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On some special type of trans-Sasakian manifolds

Abstract. We obtained necessary and sufficient condition for a 3-dimensional
trans-Sasakian manifold of type («, §) to be 7 -Einstein. In particular expressions for
Ricci-tensor, curvature tensor and Ricci-operator obtained in 3-dimensional trans-
Sasakian and #-Einstein trans-Sasakian manifolds. We also prove that in a three
dimensional trans-Sasakian manifold of type (o, f), @¢ = ¢Q if ¢(grad o) = grad f.
It is also proved that every 3-dimensional a-Sasakian, f-Kenmotsu and («, ) trans-
Sasakian manifolds, where a,f are constants, are always 5-Einstein manifolds.
Under certain conditions eigenvalues and eigenvectors are also discussed. We also
obtained condition for projectively flat trans-Sasakian manifold to be Einstein.
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1 - Introduction

It is known that a trans-Sasakian structure of type (0,0), («,0) and (0, /) are

cosymplectic [1], a-Sasakian [2], [11] and f-Kenmotsu [2], [7] respectively. Sasakian,
a-Sasakian, Kenmotsu, f-Kenmotsu are particular cases of trans-Sasakian manifold
of type (a, ). Oubina [10] studied a new class of almost contact Riemannian manifold
known as trans-Sasakian manifold which generalizes both a-Sasakian and f-
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Kenmotsu structure. Szabo [12], [13] has obtained some curvature identities and
Nomizu [9] has studied some curvature properties. Concept of nearly trans-Sasakian
was introduced by C. Gherghe [4]. It is also known that a locally trans-Sasakian
manifold of dimension > 5 is either cosymplectic or a-Sasakian or f-Kenmotsu
manifold [8]. On other hand, three-dimensional proper trans-Sasakian manifold are
constructed by Marrero [8]. Jeong-Sik Kim et al [6] has studied generalized Ricci-
recurrent trans-Sasakian manifold.

However, the curvature tensor, Ricci-tensor and Ricci-operator for 3-di-
mensional trans-Sasakian and x-Einstein trans-Sasakian manifolds are almost
not discussed so far. It is also not discussed that under what condition a three-
dimensional trans-Sasakian manifold becomes 7-Einstein. So it is worthwhile to
study three-dimensional trans-Sasakian and #-Einstein trans-Sasakian mani-
folds. The present work is organized as under. Section-1 is introductory.
Section-2 contains necessary details about trans-Sasakian manifolds. Some basic
results are also given in Section-2. The relation between « and f of trans-
Sasakian manifold of type (a,f) is discussed in Section-2 as well. In Section-3
the necessary and sufficient condition for three-dimensional trans-Sasakian
manifold becomes 7-Einstein is given. In Section-4 the Rieci-tensor, curvature
tensor and Ricci-operator for n-Einstein trans-Sasakian manifold are found. In
Section-5 Sasakian and trans-Sasakian manifold of 3-dimension, which are con-
harmonically flat are discussed. In Section-6 eigenvalues and eigenvectors are
discussed. Lastly in Section-7 projectively flat trans-Sasakian manifolds are
discussed.

2 - Trans-Sasakian Manifold
Let M be a (2n + 1)-dimensional almost contact metric manifold equipped with

almost contact metric structure (¢, &, 7, g), where ¢ is (1,1) tensor field, £ is a vector
field, # is 1- form and g is compatible Riemann metric such that

(2.1) F=-I+pas nO=1, ¢=0, nop=0,
(22) 9(@X,¢Y) = g(X,Y) — n(X).n(Y),

(2.3) 9@X,Y) = —gX,¢Y), g, Q) = nX),

for all X, Y € TM. A manifold M is called trans-Sasakian manifold if
(24) (Vx@)Y = of{g(X,Y)< —n(Y)X} + p{g(¢X, Y)< — n(Y)gX}

where V is Levi-Civita connection of Riemannian metric g and « and f are smooth
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functions on M. From equation (2.4) and equations (2.1), (2.2) and (2.3)
(2.5) Vxé = —agX + pIX — n(X)<],

(2.6) (VxmY = —ag(¢X,Y) + fg(¢X, ¢Y).

Some important results:

Lemma 2.1. In a trans-Sasakian Manifold [3], [6]
(2.7) R(X.Y)¢ =@ — (V)X — n(X)Y] — pdn(X,Y)E
+ 2af[n(Y)eX — n(X)¢Y] + (Yo)pX
~ XY + (YB)$'X — (XB)§'Y,

(2.8) R(&Y)X =(o” - P)g(X,Y)E - n(X)Y]
+20B[g(¢X, Y)E — n(X)$Y]
+ (Xa)¢Y +9(¢X,Y)(grad o)
+ XPIY —n(Y)<] — g(¢X, ¢Y)(grad §),

(2.9) R(&X)E = (o — B = EPn(X)E — X]
and
(2.10) 2af +¢a =0,

where R is the curvature tensor.

Equation (2.10) implies that in trans-Sasakian manifold of type («, ), « and ff are
not arbitrary functions but related to each other by structural vector field ¢&.
Equation (2.10) also implies that o and f§ are not non-zero constants simultaneously.
If éa = 0 and o # 0, we have f = 0 and we can state the following.

Corollary 2.1. A trans-Sasakian manifold of type («, f) is a-Sasakion if «
s constant only on ntegral curves of &.

Now we shall give two proper examples of trans-Sasakian manifold of type (¢, ff)
which are neither «-Sasakian nor f-Kenmotsu and both the examples satisfy
equation (2.10).
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Example2.1. Let (v,y,2) be Cartesian coordinate in R, then (¢, &, n,9) given
P 0 -1 0 F+yr 0 —y
byé:a—,n:dz—ydx,cﬁz 1 0 0],9= 0 e 0 | isatrans-
? 0 —y 0 —y 0 1
. 1 1Y .
Sasakian structure of type <— 5" é) in R? [6].

Example 2.2. In fact in three-dimensional K-contact manifold with struc-
ture tensors (9, ¢, n, 9), for a non-constant function f, defined ¢ =fg+ (1 —flnen

then (¢,&,1,9') is a trans-Sasakian structure of type G,%é( Inf )> [6].

It is easy to verify that Examples 2.1 and 2.2 satisfy the condition
20+ a = 0.

Lemma 2.2. In a (2n + 1)-dimensional trans-Sasakian manifold («, f), we
hawve from, [6]
(2.11) S(X,¢) = (2n(a® — ) — EH)n(X) — 2n — XS — $X)a,

(2.12) Q¢ = (2n(a® — %) — )¢ — (2n — 1) grad f + ¢(grad o),

where S is the Ricci-curvature and Q 1is the Ricci-operator of trans-Sasakian
manifold of type («, f). S and @ are related to each other by

(2.13) S(X,Y) = g(QX.Y).

Corollary 2.2. In a trans-Sasakian manifold of type («, ff) of dimension-
(2n+1) i ¢ (grad ) = (2n — 1)(grad p), then

1 1
b =yg(&gradf) =5 — g(C, dlgrada)) = 5 — n(¢(grada)) = 0
and then, we also have

R(&,X)¢ = (o = B (n(X)é - X),
S(X,&) =2n(a® — f)n(X).

3 - Three-dimensional trans-Sasakian manifolds

In a three-dimensional trans-Sasakian manifold, we have from Lemma 2.2
(3.1) S(X,8) = (2(® — f7) — EP)n(X) — (XB) — (¢X)a,
(32) Q¢ = (20 — f7) — Ef)¢ — grad f + f(grad o).
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Definition 3.1. The Weyl conformal curvature tensor C of type (1,3) of an
(2n + 1)-dimensional manifold (M, g) is defined by
(3.3) CX,Y)Z=R(X,Y)Z
1
2n—1
L
(2n)(2n - 1)

[S(Y,Z)X — S(X,2)Y + g(Y,Z)QX — g(X, Z)QY]
9(Y,2)X —g(X,Z2)Y],

where R, S, Q, r denotes respectively the Riemannian curvature tensor, Ricci-
tensor of type (0,2), the Ricci-operator and the scalar curvature of the manifold.

Lemma 3.1. In a three-dimensional trans-Sasakian manifold, the Ricci-
operator is given by

B4) QX =(J+F—F—P)X - T+ 30— )X
+ 1(X)($lgrad @) — (grad f)) — (X + ($X)a):.

Proof. We know that the Weyl conformal curvature tensor vanishes in three-
dimensional Riemannian manifold, therefore from equation (3.3)

(3.5) R(X,Y)Z =g(Y,2)QX — g(X.Z)QY +S(Y,Z)X
~S(X,2)Y - g 9(Y,2)X — g(X,2)Y).

For any three-dimensional trans-Sasakian manifold, from equations (3.5) and (3.1),
we have

(3.6) R(X,Y)¢ =n(Y)QX — n(X)QY
- (G+a8-2(a*= ) ) (V)X — n(X)Y)
= (YB+ (@Y)a)X + (XB+ (¢X)a)Y.
From equations (2.7) and (3.6), we have
n¥)[QX - (5+&8— (a2 = 7)) X — 208X + (Xp)E]
+ Bdn(X,Y)¢ — (Ya)@X — ((¢Y)a)X

—n(X)[QY — (5+ &8~ (a2~ ) )Y — 2086X + (Yp¢]
~ (Xa)gY — ((¢X)a)Y.

Putting Y = £, we get equation (3.4). O
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Proposition 3.1. Let M be a three-dimensional trans-Sasakian manifold of
type (a, ). If grad i = ¢(grad a) then the Ricci operator and the structure tensor
commute, i.e. Qp = ¢Q.

Proof. Replace X by ¢X in equation (3.4), we get
BT @)X = (5+ — @@ —f))X — ($X)f — Xa+n(X)(Ea))¢,
again from equation (3.4)

B(QX) = (5+ & — (02 = )X + n(X) (8 (grad o) - ¢lgrad ),

using equation (2.1), we have
(38) ($QX = (5 + &8 — (0* — §))¢X

+ n(X)(— grad a + n(grad @)¢ — $(grad §)).
From equations (3.7) and (3.8), Q¢ # ¢Q in general but if ¢(grad o) = grad f8, then
Q¢ = Q. O

Lemma 3.2. In a three-dimensional trans-Sasakian manifold, Ricci-tensor
1s given by

(3.9) S(X.Y) = 5+ - (o = ) J9(X. V)
~ (5+&8-3(a ) )n(X)m¥)
— (Y + ($V)a)(X) — (XB+ ($X)a)n(¥).

Proof. Using equations (2.13) and (3.4), we get the equation (3.9). O

Definition 3.2. An almost contact metric manifold M is said to be -
Einstein if its Ricci-tensor S is of the form

(3.10) S(X,Y) = ag(X,Y) + bn(X)n(Y),

equivalently an almost contact metric manifold M is said to be n-Einstein if its
Ricci-operator is of the form

(3.11) Q(X) = aX + bn(X)¢,

where a and b are smooth functions on M. It is also known that for any n-Einstein
K-contact manifold of dimension > 5, a and b are constant.
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Lemma 3.3. If in a three-dimensional trans-Sasakian manifold of type
(o, P), p(grad o) = grad f, then

(3.12) Xp+ (¢X)a =0,
X e TM and
(3.13) & =0.

Proof. We know that
Xp=g(X,gradf) = g(X, ¢(grad a)) = — g(¢X,grad a) = — (¢X)a,
which implies equation (3.12) and on putting X = & in equation (3.12), we get the
equation (3.13)

Theorem 3.1. A sufficient condition for any three-dimensional trans-
Sasakian manifold of type («,p) to be an n-Einstein manifold is ¢(grad«)

= gradf.

Proof. If ¢(grada) = gradf, then by using Lemma 3.3 and Definition 3.2, we
get the result. O

Theorem 3.2. A three-dimensional trans-Sasakian manifold of type («,f)
to be an n-Einstein manifold if and only if

(3.14) Xf+ (¢X)a = (chn(X),
VX € TM.

Proof. Let us suppose that a three-dimensional trans-Sasakian manifold is #-
Einstein. So from equation (3.9) and Definition 3.2, we must have an equation of the form

(3.15) (Xf + (9X)a)n(¥) + (Y + (9Y))nX) = cg(X, Y) + dnXOn(Y),

vX,Y € TM,wherec and d are smooth functions which are to be determined. Replace X
by ¢X and Y by ¢Y in equation (3.15), we get

cg(¢X,9Y)=0=¢c=0.
Again putting X = ¢and Y = £ in equation (3.15), we get
2E6 = d.

Hence we have

(XB + (¢X)a)n(Y) + (Y + (¢Y )a)nX) = 2(EF)n(X)n(Y).
On taking X = Y we get the equation (3.14).
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Conversely, let the equation (3.14) is satisfied. With the help of equation (3.9), we
get

(3.16) S(X,Y) = (g Y- a?+ ﬁz) 9(X.Y)

— 35+ B — a® + ) 0Ny,

which is the condition for 7-Einstein manifold, where the values of @ and b of equation
(3.10) are (g +EB—a® + ﬁ2> and — 3(2 +E—a?+ ﬁz) respectively. O

Corollary 3.1. Ewvery three-dimensional a-Sasakian manifold is n-Einstein
iff a is a constant.

Proof. Proof of this Corollary follows from Theorem 3.2. If we take f = 0 in
equation (3.14), we get ¢(grad o)) = 0. From ¢(grad o) = 0 and o = 0= « = constant.
And if « is constant then proof is obvious. |

Corollary 3.2. Every three-dimensional Sasakian manifold or Kenmotsu
manifold or (o, ) trans-Sasakian manifold where o and f are some constants are
n-Einstein.

Proof. For Sasakian manifold, Kenmotsu manifold and («, ) trans-Sasakian
manifold, where « and f are constants, the condition

Xp+ (9X)a = (EPn(X), VX e TM,

is satisfied. Hence the corollary is proved. |

Lemma 3.4. Let M be a trans-Sasakian manifold of type («,f) and of di-
mension three. Then the following conditions are equivalent

1) M s n-Einstein.

@) ¢(grada) — grad f = — S(B)<.
(3) The Ricci-operator of M is given by

QX = (5+&8— (o =) )X — (5+3¢8 —3(a? — ) Jn0OC.

Proof. A manifold M is #-Einstein if Ricci-operator is of the form

(3.17) QX = aX + by(X)¢,
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for all X € TM, where a and b are smooth functions. It is clear from equation (3.4)
that a three-dimensional trans-Sasakian manifold of type («, ) become #-Einstein if
and only if

Xp+ (X))o = (SB)n(X),

VX € TM. Let
¢(grada) — grad f = ¢,
where a; is to be determined by operating # both sides, we get
—¢f=a.
Converse part can be proved easily. Conditions (2) and (3) are equivalent because
Xp+ ($X)a = (EP)n(X),
9(X, grad f) + g(¢X, grad o) = (B)n(X) VX € TM,
9(X,grad ff — g(grad a)) =g(X, (Ef)S) VX € TM,
= ¢(grad o) — grad f = — (EP)E.

4 - y-Einstein trans-Sasakian manifold of dimension three

Let M be a (2n + 1)-dimensional #-Einstein trans-Sasakian manifold with almost
contact metric structure (¢,¢&,#,9). Let {e1,eq,....e0,, €2,+1 = ¢} be orthonormal
basis, then scalar curvature

From equation (3.10), we have

r=(2n+1)a+b.
For a three-dimensional #-Einstein trans-Sasakian manifold
(4.1) r=3a+b.
Putting Y = £ and X = ¢ in equation (3.10), we get

(& =a+b.
From equation (3.9), we have

S(&,¢) =2(a® — f* = £B)
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SO
(4.2) 2(a® -~ ) =a+b.
From equations (4.1) and (4.2)

_r (2 2 __r 2 g2
a=g— (== cB), b=—7+3(a%~ 2 p).
Hence we have the following lemma.

Lemma 4.1. In three-dimensional n-Einstein trans-Sasakian manifold the
Ricci-tensor S is given by

(4.3) S(X,Y) = (2 o + 2+ 2B)g(X, V)
35— o+ + )XY,
VX,Y e TM.

Lemma 4.2. In a three-dimensional trans-Sasakian manifold M of type
(o, P), curvature tensor is given by

R(X.Y)Z

= (32 -2(a* - £)) (0. 2)X - g(X. 2)Y)
~ 9V, D){(5+ & -3(a?— ) )02
—7(X)(¢(grad a) — grad f) + (Xp+ ($X)a)¢ }
+9X.2){ (5+—3(a* = ) )nD)c

(4.4)
—n(Y)(¢(grad a) — grad f) + (V5 + (¢Y)a)£}

+p—3(a* - ))ﬂ(Y)n(Z)}X
Z + ($2)a)nX) + (Xp + (6X)a)(2)

+ & 3(a% — ) )nON2) | Y,

VX,Y,Z c TM.
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Proof. For three-dimensional manifold

R(X.Y)Z =g(Y.Z)QX — g

—

X, Z2)QY +S(Y,Z)X

-S(X,2)Y —5(9(Y,2)X - g(X, Z)Y).

NI =

Using equations (3.4) and (3.9) in the above equation, we get the equation (4.4). O

Lemma 4.3. In a 3-dimensional n-Einstein trans-Sasakion manifold the
expression for curvature tensor R is

R(X,Y)Z = (g +2¢8—2(a* - 7)) (9(Y. 2)X — (X, 2)Y)

(4.5) . (g 13— 3(a2 - /f2)){g(Y,Z)n(X)é

—9(X, Z(V)E + n¥Y )X — nXnZ)Y}.

Proof. For s-Einstein trans-Sasakian manifold

Xp+ (¢X)a = (Pn(X),  vXeTM
or

¢(grada) —grad f = —(EP)E.

Using equation (4.4), we get the result. O

Lemma 4.4. In a three-dimensional trans-Sasakian manifold M of type
(o, P) if p(grad o) = grad fi, then curvature tensor R is given by

R(X,Y)Z = (g - 2(a2 - /)’2)> (Y, Z2)X — g(X,Z)Y)

- (5-3(0* 7)) {07, 23 — g(X. 2 )}
— {(n)X — n(X)Y}n(Z)} ,

vX,Y,Z € TM.

Proof. From equation (4.4) and ¢(grad «) = grad f3, we get the result. O

Example 2.1 is a non-trivial example of trans-Sasakian manifold which satisfy the
condition ¢(grad o) = grad f.
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5 - Three-dimensional conharmonically flat trans-Sasakian manifold

It is well known that a conformally flat manifold is conharmonically flat if and only
if the scalar curvature vanishes i.e. if a manifold is conformally flat then it is con-
formally flat with zero scalar curvature. Conharmonically flat Kenmotsu manifold
and non locally Euclidian Sasakian manifold do not exist [5].

The conharmonic curvature tensor C of type (1,3) on a Riemannian manifold
(M, g) of dimension-(2n + 1) is defined by

(5.1) C(X,Y)Z=R(X,Y)Z — 2"%1 [S(Y,Z2)X — S(X,2)Y
+9(Y,2)QX — g(X,2)QY],

VX,Y,Z € TM,where @ and S are the Ricci-operator and Ricci-tensor respectively
and related to each other as S(X,Y) = g(QX, Y). If C vanishes identically then it is
said that the manifold is conharmonically flat.

First we consider the manifold M which is conharmonically flat. From equation
(5.1), it follows that

1
(2n-1)

+9(Y,2)QX —g(X,Z)QY}.

(5.2) R(X,Y)Z = (S(Y,2)X — S(X,Z)Y

Taking Z = £ in the above equation, we get

RIX.Y)E = G [ (2002 = £7) = &) DX = n0Y)
+ @0 = D(XHY - (THX) + ($X))Y - (¢¥)a)X
+1NQX — nXQY |.

For three-dimensional trans-Sasakian manifold taking n = 1 in above equation, we
get

(53) R(X,Y)E =(2<a2 - ﬁz) - éﬁ) (V)X —nX)Y) — (XB)Y — (YB)X)
+ ((¢X)a)Y — ((¢Y) o)X + n(Y)QX — n(X)QY.
Taking X = £ and using equations (2.9) and (3.2), we have

(5.4) QY =(3(a® — ) — &p)n1)c — ((a* - ) - ep)¥
—n(Y)(grad i — ¢(grad o)) — (Yf) + (¢Y))<.
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It is known
(65) S(X,Y)=g(QX.Y)
= (- (> = 1) )J9(X.Y) = (B —3(a> = ) )n0)m(¥)
— (YB+ @Y)a)(X) — (XB+ ($X)a)n(D).
Using equation (5.2), we get
(5.6) R(X,Y)Z
= (2¢p—2(0~ ") ) (9(¥. 2)X - g(X, 2)Y)
—9(¥.2){(p—3(c® = ) Jn00C
— 1(X)($(grad o) — grad f) + (Xp+ (¢X)a)}
x.2){(ep—3(c* - ) )
N(Y)($(grad a) - grad ) + (Y + ¢V )a)}
(2B + ($2)a)Y) + (YB + ¥V )a)n(2)
&~ (a2 #) )z } X
+ (@)X + (XB+ ($X)a)n)
& - (a2 F) )uom(2) Y.

Theorem 5.1. In a three-dimensional conharmonically flat trans-Sasakian
manifold M of type («,f5) Ricci-operator, Ricci-tensor and curvature tensor are
given by equations (5.4), (5.5) and (5.6) respectively.

Lemma 5.1. The three-dimensional conharmonically flat trans-Sasakian
manifold M has zero scalar curvature.

Proof. It is well known that every three-dimensional Riemannian manifold is
conformally flat and it is given that M is conharmonieally flat, so scalar curvature
r=0. O

6 - Eigenvalues and eigenvectors

Let {e1,e2, &} be an orthonormal basis of a three-dimensional trans-Sasakian
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manifold. Taking X = ¢ in equation (3.4), we have
(6.1) Q¢ = 2(a® — B¢ + (p(grad a) — grad B) — (EB)E.

Now for #-Einstein trans-Sasakian manifold, using Lemma 3.4

Q& = 2(a* — f* — &P,

which implies 2(a? — % — £p) is eigenvalue corresponding to eigenspace {£}. In the
same fashion if ¢(grad o) = grad f5, then 2(a2 — f2) is eigenvalue corresponding to
eigenspace {£}. Now taking X = e;, © = 1,2 in equation (3.4), we have

Qo= (53— (a*=#))es  i=12

which implies (g — (a2 — /)’2)) is eigenvalue corresponding to eigenspace {ej, ez}

ie. (g — (az — [32)) is eigenvalue corresponding to contact distribution D.

Lemma 6.1. In any three-dimensional Kenmotsu manifold with scalar
curvature r = — 6, the Ricci-operator Q has only one real eigenvalue — 2.

Proof. The Ricci-operator @ in any three-dimensional Kenmotsu manifold is
obtained from equation (3.4) as

QX = (g +1)X - (g +3)n(X)E.
Taking r = —6, we get
QX = -2X.
Hence the result. O
Let {e1, ez, &} be a local orthonormal basis of vector field in M. If » = — 6, then
Qe; = —2¢;, 1 = 1,2 and Q& = — 2¢. So multiplicity of eigenvalue —2is 3. If r = —2,

then Qe; =0, i = 1,2 and Q¢ = — 2&. So multiplicity of eigenvalues —2 and 0 are 1
and 2 respectively.

7 - Projectively flat trans-Sasakian manifolds
In this section a necessary condition for projectively flat trans-Sasakian manifold

to be Einstein is obtained.
The Weyl projective curvature tensor P of type (1,3) on a Riemannian manifold
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(M,g) of dimension-(2n + 1) is defined as
(7.1) P(X,Y)Z =R(X, Y)Z—%[S(Y,Z)X—S(X,Z)Y],

forany X, Y, Z € TM. The manifold (M, g) is said to be projectively flat if P vanishes
identically on M.
For projectively flat trans-Sasakian manifold P = 0, from equation (7.1), we get

(7.2) R(X,Y)Z = % SY,Z2)X - S(X,Z2)Y].
From equation (7.2), we have
(7.3) KX, Y, ZW)=g(R(X,Y)Z,W)

9(
1
Taking W = & in equation (7.3), we get

n(R(X,Y)Z) = %[S(KZ)’?(X) - 8(X, Z)n(Y)],
again taking X = ¢ and using equations (2.8) and (2.11), we get
(T4)  S(Y.Z) =2n(a®— f* - &B)g(Y, Z) — (20— 1)(EBn(Y)n(Z)
+ ((2n —1)(Zp) + (¢Z)a)n(Y),

if
(7.5) (2n —1)(df — &(B)n) +dacé =0,
then

(7.6) S(Y,2) = 2n(a* — f* — EB)g(Y, 2).

Hence we have following theorem.

Theorem 7.1. A Weyl projectively flat trans-Sasakion manifold is an
Einstein manifold iff equation (7.5) is satisfied.

Proposition 7.1. A Weyl projectively flat trans-Sasakian manifold of type
(a, f) is an Einstein manifold If (grad o) = (2n — 1) grad f.

Proof. Consider

(1.7) &P =g(& gradf) = ﬁg(é, ¢(grada)) = —ﬁg(sﬁé grada) = 0.
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Also consider

ie.

(7.8)
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2n —-1)Zp = (2n — 1)g(Z,grad ff)
(2n —1)

=o—— 94, ¢(grada)) = —g(¢Z, grad a) = —(¢Z)a,

(2n —1)

@n —1)ZB + ($Z)a = 0.

Using equations (7.7) and (7.8) in equation (7.4), we get

S(Y,Z) = Zn(a2 - /32) g(Y,Z).

Hence the Proposition. O
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