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GIORGIO BUSONTI and LAURA PRATI

On mortality in a two-sex population

Abstract. Inthis paper we consider the mathematical model of the dynamics of a
two-sex population with gestation period presented by Busoni and Palezewski [1].
We solve a system of two differential equations with delay coupled by boundary
conditions to obtain the densities of males and nonpregnant females. Then, we invert
the problem to obtain the male mortality coefficient, assuming the density and the
mortality coefficient of females known; we possibly get a unique solution. We also
look for the female mortality coefficient, assuming the density and the mortality
coefficient of males known. We use the method of successive approximations which
leads to the uniqueness of the solution if it converges.
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1 - Introduction

In this work we initially report the mathematical model of dynamics of a two-sex
population with gestation period developed by L. Teglielli (see [10]) and G. Busoni
and A. Palezewski (see [1]) with the modification proposed by C. Fregoso (see [3])
concerning the expression of the density of mating. In this model we assume that
individuals are characterized by sex (male or female) and age. Two individuals of
opposite sex can mate and conceive a new individual. The births of new individuals
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take place after a gestation period. In this model the formation of pairs is neglected:
every nonpregnant female can mate any male.

The model consists of a system of two partial differential equations, which de-
scribe the evolution of the densities of males and nonpregnant females, coupled by
boundary and initial conditions. In Section 2 we report briefly the solutions of this
direct problem. In Section 3 we study the inverse problem: we possibly get the unique
coefficient of male mortality, letting the densities of male population at a certain time
and the density and the coefficient of female mortality known (see also [2, 6, 7, 8, 9]).
Finally, assuming the density of male population and the coefficient of male mor-
tality known, we solve the inverse problem for the coefficient of female mortality
using the method of successive approximations which may lead to a solution if the
coefficients appearing in the model are suitably related each other. We do not ex-
amine this item here.

We can start the description of the model as in [1]. Let the numerical densities of
individuals (s,, for males, sy for females) be functions of their own age (a for males, b
for females), of the (virtual) age u of the male parent and v of the female parent and of
time ¢. The age of parents is virtual, as they could be dead: u and v represent their
ages if they were still alive. Therefore, s,,(a,u,v,t) is the distribution at time ¢ of
males of age a, born by a father whose age at time ¢ would be « and by a mother whose
age at time ¢ would be v. The same holds for the female distribution s¢(b, u, v,?). Of
course the ages of males and females are bounded: a < a; <ooc and b < b; <. Note
that not only the virtual age of parents is necessarily greater than a and b, u > a,
v > a,u > b,v > b, but also it has a greater upper bound, that is u < 2a; and v < 2b,.
The total number of males and of females at time ¢ and of a given age (a or b) are

respectively:
a; by

(1) M(a,t) = J Jsm(a, u,v,t)dudv,
00
ar b,

(2) F@®,t) = J Jsf(b, w,v,t)dudv.
00

Let u,,(a) and u(b) be the nonnegative mortalities of males and females re-
spectively. Let g be the gestation time. These functions are also defined for negative
value of the age, taking into account the mortality of foetuses. Note that we consider
(@) =0 for a < — g and similarly ,uf(b) = 0 for b< — g, if necessary.

To model the mating process, we distinguish between two types of females: say
H (b, t) the distribution of pregnant females and N (b, t) that of nonpregnant ones. Of
course H(b,t) + N(b,t) = F(b,t). Since in the following sections we will consider a
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nonlinear system for the distributions M(a,t) and N(b,t), we remark that the dis-
tributions s,, and sy are introduced in order to construct a meaningful model. Let
k(a, b) be the mating factor (it describes the probability that a conception happens,
depending on the parents’ age). Note that k(a,b) > 0 for a € (0,a;] and b € (0, b],
while k(a,b) = 0 for a <0 or b<0. According to [3], we assume that the density of
mating ¢(a, b,?) has the following expression:

3) #a,b,t) = 2k(a, b)M(a,t)N(b,t) .

Obviously, ¢ = 0if a or b are negative. We assume the density of mating (3) because it
is the simplest nonlinear function of M(a,t) and N(b,t), while in literature, see [5], a
homogeneous of order 1 function is assumed in order to have a bounded nonlinear

term.
The expression for the distribution of pregnant females of age b at time ¢ is:

t oy t
4) Hb,t) = J J du, b — (t —s),8) exp (— J,uf(b —t+ r)dr) duds.

t—g 0 s

The model is described by the following equations:

0 0
(5) <&+£>M(a, t) = — w,(@M(a,t) forae 0], t>0,

a

o 9
((% T ab)N(b, t) = — (N (b, 1) — J ¢(a,b,t)da
0
(6) 0 a
+exp| - J 1:(b + 1)dr J¢(a,b —g,t=g)da forb e ©,b],t>0,
—g 0

coupled by the boundary conditions, for ¢ > 0:

a b
(7 MQO,t) = J Jsm(O,u, v,t)dudv,
99
a b
(8) N(0,t) = F(0,t) = J Jsf(O,u,v,t) du dv

99

where s,,(0,%,v,t) and s¢(0,u,v,?) represent the numbers of newborn males and
females, respectively, conceived at time ¢ — g by a father of age # — g and a mother of
age v —¢g and survived the period of gestation [t —g,t]. The expressions of
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$m(0,u,v,1) and s7(0,u,v,t) are given by:

sm(0,u,v,8) = B, (u—9g,v—9)plu —g,v—g,t —g)
¢

9)
x exp| — (um(s—t)—kuf(v—tan))ds ,
t—yg
Sf(O,u,?),t):/)’f(u—g,v—g)¢(u—g,v—g,t—g)
(10) t
X exp —J(/{f(s—t)+/{f(v—t+s))ds ,
t—g

where f8,,(a, b) and fi;(a, b) represent the number of males and females, respectively,
which have been conceived in the mating of a male of age a and a nonpregnant female
of age b. We assume f,, =0 and f; = 0 when a <0 or b<0. Thus the boundary
conditions (7) and (8) at ¢ = 0 and b = 0 become:

a—g bi—g
MO, t+¢g) = J J P, v) P(u, v, 1)

(11) 0 0

g
X exp (— J (tn (8 — @) + w0 + s))ds) dudv fort > —g,
0

w—g bi—yg
N@O,t+¢g) = J J Br(u,v) g(u, v, 1)
(12) 0 0

g
X exp (— J(,uf(s -9+ + s))ds) dudv fort> —g.
0

Note that (6) is an equation with delay. This implies that the initial distributions
for M(a,t) and N(b,t) have to be given on the whole interval [ — g, 0]. Therefore, the
model is completed by the two following initial conditions:

(13) M(a,t) = My(a,t) for t€[—g,0], a € [0,a],
(14) N(b,t) = No(b,t) for te[—g,0],be[0,b]

where MO and N, o are two nonnegative given functions.
Therefore, our model is constituted by equations (5), (6), (11), (12), (13) and (14).
We make the following assumptions, which allow us to consider the evolution
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problem for a € (—g,a;) and b € (— g, b):

() the biological parameters x,,(a), ,uf(b), B, b), ﬁf(a, b) and k(a, b) are non-
negative measurable functions;
(b) the initial functions Mo(a, t) and N’O(b, t)

1. are nonnegative;

2. belong to L>°(0, a;) and L>(0, b;), respectively, for t € [ — g,0];

3. are continuous in the L*-norm with respect to ¢: it means that
[—g9,0]5t— M0(~, t) € L>(0, a;) is continuous in the norm of L>(0, a;) and
[—g9,0]2t— ]%(~, t) € L>(0, b;) is continuous in the norm of L>(0, b;);

(c) the biological parameters are such that k € L>°((0, a;) x (0,by)), 5,,, € L>(0, a;)
and f3; € L>(0,by); for sake of simplicity, we use the same bound K for the
functions 2kf,,, 2kf3; and 2k:

(15) 0< esssup 2k(a,b)f,,(a,b) <K,
aE(O,al),bE(O,bl)

(16) 0< esssup 2k(a,b)fla,b) <K,
ac(0,a7),b€(0,b;) '
(17) 0< esssup 2k(a,b) <K;

ac(0,a),b€(0,b,)

(d) the mortality coefficients are such that:

(18) Wy, € LY — g,a) for a € (— g, ap), ali%lf J L (8)ds = 400,
—a
—g

b
(19) K € LY — g,b) for b € (—g,by), blilgl— J yf(s) ds = +o0;
L
(e) the mating factor k is uniformly continuous with respect to b € (0, ;) for
every a € (0, ay);
(f) the initial function MO((L, 0) for t = 0 is uniformly continuous with respect to
a € [0, a;); the initial function ﬁo(b, t) fort € [ — g, 0] is uniformly continuous
with respect to b € [0, b;).

In Section 2 we will prove existence and uniqueness of the solution of the integral
formulation of the P.D.E. model. Section 3 is devoted to a first study of the inverse
problem consisting of the determination of the functions 1, and y, by assuming the
knowledge of additional data. In this paper we consider M(a,T) and N(b, T) to be
known at timet =T > 0.
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The authors are aware of few papers on inverse problems in population dynamics
(see[2,4,6,7,8,9]), all of them being devoted to a one-sex population dynamics linear
equation, i.e. an equation like that appearing in (5).

We are going to investigate the solution of the system of equations (5), (6), (11),
(12), (13) and (14) in the following section.

2 - Existence and uniqueness of the solution

We consider the problem presented above as an evolution problem in the Banach
space L1(0,q;) x L'(0,b;) for every t > 0. In this work, a solution for the integral
formulation of the problem is given, instead of a solution for the differential one.
Since we are considering differential equations with delay, we are going to look for a
solution on successive strips (intervals) in time ¢ € (ig, (2 + 1)g]. Indeed, it is possible
to calculate M(0,%) and N (0, t) for ¢ in every strip (ig, (2 + 1)g] in function of the same
quantities calculated in the preceding strip. In the following, the initial conditions for
the i-th strip, that means for ¢ € (ig, ( + 1)g], will be denoted Mi(a, t) and Ni(b, t),
where t € (( — 1)g,%g]. The solution of our problem will be found by integrating
equations (5) and (6) along the characteristics, iterating on every strip. For male
distribution, we obtain, in the i-th strip, that is for ¢ € (ig, (i + 1)g] ,7 € N U {0}, and
for a € (0, a;]:

(20) M(a,t) = M(ayp,ty) exp ( J L, (8) ds)
where

(21) (ao,t0) = (0,t —a)  for a<t—ig,
and

(22) (ag,t0) = (@ — (t —ig),ig)  for a >t —ig.

To obtain the solution for nonpregnant females, let us put equation (3) in (6),
obtaining for b € (0, ;] and £ > 0:

a

o 0
<§+%)N(b,t) = — 1 (bN(b, 1) — J2k(a, b)M(a,t)da N(b,1)
(23)

0 a;
+exp| — J ﬂf(b 4+ )dt JZk(a, b—g)M(a,t — g)daN® — g,t — g).
-g 0
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Putting

(24) A, t) =gof JZk(a, b)M(a,t)da and m(b,t) =a uf(b) + A(b,t),
0

equation (23) becomes, for b € (0,5;] and ¢ > 0:
a 0
(a*%)w” B = —m(b, ONG, )
(25) 0
rexp| — [+ e |AG - g.t - NG~ gt 9)
-9

Note that it results:
a
(26) A(b—g,t—g):JZk(a,b—g)M(a,t—g)dazo, for b<yg
0
because k(a,b — g) = 0 for b — g<0. Introducing the following notation
0
(27 L(b;b — g,t — 9) =aer €Xp | — J ,uf(b +0dt | AL —g,t—9),
—g
equation (25) becomes, for b € (0,5;] and ¢ > 0:

(28) (%—i—%)N(b,t) = —m(b,OON(,?) + L(b;b — g,t —g)NOb — g,t — ¢9).

Obviously, see (26), it is

(29) Lb;b—g,t—g) =0 for b<g.
Put also
(30) SO,t) =qer L(b;b—g,t =N —g,t —9).

Taking into account (29), it results
(31) S, =0 for b<g.
Note that, since we are working on successive strips for ¢ € (ig, (@ + ¢)], S(b,t) is a

known function, as L(b;b —g,t — g) is given and N(b — ¢g,t — g) comes from the
preceding strip. The differential equation (28) for nonpregnant females becomes, for
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be0,b]andt > 0:

o 0
(32) (a—k%)N(b,t) = —m(b,t)N(b,t) + S(b,1).
Integrating (32) along the characteristics, iterating on every strip, we obtain for
te(ig,(1+1gl,2=0,1,..., and for b € (0, b;]:

b

N(0,t — b)exp (— Jm(s,s +t— b)ds) for b<t —1ig,
0

t—ig
N;(b —t + g, ig) exp (- J

m(s+b—t+1g,s +ig)ds>
0

(33)  N@b,t) =

t—ig t—ig
+ J exp(— J m(a+b—t+ig,a+ig)do)

0 s

xS(s+b—t+1ig,s+1ig)ds for b >t — ig.

Note that the second addend of the solution for b >t—1dig is null if
b<g. Indeed for O<s<t—ig<b<g, it results s+b—t+ig<t—ig+b—t
+1i9=b<g, thus S(s+b—-t+19,s+1i9) =0 (see (31)). Therefore, if ¢—1ig
<b<g, the solution is constituted only by the first addend: N(b,?)

~ t—ig
= N;(b—t+19,19) exp(— | m(s+b—t+1g,s +ig)ds>.

0

We are going to enunciate the main results regarding the functions M and N

obtained in (20) and (33). The proof of Lemma 2.1 is obvious.

Lemma 2.1. The functions M(a,t) and N(b,t) obtained in (20) and (33),
respectively, are monnegative almost everywhere in the i-th strip, that is for
t € (ig, (i 4+ L)gl, for every i € N U {0}.

Lemma 2.2. Let, fort e[ —g,0l:

(34) esssup Mo(a,t) < My< + oo, esssupNo(b,t) < No< + oco.
G/E(Oﬁal) bE(OA,bl)

Therefore, fort € (ig, (1 + 1)g], it follows:

i
esssup M(a,t) < M, H(l + KN,aiby) < + 00,
s=0

ac(0,a;)

esssupN(b,t) < N; (1 + KM,ab; + KM;wg9) < + oo,
be(0.by)
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where, fori1=1,2,..., 1t 1s:

i1
M; =M, H(l + KN,aiby) < + o0,
s=0

Ni = Ni—l (1 + K]Wi_lalbl + Kﬂi_lalg) <+ 0.

The proof may be read in the appendix.

Remark 2.1. It results: alir}} M(a,t) =0 and blir}} N(b,t) = 0 on every strip
(19, (@ + D)gl, as it can be seen by clonsidem'ng (20), (18),l (33) and (19).

Remark 2.2. Since Mya,t) € L¥0,a) and Nob,t) € L=0,b), for
te[—g,0], see hypothesis (b)-2, it also holds Moa,t) € LY0,a;) and
No(b,t) € LX0, b)), for t € [ — g,0]. Note that, fort € [ — g,0],

(35) 1Mo(@, Ol 0.0y < Motr < + 00 and | No(®, )| < Nobi< + oo

Lemma 2.3. Ifthe quoted hypotheses hold, then functions (20) and (33) are
such that M(-,t) € L'(0,a;) and N(-,t) € L(0,b;), respectively, and they both are
strongly continuous, fort € (ig, (i + 1)gl, for i € N U {0}.

The proof may be read in the appendix. Therefore, we have proved that:

Theorem 2.1. Under hypotheses (a)-(f), for every te (0,T], where
T < + oo, equations (20) and (33) give the unique strongly continuous solution
t — (M(a,t),N(®,t) € C((0,T1,L (0, @) x (0,b)), for the problem given by (5),
6), (11), (12), (13) and (14).

3 - The inverse problem

In this section we want to invert in some sense the problem studied in the pre-
vious sections. First, we look for the expression of the mortality coefficient of males,
L, (@), assuming the knowledge of the density M(a, T') of male population at a certain
time ¢ = T' > 0, the density N(b,¢) and the mortality coefficient of females, (D).
Then, we look for ﬂf(b) assuming N(b, T, M(a,t) and x,,(a) known. We are able to
recover u,, and to show that it is unique.

Remark 3.1.  Since we are looking for w,, and w, time independent, it ap-
pears that the time T may be anyone. We choose T € (0,g] and such that a; = nT,
for#w e N
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We note that:

Lemma 3.1. The function M(a,t) in (20) is almost everywhere decreasing
when the coefficient of male mortality u,,(a) increases, assuming uf(b) and N(b,t) to
be known. The function N(b,t) in (33) is almost everywhere decreasing when the
coefficient of female mortality 1, (b) increases, assuming p,,(a) and M(a,t) to be
known.

3.1 - The coefficient of male mortality

We can evaluate the coefficient of male mortality u,,, if we assume that M at a
certain time t=7T € (0,9], N and Ky are known. We also assume y,,(a) for
a €[ —g,0] to be known.

Remark 3.2.  Remind that we are assuming p,, € L'(0,a) for a<ay. It im-
a

plies that the derivative with respect to a of [ p,,(s)ds exists almost everywhere in
(03 a’l)- e

Time T € (0, g] represents the time at which we make a (non-null) census of male
population. Thus,

(36) M(CL, T) —def l//m(a)

is a known function which we assume to be positive, y,,(a) > 0, almost everywhere,
and such that lim w,,(a) = 0. We first invert the problem for 0 <a <7, then we
0/4'0,1

proceed in successive strips of amplitude 7.
If a € [0, T), it is, because of (20) and (36):

(@) =M©O,T — a)exp (— Jum(s) ds) ,
0

where y,, (@) and M(0, T' — a) are known functions. From this relation the uniqueness
of x,, easily follows. In equation

f MO, T —a)
exp ( J,ll,m(s) dS) = W s

0

if the right hand side is greater than 1 for almost every a € [0, T"), then x,,(a) > 0. It
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results

d MO, T - a)
(37) ot = g (10 0T

Note that M(0, T — a) is known: indeed, it is

ay bl
M(O,T—a):JJ[)’m(u—g,v—g)2k(u—g,v—g)]lA40(u—g,T—a—g)
g9
T—a
Z%(v—g,T—a—g)exp - J (um(s—T+a)+,uf(v—T+a+s))ds du dv,
T—a—g

where f,,, k, 117[0, ZVO, 14 are known and g, is known in [ — g, 0].
If a > T, it results, because of (20) and (36):

(@) = Mo(a — T, 0) exp (- J L4,,(S) ds) .

a—T

Again, the uniqueness of g, follows; u,, >0 for almost every a € [T,2T) if
My(a —T,0) / W, (@) > 1 almost everywhere. We obtain:

d (. Mya—T,O0)
38 @) =, (0 —T)+—In ————|.
(38) Hon (@) = 1, ( ) da< e )

The second addend in the right hand side of (38) is a known term. The first addend is
known when a — T € [0, T'), because of (37), and therefore for a € [T,2T). Hence, we
proceed on successive intervals of amplitude 7.

It means that, if a € [T,27), it is, see (37) and (38):

@ L (MOT—@=D\ d (] My(a — T,0)
Fom " da l//m(a -1 da Wm(a’)
_d (, MO2T -0 | Ma-T,0
B da l//m(a - T) l//m(a) ’
and therefore:
_d [, M©,2T — e)My(a — T,0)
(39) @) = da (hl v (@— T, @ )
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If a € [2T,37), it results, see (38) and (39):

- d Mo(a —T,0)
Hon(@) = py (@ = T) + - (ln W)

d <ln M(©,2T — (@ — T)My(a —T) - T, 0)> d <ln Mo —T, 0))

da W ((a—T) — Ty, (a —T) da ¥, (@)

T da

_d {, M(©,3T — a)My(a — 2T, 0)
l//m(a - ZT)l//m((l - T) l//m((l)

+mmm—ﬂm>

hence

@ - & (1n MO - a)My(a — 2T,0)Mo(a — T,0)
' = da V(0 — 2Dy, (@ — Dy, (@)

By induction, it is easy to prove that if a € [nT,(n + 1)T), for n = 0,1,..., the
coefficient of male mortality is unique and given by

MO, 00+ DT — a) [ Mola — 5T, 0)
=1

n
[T v, (@ —jT)
=0

(40) (@) = da In

0
where, by convention, [[ Mo(a —jT,0) =g 1.

j=1

Remark 3.3. The preceding formulas show that a unique u, can be obtained
Sfor almost every a € (0,a;). Such a coefficient may be non positive for some census
W, 0 order that u,, is nonnegative it is necessary that the right hand side of (40) is
nonnegative; this amounts to a relation between v, initial data and biological
parameters f,, k, e being satisfied. We omit to introduce such a relation. For
related problems and difficulties, see the pioneering works by Pilant and Rundell
[6, 7,8, 9]

3.2 - The coefficient of female mortality

The procedure to obtain the female coefficient of mortality is more complicated.
It consists of successive steps in order to obtain an approximation to x in [ — g, by),
say ty = Ho(b), and in successive constructions of y, = 1,(b)in [ — g, b;) which should
converge to z. It appears to be an arduous task to prove the convergence.
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We assume that N(b, T) at a certain time ¢t = T' € (0, g] is known. Let
(41) N, T) =ger wy(b),

where y(b) is a known, positive almost everywhere function (y,(b) > 0 almost ev-
erywhere), and such that bliril yr(b) = 0. We assume that M and p,, are known and
Y

that e isknownin[ — g, 0]. The following relations have to be considered true almost
everywhere in the sets where they are defined.

The following steps are intended to eliminate b from the argument of the in-
tegrand functions, to make it appear in the extremes of integration.

When b € [0, T), because of (33) and (41), for 1+ = 0, we have:

b
we(b) = NO, T — b) exp (- Jm(s, s+ T —b) ds)
0

that is
a; b
wf(b):J Bru —g,v — 92k(w — g,v — M — g, T —b—g)Nw —g,T — b —g)
99
T-b
xexp( J (/lf(ST+b)+,uf(vT+b+S))ds>dudv
T—b—g

b b
X exp ( — Jyf(s)ds) exp (— JA(S,S +T - b)ds) ,
0 0

see (8), (10), (3) and the second definition in (24). Note that
Mu—-—g,T—-b—9g)=Mou—9,T—b—9) and Nw-—g,T—b—g) =Noyw—gyg,
T—b—g) because T—b—ge[—g,0], for b€[0,T) and T € (0,g]. Therefore,
it is:

a; by
v = | [ Bu-g.0- g2kt g.0- i —g.7-b - 9Notw - 9.7~ b~ )
g9
T-b
(42) X exp ( — J (s =T+ b) + ww—T+ b+ s))ds) du dv
T-b—g

b b
X exp ( — J,uf(s) ds) exp ( — JA(S,S +T - b)ds> ,
0 0
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where A, defined in (24), here is a known term. Put

lw—g,v—g,t—b—9) =qo fr(u — 9,0 — 9)2k(u — g,v — g)

(43) . -
xMO(u_g7t_b_g)N0(v_gat_b_g)a
b
(44) p(b) =ger €Xp ( - JA(S,S +T -0 ds)
0
and
(45) rw—g,t—b—g) :defjuu—g,v—g,t—b—g)du;
g

here [, p and r are known functions. As a consequence, (42) becomes

b

i ® =p® exp ( - [ryras)
0

by T—b
(46) wa(v—g,T—b—g)exp(— J ,uf(s—T—i—b)ds>
g —b—

T-b—yg

T-b
X exp ( — J w@—=T+0b +s)ds>dv.
T—b—g

y) 0

Note that exp ( - [ us=T+D) ds) = exp(— | w8 ds’) is a known con-
T-b—g -y

stant, as we are assuming /, to be known in [ — g, 0]. Put

0
(47) P =def €XP < - J 1(8) dS’).

-9

Equation (46) becomes

b
w;(b) = p p(b) exp ( - J ,uf(s)ds)
0

by T-b
xjr(v—g,T—b—g)exp(— J ﬂf(v+s—T+b)ds>dv,
g T—b—g
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and therefore we obtain

b o by 0
exp (Jﬂf(s)ds> :pp(b)J’)"(’U—g7T—b—g)eXp (- J ﬂf(U—I—z)dZ)d?)
. y (D)
g -9

Hence, it results

o 0
48)  wo)= o {m l%]r(v g, T—b—grexp ( - [0+ z)dz) dv] }
g -9

when b € [0, T). Note that 1 (v + 2) is unknown forv e (g,b) and z € (—g,0).
It is worth to put

(49) T1 =def mln{ZT,g} .

When b € [T, T1), because of (33) and (41), for ¢ = 0, we have:

T
w;(b) = No(b — T.0) exp (- Jm(s +b—T,s) ds)
0

T T
+Jexp<—Jm(a+b— T,a)da)S(s+b— T,s)ds.
0 s

T
(50) q(d, 5) =ger €Xp (— JA(a +b-"T,0) da)
(it is a known function), we obtain

T
wf-(b) = ]%(b —T,0) exp (— Juf(s +b-T) ds) q(b,0)
0

T T
+ Jexp (— J,uf(o +b-T) da) q,s)

0 s

xLs+b—T;s4+b—-T—-g,s—g¢)N(s+b—-T—g,s—g)ds.

Note thatN(s+b—T—g,s—g)zﬁo(s+b—T—g,s—g) because s—ge[ —g,0]
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fors € (0,T) and T < g. Then, reminding (27), we can write

T
wr(b) = Zvo(b —T,0) exp (— Juf(s +b-T) ds) q(b,0)
0

T T 0
+ Jexp (—Jﬂf(o+ b— T)da) q(b,s)exp| — Juf(s+b - T+1de
0 s -9
><A(s+b—T—gﬁ—g)ﬁo(s—&-b—T—g,S—g)dS~

We put
(B1)  Gb,5) =ar ¢, A +b—T —g,5— ) Nols +b—T —g,s — )

(it is a known function). Note that it is s+b—7T —g<0 and s+b—T > 0 for
0<s<T,0<T <gand T < b<Tj. Therefore, we can write:

T
y(b) = ]%(b —T,0)exp (— Jﬂf(s +b— T)ds) q(0,0)
0

T T 0
(52) + Jexp (— Jﬂf(a +b— T)da) exp| — J ‘uf(l.l)dl_/

0 S

s+b—T—g

s+0—T
X exp (— J ,uf(r’)dr’> q(b, s)ds.

0

0

Note that exp(— | w@)dd ) is a known function. The next step consists in
s+b—T—g

rewriting (52) as follows:

b

| ﬂf-<s'>ds’) 4,0
T

wp(b) = No(b — T, 0) exp (—
)

(53) + Jexp - J ﬂf(a/)da' exp| — J U f(f’ Y7
s+0-T s+b—T—g

s+b-T
X exp (— J (7)) dr’) q(b,s)ds.

0
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We put
(54) G(b) =ger No(b — T',0) q(b,0),

then equation (53) becomes

b

w(b) = q(b) exp ( J ﬂf(s’)ds’)
b-T

b T 0
+ exp (—Jﬂf(fl)drl> Jexp - J 1p(T)d7 | qb, s)ds.

0 0 s+b—T—g

(55)

Now, we can rewrite (55) as follows:

T b
l//f(b) = q(b) exp (— J ,uf(s’) ds') exp (— J,uf(s/) d&)

b-T
T b
+ exp( Jﬂf(f )dr) exp( J,uf(r )dr)
0 T
T
xJexp — ﬂ(r)dr q(b, s)ds.
0 s+b— T g
We obtain
b ) T
exp (Jﬂf(f') df’) — —l//f(b) [@(b) exp (— J ﬂf(s/) ds/)
T b-T
T T
+ Jexp — J uf(r’) d7r | qb,s)ds]| ,
0 s+b—T—g

where in the right hand side  is evaluated at ages in the preceding intervals [ — g, 0]
and (0, 7). It follows

T
d
1y ) = { o0 lfI(b)eXp( bj W(s)ds)

r
(56) r r
tlew| - | @ |av.sas| .
0 s+b—T—g
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we obtain the mortality for the ages in the interval [T, T7). It depends on the coef-
ficient of female mortality in the preceding intervals, [ — ¢, 0] and (0, 7).

The following step consists in studying the coefficient of female mortality for
b € [T1,Ts), where

(57) To =def T+T:.

We can write again that, see (33) and (41) for 7 = 0:

T
wr(b) = Zvo(b —T,0) exp (— Jm(s +b-T,s) ds)
0

T T
+Jexp (Jm(aer - T,a)da)S(erb T,s)ds.
0 S

We follow the steps of the preceding case, when it was b € [T, T1), and we get, see
(52):

T
(D) =No(b—T,0) exp ( Juf(s +b— T)ds) q(b,0)
0

T T s+0—T
+ Jexp <— Juf(a +b— T)da) exp| — J ﬂf(ff)df’ q(b,s)ds

0 s s+b—T—g

or rather

y(®) = No(b — T, 0) exp ( #y(s)ds ) ¢(0,0)

T b s+b T
+Jexp — J /{,r(o’)da’ exp f(r’)dr’ q(b, s)ds

s+b—-T s+b— T g

or equivalently

w;(b) = No(b — T',0) exp (—

T
N

14(s") dS’) q(b,0)

T b
+Jexp — J ,uf(r’)dr’ q(b,s)ds.
0 $+b—T—g
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Note that it is s+b0—T —g<T; for O0<s<T <g and Ty <b<To=T+T;
< g+ T1. Indeed, s<T implies s — T'<0. Since b<g + T4, it is also b — g<T1 and
summing the negative quantity s — T'to b — g, we obtainb —g+s — T'<b — g<T.
Therefore, we can write (58) as follows

T, b
(D) = No(b — T, 0)exp (— J uf(s’)ds’) exp | — Juf(s’)ds’ q(b,0)
boT 7
T Ty b
+ Jexp - J p(T)d7 | exp | — J pp(T)d7 | q(b, s)ds
0 s+b-T—g T

and so it results

b

Ty
exp J,uf(s) ds No(b T,0) exp( J ,uf(s) ds) q(b,0)

T (b) b=T
T Ty
+Jexp — J 14(7) dt | q(b,s)ds
0 s+b—T—g

Because of (54), we can write

b

J ,uf(s)ds

T:

T, T T
=In (b) (b)exp( J W(g)ds) +Jexp - J (e [ qb, s)ds
b 0

-T s+b—T—g

Finally we obtain the coefficient of female mortality for b € [Ty, T5):

Ty
d
,uf(b) = In { ” D) [q(b) exp( J ,Uf(S)dS)
b

-7
(59)
T Ty
+Jexp — J we(Ddz | q(b, s)ds
0 s+b—T—g
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We can repeat the procedure on successive intervals, b € [Ty, T;11), k=0,1,. ..
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where z is the last index for which T, <b; and where

Ty  =ay T
T,
(60)
Tya
T.i1 =ae b,
obtaining
d 1
(b) = —=—In{ ——
ﬂf( ) db {l//f(b)
(61)

+ | exp

S—

=dor min{27, g}
=dor Tk + T, for k=1,2,...,2—1

_ 7
q(b)exp (— J ﬂf’(s)d8>
L b-T

Ty

(e [ qb, s)ds

s+b—T—g

Now we can proceed using the method of successive approximations: let
Uy € L[ — g, b)) be assigned, and y,[ — g,0] = [ — g,01, and satisty assumptions in
(19). By using (48) we can build, for b € [ — g, T), the following function x; 1(b):

by
d

b)) =< —
/11,1( ) db

ppb)
{m [wfa»)

9

for b€[0,7).

o) for bel[—g,0)

0

Jr(v—g,T—b—g)exp (— J,uo(v—s—z)dz)dv]}

-9

Once we know ﬂ1,1[ —g,T), we can build ,ul’z(b) for b € [ — g, T1), using (56):

ﬂl,l(b) fOI' b S [_g, T)

T
d 1 |-
%ln {W [q(b) exp (— bJT ,ulﬁl(s)ds)
:ul,2(b) = T T -
+ J exp| — J uy1(D)dz | q(b, s)ds
0 s+b—T—g

for be[T,T0).
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Now we build g, 5(b) for b € [ — g, T2), using (59):

t130) =

,ULz(b) for bel[—g,T1)

Ty
d
—ln { 0 [q(b) exp( bJT ,ul,z(s)ds)

Ty

T
—|—Jexp — J ,ulvz(t)dr q(b, s)ds
0 s+b—T—g

for b [Tl, Tg)

We can go on this way till we reach b;, obtaining 1, ,,»(b) for b € [ — g, by), see (61):

ﬂl,z+2(b) =

,ul"zﬂ(b) for bel[—g,T,)

Tz

d 1

%ln{ f(b) [q(b) exp( J /¢17z+1(s)ds)
b

Zr
T T,
+ Jexp — J W 1(0dt | (b, s)ds
0 s+b—T—g

forb € [T, b).

Let us put, forb € [ — g,b)):

(62)

1 242(0) =qer 111(D) .

Now we can restart the approximations using g, in (48): for b € [ — g, T'), we obtain
the following function ,uzﬁl(b)

Hg,1(D) =

ﬂ1(b)

4
db

for be[—g,0)

0

— bl
N pp(b)Jr(v—g,T—b—g)eXp — Jﬂl(v—kz)dz dv

4 f(b)
g

-9

for b <[0,7),

and following the preceding steps, we also obtain uys[ — g, T1), ta3l —9,T2), ...,



40 GIORGIO BUSONI and LAURA PRATI [22]

Mool — g, b1). Let us put

(63) 5 12(b) =der 12(D) .

We repeat the same steps to build x,(b) € L[ — g,b;), n € N. If
Jim g, (0) < + o0,

we have the unique mortality coefficient of females

'uf(b) - nEr+noo 'un(b) ’

in L[ — g,b;). To prove the convergence of u, one should know the mutual re-
lationships between the biological parameters, but this item is not examined in the
present work.

4 - Appendix

This appendix is devoted to the proof of two lemmas which we have used in
Section 2.

Proof [Lemma 2.2 . We first consider ¢ = 0, therefore ¢ € (0, g].

1. Consider (20) for the male distribution. If a <t, the solution is bounded by
a
M(a,t) = M(0,t — a)exp (— J,um(s)ds) < M(,t —a) < KMyNoa;b;
0

according to (11), (15), (13), (14) and (34).
If a > t, the solution for males is

M(a,t) = M(a —t,0)exp (— J /zm(s)ds) <M(a—1,0)= Mo(a —1,0) < M,.
¢

a

Therefore, for ¢ € (0,g],
M(a,t) < Kﬂoﬁoalbl + M(} = MO (1 + Kﬁoazbz) =def Ml < + 0.

2. Then consider solution (33) for the female distribution. If b <%, it results, ac-
cording to (11), (12), (16) and (34),

b
N(b,t) = N(0,t — b)exp (— Jm(s,s +t— b)ds) < N(0,t — b) < KMyNoa;b;.
0
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Ifb>1t,itis

t
N, t) = ]Vo(b —1,0) exp (— Jm(s +b-—1t,s) ds)
0

¢ ¢
+Jexp (—Jm(a+b—t,a)da)8(s+b—t,s)ds

0
t

t
< Z%(b —t,0)+ JS(S +b—t,8)ds<Ny+ JS(S +0b—t,s)ds,
0 0

because of (34). Taking into account that s — g € (—g,0] for s € (0,¢] and
t € (0, g], owing to (17), one obtains N(b,t) < Ng + KMyNoag.
To conclude the estimate for N(b,?) in the first strip, one has:

N, t) < No (1 + KM()albl + KMO(ZLZQ) =def Nl < + 0.

Now consider the second strip, for 7 = 1, therefore ¢ € (g,2¢]. According to the
steps for the preceding case, one has, more briefly, the following results.

1. Consider again (20) for the male distribution. If a <t — g, it is
a; b
M(a,t) < KJ JM(u—g,t —a—g)Nw—g,t—a—g)dudv.

99
In the second strip it results ¢t € (g,2¢], then t —a — g € (0,g]. As a con-
sequence, for M(u — g,t —a — ¢) and N(v — g,t — a — g) one can use the es-
timates obtained for ¢ = 0. Therefore, M(a,t) < KM,(1 + KNoa;b,)N1a;b;.
If @ >t — g, one has, using the estimate obtained for M in the first strip:
M(a,t) < M(a—t+g,9) < Mo(1+ KNoaby).
Therefore, for t € (g,2g],

M(a,t) < Mo(l + Kﬁoalbl) (1 + Kﬁlalbl) =def Mz < 4+ o0.
2. Now, consider solution (33) for the female distribution. If b <t — g, one can use
the estimates obtained for i =0 and it results: N(b,t) < KM {Niab;. If

b>t— 9, it is N(b,t) < Nl +KIW1N1aZg.
To conclude the estimate for N(b,t) in the second strip, for ¢ = 1, one has:

N(@,t) < N1(14+ KMiajb; + KMy0yg9) =gor N2 < + 00.

The proof can be easily concluded by induction.
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Proof [Lemma 2.3]. We first consider ¢ = 0, therefore ¢ € (0, g], as usual. The
proof will go on by induction.

1. Consider equation (20). We want to prove that M(a,t) given in (20) belongs to
LY0, a;) for any t € (0, g], see item 1.1, and that it is strongly continuous with
respect to ¢, see item 1.2. In what follows it is taken into account that M and N
are nonnegative.

1.1 For a<t, because of (35) and (15),
t t
JM(a,t)da < JM(O,t —a)da < KMya;Nob g< + .
0 0
For a > t,itis:

o o @

JM(a, tyda < JM(a —t,0)da = JMo(a —t,0)da < Mya; < + oo.

t t t

Therefore, M(a,t) € L'(0, a;) for every t € (0, g].

1.2 Consider the following limit:

a
lim [ M(a, £+ 1) ~ M@, D10y = lim J M(a,t + h) — M(a, t)|da
0

h—0

t ap
= lim ( J |M(a,t+ k) — M(a,t)|da + J |M(a,t+ k) — M(a, t)}da) )

0 ¢
One evaluates the first addend:

t
|M(a,t+ k) — M(a,t)|da < J|M(O,t+ h—a)—MQ©,t — a)|da
0

O —

t

|

0

a; b

J Jﬂm(u —9,v—9)2k(u — g,v —g)
9 9

xMu—-gt+h—a—gINo—g,t+h—a—g)

t+h—a
X €xXp | — J (s =t —h+a) + (v —t — h + a + ))ds | dudv

t+h—a—g
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ap b[

—J Jﬁm(u —9,v—9)2k(u —g,v —g)
g 9

xMu—gt—a—gNwv—gt—a—g)
t—a
X exp | — J (8 —t+a) + u(w —t 4+ a + s))ds | dudv|da
t—a—g
ta bl
SKJJJ‘Mo(u—g,t+h—a—g)ﬁo(v—g,t+h—a—g)
09 g

— Mo —g,t—a—g@Now—g,t —a— 9)|dudvda

Mo(u—g,t—i-h—a—g)

Qe—2

t
SKJ
0

x]ﬁo(vfg,t+hfafg)fﬁo(vfg,tfafgﬂdudvda

t
K|
0

x]ﬂg(u—g,t—i—h—a—g)—]%(u—g,t—a—g)|dudvda

No(v—g,t—a—g)

Q2
L=

<Key blg(ﬂ_/lo + No),

for |h| < d(e), because of the hypothesis of strong continuity of M o(-,?) and
Ny(-, 1), see (b)-3, and because of (35).
Now, one evaluates the second addend:

a

J |M(a,t + h) — M(a,t)| da

t
a
t

M(a —t—h,0)exp (— J ,um(s)ds)

a—t—h
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JM@W%

a—t

< Jﬂo(a —t—h,0)|exp (— J ,um(s)ds) — exp (— J um(s)ds)
t 1 a—t

—t—h

da

—M(a —t,0)exp (—

da

a
+J |My(a —t — h,0) — Mo(a — t,0)|da<eMya; + eay,
t

for |k|<d(e), because of the continuity of the integrals in the expo-
nentials, to (35) and to the uniform continuity of M o(a, 0) with respect to
a € [0, ap), see (f).

Therefore, it results ]lgr(l) IM(a,t+ h) — M(a, t)||L1(O’al) =0.

2. Consider equation (33) for nonpregnant females. We are going to prove that

N(b,t) given in (33) belongs to L(0, ), see item 2.1, and that it is strongly
continuous, see item 2.2.
2.1 For b <t, because of (16) and (35),
¢
N@®,t)db < JN(O,t— b)db
0

S —

S

1 by

810~ g.0 - g2 - g.0-g)
g9

S—
R

><Mo(u—g,t—b—g)ﬁo(v—g,t—b—g)
t—b
xexp| — J (pe(s =t +0) + y( — t + b + 8))ds | dudvdb
t—b—g
< KM() alﬁo big< + co.

For b > t, it results, because of (17) and (35),

b b t
JN(b, £)db = J {No(b —1,0)exp (- Jm(s +b—t, s)ds>
t t 0

t t
+ J exp (— Jm(a +b-t, a)da) S(s+b—1t, s)ds] db
0 s
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] byt
< | No» —t,O)db+HS(s+b—t,s)dsdb
t0

N S

¢
< Nob; + JA(S—i—b—t—g,s—g)ﬁo(s—kb—t—g,s—g)dsdb
0
b

¢
gNobl+KJJJJAWO(a,s—g)da]VO(s+b—t—g,s—g)dsdb
t00

< Nob,+KMya;Nyb,g< + oo.

Therefore, N(b,t) € L'(0, b)) for every t € (0,g].

2.2 Consider the following limit:
by

lim [IN(b, ¢ + ) = N, D) 1) = %ir%J IN(,t+h) — N(b,1)|db
0

= lim (j N, t + 1) — N(b, t)|db + J NG, t+ 1) — N, t)\db) .

0 t

Evaluating the first addend, one obtains:

t
| .40 - N, pjas
0

t

|

0

b
N(O,t—i—h—b)exp(—Jm(s,s+t+h—b)ds)
0

b
—N(0,t — b) exp (— Jm(s,s +t- b)ds) db

0

b
exp (—Jm(s,s—&-t—&-h— b)ds)
0
b
—exp (—Jm(s,s+t—b)ds>
0

t
+J[N(O,t+h—b)—N(O,t—b)|db.
0

¢
< JN(O,t—&-h—b)
0

db
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One observes that, according to (24):

b b
exp (— Jm(s,s +t+h— b)ds) — exp (— JM(&S +1 - b)dS) ‘
0

0

b
exp m(s,s—i—t—i—h—b)ds) eXp(Jm(s,s—i—t— b)ds) -1
0

(
oo
|

IN

|
|

[,uf(s) +A(s,s+t+h—0)— ,uf(s) —A(s,s+1t— b)]ds) -1

b
< |exp KJ J[M(a,s+t+h—b)—M(a,s+t—b)]dads) -1
00

< |exp(-K(— darg) — 1| < |exp (Keayg) — 1| <e,
because of (17) and the strong continuity of M(a, t) for ¢ € (0, g] proved in

item 1.2 (note that for 0 < s < b<t < g and for a suitably small £, it results
s+t—be(0,gland s +t+ h — b € (0,g]). Therefore,

t
J NG, + h) — N, )|db
0
t t
<JN@¢+h—bnduﬁth¢+h—by—NwJ—mmb
0 0

a by
J J/)’f(u —g,v—9)2k(u —g,v—g)
g9

X Mo —g,t+h—b—gNow—g,t+h—b—g)

t+h—b
x exp| — J (up(s =t —=nh+b)+u(w—t—h+b+s)ds | dudvdb

t+h—b—g

t
+“N@J+hfwamjmeb
0
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<eKMya;Nob,g

t
|
0

a by
J Jﬁf(u —9,v—9)2k(u —g,v—g)

99

0
xexp| — J (pp(s") + pp(v 4 8")ds’'
~g

X {Mo(ufg,t+hfbfg)ﬁo(vfg,t+hfbfg)

—Mo(u—g,t—b—g)ﬁo(v—g,t—b—g)}dudv db
<eKMya;Nob,g
tal bl
+KJJ J‘]AWO(u—gJ—s—h—b—g)[ﬁg(v—g,t—kh—b—g)
09 g

—Now —g,t = b—g)|
+No(v—g,t—b—g)[Mo(u—g,Hh—b—g)
— My —g,t—b— g)} ]dudvdb
<eKMoa;Nobjg+KMyea;byg+KNoeayb g,

for || <d(e). In this chain of inequalities one has used (16), (35) and hy-

pothesis (b)-3.
Consider the second addend in the initial limit. According to (33), it re-

sults:
b
| vt - N v

t

b b

< m(s,s—b—i—t—i—h)ds)

No®b —t — h,0)exp (-
b—t—h

t

db

b
—]Vo(b —t,0)exp (— J m(s,s — b+ t)ds)

b—t

by | t+h b
+J Jexp — J m(o,0 —b+t+h)do |S(s+b—t—h,s)ds

t| 0 s+b—t—h
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b

¢
—Jexp — J m(o,0 —b+1t)do | S(s+ b —t,s)ds|db
0 s+b—t

b
exp ( m(s,s —b+1t+ h)ds)
b—t—h

b
—exp (— J m(s,s — b+ t)ds)
b

—t

by

sjfvo(b—t—h,())
t

db

b b

+Jexp . Jm(s,s—b+t)ds> ‘No(b—t—h,O)—No(b—t70)‘db
t b—t
by | t+n [ b

+J J exp| — J m(o,c —b+t+h)do |S(s+b—t—h,s)
t| 0 L s+b—t—h

b -

—exp| — J m(o,0 —b+t)do [S(s+b—1,s)|ds|db

s+b—t _
by | t+h b

+J Jexp — J m(o,0 —b+1t)do | S(s+b—t,s)ds|db
tl ot s+b—t

b;

<Jﬁo(b—t—h,0)
t

b
exp (— J m(s,s — b +t+h)d8)
bt

—h

b
—exp (— J m(s,s — b+ t)ds) db + &by
b—t
by t+h b
+J J exp| — J m(o, 0 —b+t+h)do |S(s+b—t—h,s)
t 0 s+b—t—h

b

—exp| — J m(o,0 — b+ t)do | S(s+ b —t,s)|dsdb
s+b—t
by

g

t

t+h

J S(s+b—1t,s)ds
t

db,

[30]
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for |h| < d(e), because of the uniform continuity of N, o(b, 0) with respect to b,
see hypothesis (f). Going on with the chain of inequalities, one has:

b
J\N(b,H k) — N(b, )| db
t

b
<Jﬁ0(b—t—h,0)

t

b
exp (— m(s,s —b+1t+ h)ds
b—t—h

b
—exp ( J m(s,s — b+ t)ds) db + ¢b;
b

—t

by t+h b
+H exp| — J m(G,0 — b+t +hydo | S +b—t—h,s)
t 0 s+b—t—h

b
—exp| — J m(, o — b+ t)do | S(s+b—t,s)|dsdb + b,

s+b—t

for |k| < d(e), because of the continuity of integrals. Moreover, one has, also
reminding that Ny belongs to L>°(0, b):

b

[ 1.t - @] v

t

b b

m(s,s —b+t+ h)ds)

< 2eby + Jz%(b —t—h,0)| exp (—

t b—t—h

b
—exp (— J m(s,s — b+ t)ds) db
b—t—h
b b
+ Jﬁo(b —t—",0)|exp (— J m(s,s — b+ t)ds)
t b—t—h
db

b
—exp (— J m(s,s — b+ t)ds)
b

—t
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b t+h b
—|—J Jexp — J m(o,0 —b+1t+ h)do
t 0 s+b—t—h

x|S(s+b—t—h,s)—S(s+b—t,s)|dsdb
b t+h b
+J J IS(s +b—t,5)||exp| — J mlo,0 —b+t+h)do
t 0 s+bt—h
b
—exp| — J m(o,o — b+ t)do | |dsdb

s+b—t
by t+h
< 2eb; 4+ 2eNy by +J J IS(s +b—t—h,s)—S(s+b—t,5)| dsdb
0
by t+h b
+JJ IS(s +b—1t,9)| |exp| — J mlo, 6 —b+t+ h)do
0 stb—t—h
b
—exp| — J m(o,0 —b+t)do | |dsdb
stb—t—h
by t+h b
+J J IS(s +b—1t,5)| |exp| — J m(o,0 — b+ t)do
0 sHbt—h

b
—exp| — J m(o,a — b+ t)do | |dsdb,

s+b—t

b tih
for |h| <d(e). One evaluates the term J"l | ]S(s +b—t—h,s)
b0

—S(s+b—1t, s)] ds db, according to (30), (29) and (24); it results:
by t+h
J ISGs+b—t—h,s)—S(s+b—t,5)|dsdb

t 0
by t+h 0

:JJ exp —J,uf(s—i—b—t—h—i-r)dr ng(s—i—b—t—h—g,s—g)
t 0 —g
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a
X [ JZk(a,s—i—b—t—h—g)]%(a,s—g)da
0

ay
— JZk(a,s +b—t—gMla,s — g)da

0

ap
+J2k(a, s+b—t— g)Mo(a, s —g)da

0

0
X | exp —Jﬂf(s+b—t—h+r)dr No(s—kb—t—h—g,s—g)
-y

0
—exp —J,uf(Ser—tJrr)dr N’O(s+b—t—g,s—g) dsdb

-9

blt+h 0
gJJeXp —J,uf(s—i—b—t—h—i—r)df ﬁo(s—i—b—t—h—g,s—g)
t 0 —g

a
JZ[k(a,s—i— b—t—h—g) —kla,s+b—1 —g)]]%(a,s — g)da|dsdb
0

X
by t+h oy
+J J JZk(a,s+b—t—g)Mo(a,s—g)da
t 00
0
x lexp —Jﬂf(s+b—t—h+f)df NoGs+b—t—h—g,s—g)
-9
0
—exp fJ‘/lf(S+b*t+‘L’)d‘L' No(erbftfg,sfg) dsdb
-9
by t+h
SJJNO(Serftfhfg,s—g)
t 0

a
x J2|k(a,s +b—t—h—g) —kla,s+b—t— g)|]l7lo(a,s — 9)dadsdb
0
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by t+h a
+KJ J Jﬂo(a,s—g)da‘ﬁo(s+b—t—h—g,s—g)
t 00
fﬁo(s+b7tfg,sfg)dsdb
by t+h @
+KJ J Jﬂo(a,s—g)daﬁo(s—kb—t—g,s—g)
t 0 0

0 0
x | exp —J,uf(s—kb—t—h—kr)dr — exp —J,uf(s—kb—t—i—r)dr dsdb
-9

-9
<261W0allvoblg+K1W0alsblg+KM0alsﬁoblg,

for || <d(e), according to (17), to the uniform continuity of k(a,b) with
respectto b € [0, b)) for a € [0, a;), see hypothesis (e), to hypothesis (b), see
also (34), to the uniform continuity of N, o(b,t) with respect to b for
t € [ — g,0] and to the continuity of integrals.
Resuming the chain of inequalities considered before, one can write, for
|h| < d(e):

by

J INb, ¢+ 1) — N(b, 0)|db

t

<2eb; + Zsﬁgbl + 26Moalﬁoblg + KMOaleblg + KMOaleNOblg

by t+h b

+JJ IS(s + b —t,9)||exp| — J mlo,0 —b+t+h)do
t 0 s+b—t—h
b
—exp| — J m(o,o0 — b+ t)do | |dsdb
s+b-t—h
b t+h b
+J J IS(s +b —t,9)||exp| — J m(o,0 — b+ t)do
t 0 s+b—t—h

b
—exp| - J mio, o — b+ t)do | |dsdb.

s+b—t
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Being
0

a
exp(— J,uf(S—f—b—t-i-T)d‘L') JZk(a,s+b—t—g)
0

-9

ISGs +b—t,5)| =

Mo(a, S — g)daﬁo(s +b—t—g,s—¢9)

ay
< JZlc(a,s—i—b—t—g)Mo(a,s—g)daNO(s+b—t—g,s—g)
0
<KMyaNo(s+b—t—g,s—9),

see (17) and (34), one obtains, for || <d(e):

by
J |N(b, t+h)— N(O, t)‘db <2eb; + ZSN()bl + ZSMOalNOng
t
+K]l70alsblg + Kﬂoalé‘ﬁoblg + K]Woaleﬁoblg + Kﬂoalsﬁoblg.

One concludes that
by
J |N(b,t +h) — N(O, t)‘db <8K]‘_406L1N0blg + Kll_losalblg
0
+ K]_Vogalblg + 2¢eb; + 28N()bl + ZEMOOLZN()(J[Q + K]Woalsblg
+ KM()CLZEN()()LQ + KM()CL[SN(]Z)ZQ + Kﬂgalsﬁoblg,

for |h| < d(e), therefore

lim [N b, ¢ + ) = N, Dl = 0-

Following the steps in items 1 and 2, one can also prove that functions (20) and (33)
belong to L(0,a;) and L'(0,b;), respectively, and are strongly continuous for
t € (9,291, that is for = = 1. By induction, the proof can be concluded.
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