[x,y]]/(xy). Either W is con-
tained in a formal branch of U at P or not. In the former case J contains either « or
y. The latter case occurs if and only if W is a Cartier divisor of U (use the inter-
section multiplicity at a point P of two plane curves, one of them singular at P ([5],
property (5) at p. 75)). In both cases there is an integer j € {1,2} such that Ty
contains the image of the natural map «.(Zq, q,qz) — Ov, where we see
Q1 + Q2 + Q; as an effective Cartier divisor of £. ‘

We fix a balanced L € Pic(X) and write d; := deg(L|Z) for any subcurve Z of X,
d:=dy and f := d — 2¢ + 2. Since L is balanced,

(3) dz > 297 — 2+ pwz/w+ dz/2

for every proper subcurve Z of X.

Proof of Theorem 1. Since d > 2¢, the proof of [4], Theorem 2.2.1, shows that
it is sufficient to prove d; > 2¢ for all proper connected subcurves Z of X such that
0z = 1. Assume that Z is a proper connected subcurve with d; = 1. Thus wz; > w;.
Hence (2) gives (d — 2g + 2)wz/w > 1/2. Since 6z = 1 and dz — 2g7 is an integer, (3)
gives dy > 2¢. O
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Proof of Theorem 2. The line bundle L is very ample if and only if
WX, ITw @ L) = h°X,L) — 2 for all zero-dimensional schemes W c X such that
length(W) = 2. We distinguish the following four cases (a), (b), (¢) and (d). In step (f)
we will handle the exceptional components (if any) for steps (b), (¢) and (d).

(a) Here we assume W C X,,,. Asin the proof of [4], Theorem 2.2.1, WX, Iw @ L)
= h(X,L) — 2ifd; > 29, + 1for every subcurve Z of X. Itis sufficient to consider the
connected subcurves. The case Z = X is true, because we assumed § > 3. Now assume
Z #+ X. If Z is an exceptional component, then d; = 1 and g; = 0. Hence we may as-
sume that Z is not an exceptional component, i.e. we may assume wy > 1. Since dy is an
integer, (3) shows that it is sufficient to prove the inequality pw; /w + dz/2 > 2, which
is true if either d; > 4 and f > 0 (but we even assumed f > 3) or ; > 3, wy > 2 and
f>gordy >2and fwy > 29 —1oroy > 1and fwy > 39 — 2.

(b) Here we assume that W, is a point P € Sing(X). We will see that in this case
it is sufficient to assume

(4) (d — 29 + 2wg + oplg — 1) > 29 — 2

for every proper connected subcurve B of X which is not an exceptional compo-
nent. Let v : C — X be the partial normalization of X in which we only normalize
the point P. Set {Py,Pp}:=v"}(P) and M :=v*(L). It is sufficient to prove
M(C,M(—P; — Py — P)) =0 for all j € {1,2} (see Remark 3)). It is sufficient to
prove deg(M( — Py — P — P))) > 2p,(A) — 1 for all j € {1,2} and every connected
subcurve A of C ([4], Lemma 2.2.2). Since deg(M( — P; — Pz — P))) > —2y(O¢), it is
sufficient to consider the proper subcurves of C. Let A be a proper connected
subcurve of C. Set B:=wv(4). If P¢ B, then {P;,P;}nNA=10. Hence
M(— Py — P; — Pj)|A =~ M|A, and v|A : A — B induces an isomorphism such that
(('v|A)’1)*(L|B) =~ M|A. Hence in this case we have deg(M(— P;— Pz — P))|A)
=dp > 295 — 1 =294 — 1 (use the inequality pwp/w + dp/2 > 0). Hence we are
done in this case. Now assume P € B, P; € A, Ps ¢ A andj = 1. Hence A is smooth at
Py, v|A: A— B is an isomorphism and deg(M(—2P; —Py)|A)=dp —2 > 2¢gp — 1
(use (4)). In the same way we handle the case P; € A, P» ¢ A and j = 2 and the two
subcases with P € A and P; ¢ A. Now assume {P;,P;} C A, i.e. P€ B and
9B = ga + 1. Since deg(M(— P; — Pz — Pj)|A) = dg — 3, it is sufficient to check
the inequality dp > 2¢p, which is true (since dp and 2¢p are integers) if
pwp/w+ /2 > 1, i.e. if (4) is satisfied.

(c) Here we assume W reduced, say W = {P,Q}, and $(W N Sing(X)) = 1, say
P € Sing(X). Let v : C — X be the partial normalization of X in which we only nor-
malize the point P. Set { Py, P2} := v 1(P),Q := v Q) and M := v*(L). Itissufficient
to prove h}(C, M(— P; — P> — Q")) = 0. Since deg(M(— P; — P2 — @) > — 2(O¢), it is
sufficient to prove deg(M( — P; — Po — Q")) > 2p,(A) — 1 for every proper connected
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subcurve A of C ([4], Lemma 2.2.2). Let A be any proper connected subcurve of C. Set
B :=v(A). First assume {P;,Ps2,Q'} CA. In this case deg(M]A) =dp —3 and
g5 = ga — 1. In this case we conclude if dg > 2¢3p, i.e. if dg > 295 — 1. Hence in this
case (3) shows that we only need to require fwg + dp(g — 1) > 29 — 1. Now assume
W C B and §({P1, P2} NA) = 1. In this case deg(M|A) = dp — 2 and g4 = gp. Hence
in this case it is sufficient to have dp > 2¢g5. Hence by (3) it is sufficient to have
Pwp + dp(g — 1) > 4g — 3. The other cases, i.e. (W N B) <1, require weaker as-
sumptions (see step (b)).

(d) Here we assume W ={P,Q} with P#@ and W C Sing(X). Let
v:C — X be the partial normalization of X in which we normalize only the
points P and Q. Set {P1, P2} = v71(P), {Q1,Q:} = v 1(Q) and M := v*(L). It is suffi-
cient to prove h'(C,M(—P; — Py — Q1 — @3)) = 0. Since deg(M(—P; — Py — Q1 — Q2))
> —2y(O¢), it is sufficient to prove deg(M(— P; — Py — Q1 — Q2)) > 2p,(A) — 1
for every proper connected subcurve A of C ([4], Lemma 2.2.1). Let A be any
proper connected subcurve of C. Set B:=wv(A). As in steps (b) and (c¢)
the worst bound arises if WCB and #ANv ' (W))=2. In this case
ga=9gp and deg(M(—P;—Ps— Q1 —Q2)) =dp —2. Hence in this case to
have deg(M(— P; — P — Q1 — Q2)) > 2p,(A) —1 we need to check dp > 2¢p.
Hence by (3) it is sufficient to have pwp + dglg —1) > 4g — 3.

(e) In the statement of Theorem 2 we assumed no inequality for the
exceptional components (if any). Hence in the previous steps (b), (¢) and (d) we
cannot conclude if the connected subcurve B is an exceptional component. We
could do all steps with as W a point and get at least that L is spanned. Assume
the existence of at least one exceptional component and fix an exceptional
component T of X. Since L is spanned, T = P' and deg(L|T) = 1, the morphism
hy|T induces an embedding of 7' onto a line of Y. Thus the restriction map
HX,L) — H%T,L|T) is surjective. First assume W C T. Since hz|T is an
embedding, the zero-dimensional scheme h,(W) is not a point. Hence
hO(Pd’g,I;ZL(W)(l)) <d-g-1,ie. %Y, ITw ® L) < h°(Y,L) — 2. Since h}(Y,L) = 0
and length(W) = 2, we get h1(Y, Zw ® L) = 0. Thus from now on we assume that W
is not contained in 7.

First assume that {P} := W,,q € Sing(X) (as in step (b)) with P € T' N Sing(X)
and take B := T. Hence A is the unique component of C such that v(4) = T. Thus
A =Pl ie.gs = 0. Since T does not contain W, we have #(A N {P1,P3}) = 1. Hence
deg(M( — P; — Py)|A) > 2g4, concluding this case.

Now assume that we are in the set-up of (¢) with B =T.If W C T, then we get
WX, Tw ® L) = 0 as above, because h,|T is an embedding and #!(X, L) = 0. Hence
BN {P,Q)) < 1. Hence deg(M(— Py — Py — Q; — Q)|A) > deg(M|A) —2 = 1.
Hence deg(M(— P; — Ps — Q1 — Q2)|A) > 294 — 1.
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Now assume that we are in the set-up of (d). If {(WnNT)<1, then we
get deg(M(—P1—Ps— Q1 —Q2)A)>294—1. If WcCT, then we get
MX,ITw @ L) =0 as above. |

3 - The non-locally free case

Remark 4. Let X be a stable curve of genus g and F' a depth 1 sheaf on X with
pure rank 1. Set Sing(F):={P € X : F is not locally free at P}. Notice that
Sing(F") C Sing(X). Let v : C — X be the partial normalization of X in which we
only normalize the points of S := Sing(#). Hence x(O¢) = y(Ox) + #(S). Set
M :=v*(F)/Tors(*(F)). The coherent sheaf M is a line bundle on C such
that deg(M) = deg(F) — #(S) and v,(M) =~ F. Hence hi(C,M) = h'(X,F), i =0, 1.
For any zero-dimensional scheme Z c X\S we have v 1(Z)~Z and
h(C,M(—vY2Z)) =h'(X,T;®F),i=0,1. Let Y be the unique quasi-stable curve
with X as its stable reduction and with S as image of the exceptional compo-
nents. Let u:Y — X denote the stable reduction of Y. For any P €S let
Ep:=u1(P) C Y denote the associated exceptional component. Thus the curves
{Ep} pcg are the exceptional components of Y. There is an inclusionj : C — Y such
that UpcsEp = Y\ J(C) and v = u o j. For any P € S we have Ep Nj(C) = j(w 1(P)).
A standard property of the semistable reduction says that there is a unique
L € Pic(Y) such that j7*(L|j(C)) =2 M and deg(L|Ep) = 1. The proof of [8], Theorem
10.3.1, says that L is balanced if and only if F' is wy-semistable.

Remark 5. Let U be a reduced projective curve, F' a depth 1 sheaf on U with
pure rank 1 and W C U a zero-dimensional subscheme. By tensoring with F' the
exact sequence

0—-Zw — 0y — Ow — 0

we get a map v : Zyy ® F — F whose cokernel is supported by the finite set W,q.
Hence the subsheaf Im(y) of F has pure rank 1. Set ZwF := Im(y). The sheaf Zw F' is
the kernel of the restriction map ¥ — F|W. The coherent sheaf Ker(y) is supported
by the finite set Sing(#) N W,.q. Hence (U, Ker(y)) = 0. Thus the exact sequence

0—-Ker(y) - ZwF - ZwF — 0
gives h{(U,Zw ® F) = h' (U, IwF).

Lemma 1. Take the set-up of Remark 4. The sheaf F is spanned if and only if
the line bundle M is spanned and h°(C, T, py ® M) = h°(C, M) — 2 for every P € S.
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Proof. First assume that F' is spanned. Since the tensor product is a right
exact functor, v*(¥) is spanned. Hence M is spanned. Fix P € S. Since the fiber
F|{P} of F at P is a 2-dimensional vector space and F is spanned at P,
(X, IpF) = h°(X,F) — 2. Since the natural map H°(X,F) — H°(C,M) is an iso-
morphism (Remark 4), we get 2°(C,Z,1p) ® M) = h(C, M) — 2.

Now assume that M is spanned. Let G be the subsheaf of F spanned by H*(X, F).
Since we saw that the functor v* induces an isomorphism H°(X,F) — H(C, M)
whose inverse is induced by v, (Remark 4) and M is spanned, F' is spanned outside S.
Hence the support of F/G is contained in S. Fix P€S and assume
1(C, T, 1py @ M) = h%(C, M) — 2. Since the map H*(X,F) — H°(C,M) is an iso-
morphism, we get h°(X, ZpF) = h®(X, F) — 2. Since the fiber F|{P} of F at P is a 2-
dimensional vector space, the last equality implies that F" is spanned at P. O

Remark 6. Take the set-up of Remark 4. Assume M spanned and
RHC, M) = 0,i.e. h'(X,F) = 0 (Remark 4). Fix P € Sing(X). Set {Py, P2} := v~1(P).
Let hy : C — P", r:=h%X,F)—1, be the morphism induced by the complete
linear system |M|. We have hy;(P1) # hy(P2), hy is unramified at P; and at P and
the tangent lines to the curve hy,(C) at hy(Py1) and at /iy, (P2) span a 3-dimensional
linear subspace if and only if ANC,M(—2P; —2P;)) =0, ie. if and only if
(C,M(— 2Py — 2P5)) = h°(C,M) — 4.

Lemma 2. Let B be a reduced projective curve and E an irreducible compo-
nent of B. Set T := W Assume E = P, #(T' N E) = 2 and that each point of ENT
1s an ordinary node of B. Fix R € Pic(B) such that R|E has degree 1, R|T is spanned
and h(T, (R|T) — T NE)) = h°(T,R|T) — 2. Then R is spanned and the restriction
map p : H'(B,R) — H'(T,R|T) is bijective.

Proof. Since (T N E) =2 and each point of 7'N E is an ordinary node of B,
length(T N E) = 2. Look at the following Mayer-Vietoris exact sequence on B:

(5) 0—-R—>R|T®R|IE—-RITNE — 0.

Since K = Pl, length(TNE)=2 and deg#|T)=1, the restriction map
p HYE R|E) — HNENT,RITNE) is an isomorphism. Hence (5) gives the bi-
jectivity of p. Thus R is spanned at each point of 7. Since length(7' N E) = 2, the
condition “ (T, (R|T)( — T N E)) = h°(T, R|T) — 2” is equivalent to the surjectivity
of the restriction map p” : HY(T,R|T) — HXT N E,R|T N E). Since p’ and p are bi-
jective, the surjectivity of p” gives the surjectivity of the restriction map
p1 : H'(B,R) — H(E,R|E). Since R|E is spanned, the surjectivity of p; gives that R
is spanned at each point of £. O



88 E. BALLICO (8]

Lemma 3. Take the set-up of Remark 4.

(a) K'(Y,L) = k'(C,M) = h'(X,F),i =0, 1.
(b) F' is spanned if and only if L is spanned.

Proof. Consider the Mayer-Vietoris exact sequence of coherent sheaves on Y
(6) 0 — L — L|j(C) & L|(Upes Ep) — L[j(C) N (Upes Ep) — 0.

Since Ep == P! and deg(L|Ep) =1, h}(Ep,L|Lp) =0 for all P € S. Notice that
EpnEqg =10 for all P,Q € S such that P # Q. Since Ep = Pt deg(L|Ep) =1 and
$G(C)NEp) =2 for all PcS, the restriction map H°(Upcs Ep,L|Upcs Ep)
— H°G(C) N (Upes Ep), L|j(C) N (Upes Ep)) is an isomorphism. Hence (6) gives that
the restriction map p; : H'(Y,L) — H'(j(C), L|j(C)) =~ H(C,M), i = 0,1, is an iso-
morphism, proving the first equality of part (a). The second equality of part (a) was
proved in Remark 4.

Now assume that F is spanned. Lemma 1 allows us to iterate £(S) times Lemma 2,
each time inserting a different exceptional component Ep, P € S. At the end we get
that L is spanned.

Now we check the “if” part of (b). Assume that L is spanned. Since j*(L|j(C)) = M,
M is spanned. Since the natural map H°(X,F) — H°(C, M) is an isomorphism, F is
spanned at each point of X\S. Fix P € S and set {P1, P2} := v~1(P). Assume that F'is
not spanned at P. Lemma 1 gives that any section of M vanishing at P; vanishes at
Ps. Hence every section of L vanishing at j(P;) vanishes at j(P5). Since L is spanned
and deg(L|Ep) = 1, the restriction map H(Y,L) — H°(Ep,L|Ep) is surjective.
Hence the very ampleness of L|Ep gives the existence of a section of L vanishing at
7(P1), but not at j(Ps), contradiction. O

Remark 7. Take the set-up of Remark 4. Fix P € Sing(¥) and set
{P,P3} :=v"}(P). Let WcCX be a zero-dimensional scheme such that
Wyea = {P} and length(W) = 2. If W is a Cartier divisor of X, then the natural
map Zw @ F — ZwF introduced in Remark 5 is an isomorphism. Hence ZwF is
not locally free at P. Thus ZwF = v,.(M(— P1 — Py)) (apply Remark 4 to the
sheaf ZywF). Hence hi(X,ZwF) = hi(C,M(— P; — Ps)), i = 0,1. Now assume that
W is not a Cartier divisor, i.e. assume that, identifying (A)X7p with K[[ax, y11/(x,y)
as in Remark 4, the ideal J of W contains either « or y. Thus there is j € {1,2}
such that v.(M(—P;—Py;—P)) CIwF (Remark 3). Thus A'(X,ZwF)
< hNC,M(—P; — P, —Pj)).

Theorem 3. Take the set-up of Remark 4 with S := Sing(F). Assume that F
is wy-semistable, spanned and WX, F) = 0 or, equivalently, assume L balanced,
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spanned, and h*(Y,L)=0. Let h;,: Y — Pd’g, d = deg(L), be the morphism in-
duced by |L|.

(@ WX, Iw @ F) = "X, IwF) = W'(Y, T, 1qyy @ L), i =0,1, for every zero-
dimensional scheme W C X\S.

(b) Fix P,Q € X suchthat P # Q. We have h(X, T . ) = 0(or, equivalently,
the restriction map pp gy - H'X,F) — H'(P,Q},F|{P,Q}) is surjective) if and
only if the restriction of hy, to w X({P,Q}) is injective.

(¢) Fix P € Sing(F') and a zero-dimensional scheme W C X such that W,.q = { P},
length(W) =2 and W is a Cartier divisor of X. Set {Pi,Ps} :=vY(P). Then
WX, ITw @ F) = h'(X, ITwF) = hi(C,M( — Py — Py)), i = 0, 1. If L isvery ample, then
WX, TwF) = 0 and the vestriction map H' (X, F) — H(W,F|W) is surjective.

(d) Fix P € SinglF) and a zero-dimensional scheme W C X such that
Wiea = {P} and length(W) = 2. Set {Py, P2} := v-1(P). Then there isj € {1,2} such
that "X, Iw @ F) = WX, IwF) < B} (C,M(— Py — Py — P)).

(e) Fix P e Sing(F) and a zero-dimensional scheme W C X such that
Wiea = {P} and length(W) = 2. Set {Py, Py} := v }(P). If h'(C,M(—2P; — P5))
= hNC,M(— Py —2P5)) =0, then h'(X,ITyw @ F) = kX TwF) = 0. If

(d—2g +2)deg(wy|B) + (g — 1) - #(BNY\B)/2 > 29 — 2

for every proper connected subcurve B of Y which is not an exceptional component of
Y, then (X, Iw @ F) = W' (X, IwF) = 0.

Proof. The sheaf F'is wy-semistable if and only if L is balanced ([8], Theorem
10.3.1). Lemma 3 gives the equivalence of the other conditions listed in the second
sentence of the statement of the theorem. Part (a) is true by Lemma 3. In the proof
below we always identify H°(X,F) and H°(Y, L).

(i) Here we check part (b). Fix P, @ € X such that P # Q. Part (a) gives the case
{P,Q} € X\S. Now assume P € S and Q¢ S. Hence F|{P,Q} is a 3-dimensional
vector space. Since h;,(Ep) is a line, up to the identification of H*(X, F) and H°(Y, L),
the surjectivity of pp g is equivalent to h,(u™1(Q)) ¢ hi(Ep), i.e. to the injectivity of
hrlu=t({P,Q}). Now assume P € S and Q € S. Hence F|{P,Q} is a 4-dimensional
vector space. Since &7, (Ep) and hy,(Eq) are lines, they are disjoint (i.e. 27, |(Ep U Eg) is
injective) if and only if they span a 3-dimensional vector space, i.e. if and only if
(Y, Tg,um, ® L) = h°(Y,L) —4, ie. (up to the identification of H'(X,F) and
H'(Y, L)) if and only if Im(p ( p’Q}) has dimension 4, i.e. if and only if p (P.Q) is surjective.

(ii) Parts (c) and (d) follows from Remark 7. The first assertion of part (e) follows
from parts (¢) and (d). The second assertion of part (e) follows from the first one and
step (b) of the proof of Theorem 2. O
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