E. Ballico

Spanned vector bundles with canonical determinant on special curves

Abstract. Let C be a smooth curve of genus g. Here we construct (under geometric restrictions, like C hyperelliptic or a complete intersection) spanned rank n vector bundles E on C with canonical determinant and with a (2n+1)-dimensional linear subspace $W\subseteq H^0(E)$ such that the natural wedge map $\bigwedge^n(W)\to H^0(\det(E))$ is injective. The motivation came from a paper by Pirola and Rizzi, who used (E,W) to get certain non-trivial higher cycle maps on the relative jacobian of an n-dimensional family of curves $\mathcal{C}\to S$ with C as a fiber.

Keywords. Spanned vector bundle; canonical determinant; higher cycle map; Jacobian; Griffiths group.

Mathematics Subject Classification (2000): 14H60, 14H40, 14C25, 14M15.

1 - Introduction

Let C be a smooth and connected complex projective curve of genus $g \geq 3$. Let A(n) be the set of all rank n spanned vector bundle E on C such that $\det(E) \cong \omega_C$, $h^0(C,E) \geq 2n+1$, and $h^0(C,E^*)=0$. Since E is assumed to be spanned, the last condition is equivalent to assuming that \mathcal{O}_C is not a direct factor of E. For any $E \in A(n)$ and any linear subspace $W \subseteq H^0(C,E)$ let $\phi_W : \bigwedge^n(W) \to H^0(C,\omega_C)$ denote the determinantal map. Let B(n) denote the set of all pairs (E,W) such that $E \in A(n)$, W is a linear subspace of E, $\dim(W) = 2n+1$, and W spans E. Set

Received: February 19, 2009; accepted: March 9, 2009.

The author was partially supported by MIUR and GNSAGA of INdAM (Italy).

76 E. BALLICO [2]

$$\begin{split} &D(n) := \{(E,W) \in B(n) : \phi_W \text{ is injective}\}. \text{ Since } \dim(W) = 2n+1 \text{ and } \dim\left(\bigwedge^n(W)\right) \\ &= \binom{2n+1}{n}, g \geq \binom{2n+1}{n} \text{ if } D(n) \neq \emptyset. \end{split}$$

Theorem 1. Assume C hyperelliptic. $D(n) \neq \emptyset$ if and only if $g \geq \binom{2n+1}{n}$.

Theorem 2. Assume $2g-2 \ge 3 \cdot \binom{2n+1}{n}$ and that C is trigonal with Maroni invariant (g-1)/4 ([7], §1). Then $D(n) \ne \emptyset$.

To get results for other curves the following definition ([2], [3]).

Definition 1. A line bundle L on C is said to be primitive if both L and $\omega_C \otimes L^*$ are spanned.

Theorem 3. Fix an integer $n \geq 2$ and set $d := \binom{2n+1}{n} - 1$. Assume the existence of a spanned $R \in Pic(C)$ such that $R^{\otimes d}$ is primitive. Then $B(n) \neq \emptyset$.

The primitivity of $R^{\otimes d}$ in the statement of Theorem 3 implies $d \cdot \deg(R) \leq 2g-2$. We recall two classical cases which satisfy the assumptions of Theorem 3.

Example 1. Fix integers $r \geq 2$ and $d_i \geq 2$, $1 \leq i \leq r-1$. Let $C \subset \mathbb{P}^r$ be a smooth complete intersection of hypersurfaces of degree d_1, \ldots, d_{r-1} . The adjunction formula gives $\omega_C \cong \mathcal{O}_C(d_1 + \cdots + d_{r-1} - r - 1)$. Hence C satisfies the assumptions of Theorem 3 taking $R := \mathcal{O}_C(1)$ if $d \leq d_1 + \cdots + d_{r-1} - r - 1$.

Example 2. Let A be a rank 2 vector bundle on \mathbb{P}^3 such that there is $s \in H^0(\mathbb{P}^3, E)$ whose zero-locus $(s)_0$ is a smooth and connected curve C. Then C has degree $c_2(E)$ and $\omega_C \cong \mathcal{O}_C(c_1(E)-4)$ ([4], proof of Proposition 2.1). Hence C satisfies the assumptions of Theorem 3 taking $R := \mathcal{O}_C(1)$ if $d \leq c_1(E) - 4$.

The motivation for these results came from a paper of G. P. Pirola and C. Rizzi in which they proved the geometric significance of the condition $D(n) \neq \emptyset$ ([8]). Since we will not need their set-up, we just state as a corollary the following immediate consequence of Theorems 1 and 2 and of [8], Theorem 2.2.

Corollary 1. Fix integers $g, n \geq 2$ and a curve C as in the statements of Theorems 1, 2 or 3. Then there are an n-dimensional variety $S, s \in S$, a family $f: C \to S$ of smooth curves such that $f^{-1}(s) \cong C$ and the adjunction map (equation 3 of [8]) is not trivial.

Theorems 1, 2 and 3 also give non-trivial elements in the Griffiths group $\mathcal{W}^n_s(\mathcal{J}_s)$ (see [6] and [8], Theorem 5.5). Of course, everything in this paper depends from [8]. As in [8] all pairs $(E,W)\in D(n)$ we construct have as E a direct sum of line bundles.

Remark 1. Almost everything here works without any modification if we drop the assumption $\det(E)\cong\omega_C$ (here only the degree d of E is an important datum) and we allow W of an arbitrary, but fixed, dimension m). We get lower bounds on g depending from g,d,m and (if d is low) the geometry of C (see [8], §1 and §2, for this set-up). We leave this easy extension to the interested reader. If we don't require that W spans E, then the construction of examples are easier. Similarly, if we assume that E is spanned, but drop the condition " $\det(E)\cong\omega_C$ " (just requiring $h^1(\det(E))>0$), we get example for all k-gonal curves in Theorem 3 without assuming the primitivity of $R^{\otimes d}$. We only need to require that $R^{\otimes d}$ is special.

2 - The proofs

In the next lemma we will use the geometric interpretation of the wedge map for curves in Grassmannian ([10], [1]).

Lemma 1. Fix integers m > n > 0, and d > 0. Let G(n, m) denote the Grassmannian of all (m - n)-dimensional linear subspaces of $\mathbb{C}^{\oplus m}$. Let

$$0 \to S \to \mathcal{O}_{G(m-n,n)}^{\oplus m} \to Q \to 0$$

be the Euler sequence of G(m-n,m). Hence Q is the tautological quotient bundle, S is the tautological subbundle, rank(Q) = n, rank(S) = m-n, and $det(Q) \cong det(S^*) \cong \mathcal{O}_{G(m-n,m)}(1)$. Let $j: G(m-n,n) \hookrightarrow \mathbb{P}^N$, $N:=\binom{m}{n}-1$, be the Plücker embedding. There is a curve $X \subset G(m-n,n)$ such that $X \cong \mathbb{P}^1$, deg(X) = d, the linear span $\langle j(X) \rangle$ of j(X) has dimension $min\{d,N\}$, and the vector bundle E:=Q|X is rigid, i.e. its splitting type $a_1 \geq \cdots \geq a_n$ satisfies $a_1:=\lceil d/n \rceil$ and $a_n=\lfloor d/n \rfloor$.

Proof. The case d=1 is obvious, because G(n-m,m) contains lines. Hence we will assume $d \geq 2$. Let A(n,d,0) be the set of all isomorphism classes of rank n vector bundles on \mathbb{P}^1 with degree d. Any rank n vector bundle E on \mathbb{P}^1 is uniquely determined by its splitting type $a_1(E) \geq \cdots \geq a_n(E)$. $E \in A(n,d,0)$ if and only if

78 E. BALLICO [4]

 $a_n \geq 0$ and $a_1 + \cdots + a_n = d$. Note that $h^0(\mathbb{P}^1, E) = d + n$ and $h^1(\mathbb{P}^1, E) = 0$ for all $E \in A(n,d,0)$. Hence the set $G(n-m,H^0(E))'$ of all (n-m)-dimensional linear subspaces of $H^0(\mathbb{P}^1, E)$ spanning E is a non-empty open subset of the Grassmannian G(m-n,d+n). Hence dim $(G(m-n,H^0(E))')$ does not depend from the choice of $E \in A(n,d,0)$. Let T(n,m,d) denote the set of all degree d maps $\mathbb{P}^1 \to G(m-n,n)$. Any $\phi \in T(n, m, d)$ is uniquely determined by the choice of $E \in A(n, d, 0)$ and an ndimensional linear subspace V of $H^0(\mathbb{P}^1, E)$ spannig E. Let $D \subset G(m-n, m)$ be the line. Since Q|D has splitting type $1 \ge 0 \ge \cdots \ge 0$, $S^*|D$ has splitting type $1 \ge 0 \ge \cdots \ge 0$, and $TG(m-n,m) \cong Q \otimes S^*$, the vector bundle TG(n-m,m)|D has splitting type $2 \ge 1 \ge \cdots \ge 0$ in which 1 appears n-2 times and 0 appears (m-n-1)(m-1) times. Hence the normal bundle $N_{D,G(m-n,m)}$ of D in G(m-n,m)has splitting type $1 \ge \cdots \ge 0$ in which 1 appears n-2 times and 0 appears (m-n-1)(m-1) times. A chain $T \subset G(n-m,m)$ of d lines is a nodal union $D_1 \cup \cdots \cup D_d$ of d distinct lines such that $D_i \cap D_i \neq \emptyset$ if and only if $|i-j| \leq 1$. Note that $\deg(T) = d$ and $p_a(T) = 0$ for any such T. Let C(n, m, d) be the set of all chains of d lines. Set $C'(n, m, d) := \{T \in C(n, m, d) : \dim(\langle j(T) \rangle) = \min\{N, d\}\}$. C'(n, m, d)is a non-empty open subset of the irreducible variety C(n, m, d). Fix any $T = A_1 \cup \cdots \cup A_d \in C'(n, m, d)$. The given ordering of the lines of T has the property that each curve $T_i := D_1 \cup \cdots \cup D_i$, $2 \le i < d$, is a chain of i lines and D_{i+1} intersects transversally T_i at a unique point, P, which belongs to D_i . Since $h^1(D_i, N_{D_i,G(n-m,m)}(-P)) = 0$, we see by induction on d that each chain of lines is smoothable ([5] or [9]). Fix any $\phi \in T(n, m, d)$ such that $\phi(\mathbb{P}^1)$ is a small deformation of $T \in C'(n, m, d)$. Hence $Y := \phi(\mathbb{P}^1)$ is a smooth and rational degree d curve. By semicontinuity we may also assume that $\dim(\langle j(Y)\rangle) \geq \dim(\langle j(T)\rangle) = \min\{d, N\}$. Since $h^0(Y, \mathcal{O}_Y(1)) = d + 1$, we get $\dim(\langle j(Y) \rangle) = \min\{d, N\}$. We may deform Q|Yto a rigid vector bundle. Since $h^0(\mathbb{P}^1,E)=d+n$ and $h^1(\mathbb{P}^1,E)=0$ for all $E \in A(n,d,0)$, there is an embedding $X \subset G(n-m,m)$ of \mathbb{P}^1 with image near Y (and hence with dim $(\langle j(X) \rangle) = \min\{d, N\}$) such that Q|X is rigid.

Proof of Theorem 1. We saw in the introduction that if $D(n) \neq \emptyset$, then $g \geq \binom{2n+1}{n}$. Assume $g \geq \binom{2n+1}{n}$. Let $j: G(n+1,2n+1) \hookrightarrow \mathbb{P}^N$, $N:=\binom{2n+1}{n}-1$, be the Plücker embedding. Let $T \subset G(n+1,2n+1)$ be a smooth rational curve such that $\deg(T)=\binom{2n+1}{n}$ and $\langle j(T)\rangle=\mathbb{P}^N$ (Lemma 1). Since $h^0(T,\mathcal{O}_T(1))=N+1,\ j(X)$ is linearly normal. Hence there is a (2n+1)-dimensional linear subspace V of $H^0(T,Q|T)$ such that $\phi_V:\bigwedge^n(V)\to H^0(T,\mathcal{O}_T(1))=0$. Let $a_1\geq \cdots \geq a_n$ be the splitting type of Q|T. Lemma 1

gives $a_n = \lfloor \binom{2n+1}{n}/n \rfloor$. We only need $a_n > 0$. Let $R \in \operatorname{Pic}^2(C)$ be the hyperelliptic line bundle. Hence the linear system |R| induces a degree 2 morphism $u: X \to T$. Set $F:=u^*(Q|T)$ and $M:=u^*(V) \subseteq H^0(E)$. Since ϕ_V is injective, $\phi_M: \bigwedge^n(M) \to H^0(\det(E))$ is injective. M spans E. Since $F \cong \bigoplus_{i=1}^n R^{\otimes a_i}$, $\det(F) \cong R^{\otimes x}$, where $x:=\binom{2n+1}{n}$. We assumed $x \leq g-1$. Set $b_1:=a_i$ for $1 \leq i \leq n-1$, and $b_n:=a_n+(g-1-x)$ and take any fixed $D \in |R^{\otimes (g-1-x)}|$ to see $R^{\otimes a_n}$ as a subsheaf of $R^{\otimes b_n}$. D also gives an inclusion $F \cong \bigoplus_{i=1}^n R^{\otimes a_i} \to \bigoplus_{i=1}^n R^{\otimes b_i} =: E$. This inclusion allows M to be seen as a linear subspace M' of $H^0(E)$. Since $\sum_{i=1}^n = g-1$, $\det(E) \cong \omega_C$. Since $b_n \geq a_n > 0$, $h^0(E^*) = 0$. Since ϕ_M is injective, $\phi_{M'}$ is injective. M' does not span E if $g-1 \neq .$ However, the injectivity of $\phi_{M'}$ implies the injectivity of ϕ_W for a general (2n+1)-dimensional linear subspace of $H^0(E)$. Since E is spanned, W is general, and $\dim(W) > \operatorname{rank}(E)$, W spans E.

Proof of Theorem 2. Let $R \in \operatorname{Pic}^3(C)$ be the trigonal line bundle. By assumption $g-1\equiv 0 \mod 3$ and $\omega_C\cong R^{\otimes (2g-2)/3}$. By assumption $(2g-2)/3\geq \binom{2n+1}{3}$. Take $T\subset G(n+1,2n+1)$ as in the proof of Theorem 1 and copy that proof taking as $u:X\to T$ the degree 3 morphism associated to |R|.

Proof of Theorem 3. Use R as in the proofs of Theorems 1 and 2. \square

References

- [1] E. Ballico, Curves in Grassmannians and spanned stable bundles, Math. Nachr. 220 (2000), 5-10.
- [2] M. COPPENS, C. KEEM and G. MARTENS, Primitive linear series on curves, Manuscripta Math. 77 (1992), 237-264.
- [3] M. COPPENS, C. KEEM and G. MARTENS, The primitive length of a general k-gonal curve, Indag. Math. (N.S.) 5 (1994), no. 2, 145-159.
- [4] R. Hartshorne, Stable vector bundles of rank 2 on \mathbb{P}^3 , Math. Ann. 238 (1978), 229-280.
- [5] R. Hartshorne and A. Hirschowitz, Smoothing algebraic space curves, Algebraic Geometry — Sitges (Barcelona) 1983, pp. 98-131, Lect. Notes in Math. 1124, Springer, Berlin 1985.
- [6] A. IKEDA, Algebraic cycles and infinitesimal invariants on Jacobian varieties, J. Algebraic Geom. 12 (2003), no. 3, 573-603.

- [7] G. Martens and F.-O. Schreyer, *Line bundles and syzygies of trigonal curves*, Abh. Math. Sem. Univ. Hamburg 56 (1986), 169-189.
- [8] G. P. Pirola and C. Rizzi, *Infinitesimal invariant and vector bundles*, Nagoya Math. J. 186 (2007), 95-118.
- [9] E. Sernesi, On the existence of certain families of curves, Invent. Math. 75 (1984), no. 1, 25-57.
- [10] M. TEIXIDOR I BIGAS, Curves in Grassmannians, Proc. Amer. Math. Soc. 126 (1998), no. 6, 1597-1603.

E. Ballico

Dept. of Mathematics University of Trento 38050 Povo (TN), Italy

e-mail: ballico@science.unitn.it