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Spanned vector bundles with canonical determinant

on special curves

Abstract. Let C be a smooth curve of genus g. Here we construct (under geo-
metric restrictions, like C hyperelliptic or a complete intersection) spanned rank n
vector bundles E on C with canonical determinant and with a (2n + 1)-dimensional
linear subspace W C H°(E) such that the natural wedge map A" (W) — H(det(E))
is injective. The motivation came from a paper by Pirola and Rizzi, who used (E, W)
to get certain non-trivial higher cycle maps on the relative jacobian of an n-di-
mensional family of curves C — S with C as a fiber.
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1 - Introduction

Let C be a smooth and connected complex projective curve of genus g > 3. Let
A(n) be the set of all rank » spanned vector bundle £ on C such that det(¥) = wc,
h(C,E) > 2n + 1, and h%(C,E*) = 0. Since E is assumed to be spanned, the last
condition is equivalent to assuming that O¢ is not a direct factor of E. For any
E € A(n) and any linear subspace W C H*(C,E) let ¢y, : A" (W) — H*(C, w¢) de-
note the determinantal map. Let B(n) denote the set of all pairs (¥, W) such that
E € A(n), W is a linear subspace of E, dim (W) =2n+1, and W spans E. Set
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D) := {(E,W) € B(n) : ¢y, is injective}. Since dim (W)=2n+1 and dim ( N (W)
_ (2n+1),92 (27@;1) i D0y 0.

n

Theorem 1. Assume C hyperelliptic. D(n) # 0 if and only if g > (2/”/7?_ 1)'

Theorem 2. Assume 29 —2 >3- ( and that C 1is trigonal with

2n+1
.)
Maroni invariant (g — 1)/4 (71, §1). Then D(n) # 0.

To get results for other curves the following definition ([2], [3]).

Definition 1. A line bundle L on C is said to be primitive if both L and
we ® L* are spanned.

. . 2n +1
Theorem 3. Fix an integer n > 2 and set d := ( nyj ) — 1. Asswme the

existence of a spanned R € Pic(C) such that R®? is primitive. Then B(n) # (.

The primitivity of R®? in the statement of Theorem 3 implies d - deg(R) < 2¢g — 2.
We recall two classical cases which satisfy the assumptions of Theorem 3.

Example 1. Fix integers » >2 and d; >2,1<i<r—1. Let CC P" be a
smooth complete intersection of hypersurfaces of degree dy, ..., d,_1. The adjunc-
tion formula gives we =2 Oc(dy + -+ d,_1 —7r —1). Hence C satisfies the as-
sumptions of Theorem 3 taking R := Oc(1)ifd < dy + -+ - +dp_1 —7—1.

Example 2. Let A be a rank 2 vector bundle on P? such that there is
se HO(P37E) whose zero-locus (s), is a smooth and connected curve C. Then C has
degree co(E) and w¢ =2 O¢(c1(E) — 4) ([4], proof of Proposition 2.1). Hence C sa-
tisfies the assumptions of Theorem 3 taking R := O¢c(1) if d < c1(F) — 4.

The motivation for these results came from a paper of G. P. Pirola and C. Rizzi in
which they proved the geometrie significance of the condition D(n) # () ([8]). Since
we will not need their set-up, we just state as a corollary the following immediate
consequence of Theorems 1 and 2 and of [8], Theorem 2.2.

Corollary 1. Fix integers g,n > 2 and a curve C as in the statements of
Theorems 1, 2 or 3. Then there are an n-dimensional variety S, s € S, a family
f:C — S of smooth curves such that f~1(s) = C and the adjunction map (equation
3 of [8]) is not trivial.
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Theorems 1, 2 and 3 also give non-trivial elements in the Griffiths group
Wi(JTs) (see [6] and [8], Theorem 5.5). Of course, everything in this paper de-
pends from [8]. As in [8] all pairs (&, W) € D(n) we construct have as £ a direct
sum of line bundles.

Remark 1. Almost everything here works without any modification if we
drop the assumption det(£) = w¢ (here only the degree d of £ is an important
datum) and we allow W of an arbitrary, but fixed, dimension m). We get lower
bounds on g depending from g, d, m and (if d is low) the geometry of C (see [8], §1
and §2, for this set-up). We leave this easy extension to the interested reader. If
we don’t require that W spans E, then the construction of examples are easier.
Similarly, if we assume that E is spanned, but drop the condition “det(£) = w¢”
(just requiring %!(det(E)) > 0), we get example for all k-gonal curves in Theorem
3 without assuming the primitivity of R®?. We only need to require that R®? is
special.

2 - The proofs

In the next lemma we will use the geometric interpretation of the wedge map for
curves in Grassmannian ([10], [1]).

Lemma 1. Fix integers m >n >0, and d > 0. Let G(n,m) denote the
Grassmannian of all (m — n)-dimensional linear subspaces of C*™. Let

(1) 0—S— O —-Q—0

G(m—n,n)

be the Euler sequence of Gim — n, m). Hence Q is the tautological quotient bundle,
S is the tautological subbundle, rank(Q) =mn, rank(S)=m —n, and det(Q)

= det(S*) = Ogunm). Letj : Gim —n,n) — PV, N := (7:) 1, be the Pliicker

embedding. There is a curve X C Gim — n,n) such that X = PY deg(X) = d, the
linear span (X)) of jX) has dimension min{d,N}, and the vector bundle
E :=Q|X is rigid, i.e. its splitting type a1 > --- > a,, satisfies a; := [d/n] and
a, = |d/n].

Proof. The case d =1 is obvious, because G(n — m,m) contains lines. Hence
we will assume d > 2. Let A(n,d, 0) be the set of all isomorphism classes of rank n
vector bundles on P! with degree d. Any rank n vector bundle E on P! is uniquely
determined by its splitting type a;(E) > --- > a,(&). E € A(n,d,0) if and only if
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a, > 0and a; + - -- + a, = d. Note that K°(P, E) = d + n and k!(P', E) = 0 for all
E € A(n,d,0). Hence the set G(n —m, H'(E)) of all (n — m)-dimensional linear
subspaces of H'(P!, E) spanning E is a non-empty open subset of the Grassmannian
G(m — n,d + n). Hence dim (G(m — n, H*(E))') does not depend from the choice of
E € A(n,d,0). Let T'(n, m,d) denote the set of all degree d maps P! — Gim — n,n).
Any ¢ € T(n,m,d) is uniquely determined by the choice of £ € A(n,d,0) and an n-
dimensional linear subspace V of HO(PI,E) spannig E. Let D C G(m — n, m) be the
line. Since QD has splitting type 1 >0>--- >0, S*|D has splitting type
1>0>--->0,and TG(m — n,m) = @ ® S*, the vector bundle TG(n — m,m)|D has
splitting type 2>12>--- >0 in which 1 appears n —2 times and 0 appears
(m —m — 1)(m — 1) times. Hence the normal bundle Np ¢¢n—nm) of D in G(m — n, m)
has splitting type 1> --- >0 in which 1 appears n —2 times and 0 appears
(m —n—1)(m —1) times. A chain T C G(n —m,m) of d lines is a nodal union
Dy U---UDy of d distinet lines such that D; N D; # () if and only if |¢ — j| < 1. Note
that deg(T") = d and p,(T) = 0 for any such 7. Let C(n, m, d) be the set of all chains
of d lines. Set C'(n, m,d) .= {T' € C(n,m,d) : dim ({j(T))) = min{N,d}}. C'(n,m,d)
is a non-empty open subset of the irreducible variety C(n,m,d). Fix any
T=A;U---UA; € C'(n,m,d). The given ordering of the lines of 7" has the prop-
erty that each curve T; :=D;U---UD;, 2<1<d,is a chain of 7 lines and D,
intersects transversally 7; at a unique point, P, which belongs to D;. Since
h (D;, N D; G—mm)( — P)) = 0, we see by induction on d that each chain of lines is
smoothable ([5] or [9]). Fix any ¢ € T(n, m,d) such that ¢(Pl) is a small deformation
of T € C'(n,m,d). Hence Y := ¢(]Pl) is a smooth and rational degree d curve. By
semicontinuity we may also assume that dim ((j(Y))) > dim ({j(7"))) = min{d, N}.
Since %Y, 0y(1)) = d + 1, we get dim ((j(¥))) = min{d, N}. We may deform Q|Y
to a rigid vector bundle. Since A'(PL,E)=d+mn and A'(P',E)=0 for all
E € A(n,d,0), there is an embedding X c G(n —m,m) of P! with image near Y
(and hence with dim ((j(X))) = min{d, N}) such that Q|X is rigid. O

Proof of Theorem 1. We saw in the introduction that if D(n) # 0,
2 1 2 1
then g><n; ) Assume g>(n; ) Letj:G(n+1,2n+1)<—>PN,

N = (27&; 1) — 1, be the Pliicker embedding. Let T Cc G(n +1,2n+ 1) be a
smooth rational curve such that deg(T) = (212?:_ 1) and (j(T)) = PN (Lemma 1).

Since AT, O7(1)) = N +1, j(X) is linearly normal. Hence there is a (2n + 1)-
dimensional linear subspace V of HT,Q|T) such that ¢, : A" (V)
— HYT,07(1)) =0. Let a; > --- > a, be the splitting type of Q|T. Lemma 1
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gives a, = L(%J 1) /n|. We only need a, > 0. Let R € Pic’(C) be the hyper-

elliptic line bundle. Hence the linear system |R| induces a degree 2 morphism
wu:X—T. Set F:=u"Q|T) and M :=u*(V) C HYE). Since ¢y is injective,
¢y : N M) — H(det(E)) is injective. M spans E. Since F = &) |R®%, det(F)
~ R® where x:= (27%7:_ 1
1<i<nmn-—1,andb, :=a, + (g — 1 — x) and take any fixed D € |R®Y~1-9)| to see
R® as a subsheaf of R®". D also gives an inclusion F = @! R®%
< @, R®" =: E. This inclusion allows M to be seen as a linear subspace M’ of
HY(E). Since Y7, = g — 1, det(E) = wc. Since b, > a,, > 0, h°%(E*) = 0. Since ¢,,
is injective, ¢, is injective. M’ does not span E if g —1 #. However, the in-
jectivity of ¢, implies the injectivity of ¢, for a general (2n + 1)-dimensional

). We assumed x<g-—1. Set b;:=a; for

linear subspace of H'(E). Since E is spanned, W is general, and
dim (W) > rank(k), W spans E. O

Proof of Theorem 2. Let R € Pic*(C) be the trigonal line bundle. By assumption

2n +1
g —1=0mod3 and wg =~ R®%-2/3_ By assumption (29 — 2)/3 > ( n3+ ) Take
T c Gn+1,2n + 1) as in the proof of Theorem 1 and copy that proof taking as

u : X — T the degree 3 morphism associated to |E|. d

Proof of Theorem 3. Use R as in the proofs of Theorems 1 and 2. O
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