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A Boltzmann-type approach to the formation

of wealth distribution curves

Abstract. Kinetic market models have been proposed recently to account for
the redistribution of wealth in simple market economies. These models allow to
develop a qualitative theory, which is based on methods borrowed from the ki-
netic theory of rarefied gases. The aim of these notes is to present a unifying
approach to the study of the evolution of wealth in the large-time regime. The
considered models are divided into two classes: the first class is such that the
society’s mean wealth is conserved, while for models of the second class, the
mean wealth grows or decreases exponentially in time. In both cases, it is pos-
sible to classify the most important feature of the steady (or self-similar, re-
spectively) wealth distributions, namely the fatness of the Pareto tail. We shall
also discuss the tails’ dynamical stability in terms of the model parameters. Our
results are derived by means of a qualitative analysis of the associated homo-
geneous Boltzmann equations. The key tools are suitable metrics for probability
measures, and a concise description of the evolution of moments. A recent ex-
tension to economies, in which different groups of agents interact, is presented in
detail. We conclude with numerical experiments that confirm the theoretical
predictions.
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1 - Introduction

In recent years, a number of models has been proposed to account for the evo-
lution of the distribution of wealth in a simple market economy. Among other ap-
proaches, kinetic market models are presently of particular interest, see e.g. the
various contributions in the recent books [24, 19, 55, 56], or the introductory articles
[41, 59]. The founding idea, dating back to the works of Mandelbrot [43], is that a
trading market composed of a sufficiently large number of agents can be described
using the laws of statistical mechanies, just like for a physical system composed of
many interacting particles. In fact, there is an almost literal translation of concepts:
molecules are identified with the agents, the particles’ energies correspond to the
agents’ wealths, and binary collisions translate into trade interactions. This model-
ling is clearly rather ad hoc, but if one is willing to accept the proposed analogies
between trading agents and colliding particles, then various well established
methods from statistical physics are ready for application to the field of economy.
Most notably, the numerous tools originally devised for the study of the energy
distribution in a rarefied gas can now be used to analyze wealth distributions. In this
way, the kinetic market models provide one possible explanation for the develop-
ment of universal profiles in wealth distributions of real economies.

One of the authors (GT) started to be interested in this subject after reading a
paper by F. Slanina [54]; there, a clear parallelism between the evolution of wealth in
a simple economy and the evolution of the particle density in a one-dimensional
dissipative gas has been established. This paper motivated to eventually adapt more
and more of the ideas, which have been developed in the studies of dissipative
Maxwell gases, to the economic framework. (For an introduction to the concepts of
Maxwell gases, we refer to [11], and to [3, 6, 7, 8] for further information.)

It should be emphasized, however, that there are substantial differences between
the collision mechanism for molecules and the modelling of trade interactions. In the
new framework, interactions typically lack the usual microscopic conservation laws
for (the analogues of) impulse and energy; moreover, random effects play a crucial
role. In fact, the key step in establishing a reasonable kinetic market model is the
definition of sensible rules on the microscopic level, i.e., the presecription of how
wealth is exchanged in trades. Such rules are usually derived from plausible as-
sumptions in an ad hoc manner. (This is clearly in contrast to the original Boltzmann
equation, where the microscopic collisions are governed by the laws of classical
mechanics.)

The corresponding output of the model are the macroscopic statistics of the
wealth distribution in the society. The comparison of this output with realistic data is
up to now the only means to evaluate — a posteriori — the quality of a proposed
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model. For instance, it is commonly accepted that the wealth distribution should
approach a stationary (or, in general, a self-similar) profile for large times, and that
the latter should exhibit a Pareto tail. Such overpopulated tails are a manifestation of
the existence of an upper class of very rich agents, i.e. an indication of an unequal
distribution of wealth. The various articles in [24] provide an overview over historical
and recent studies on the shape of wealth distributions; see also [21] for a collection of
relevant references.

In general, the richness of the steady states for kinetic market models is another
remarkable difference to the theory of Maxwell molecules. While the Maxwell dis-
tribution is the universal steady profile for the velocity distribution of molecular
gases, the stationary profiles for wealth can be manifold, and are in general not
explicitly known analytically. In fact, they depend heavily on the precise form of the
microscopic modelling of trade interactions. Consequently, in investigations of the
large-time behavior of the wealth distribution, one is typically limited to describe a
few analytically accessible properties (e.g. moments and smoothness) of the latter. A
noteworthy exception of a model for which the self-similar profile is know has been
found in [54] for an exponentially growing economy in which agents are rewarded for
trade interactions proportional to their current wealth. The solution corresponds to
the self-similar solution of a one-dimensional dissipative Boltzmann equation of
Maxwell type [3].

A variety of models has been proposed and numerically studied in view of the
relation between parameters in the microscopic rules and the resulting macroscopic
statistics. The features typically incorporated in kinetic trade models are saving
effects and randomness. Saving means that each agent is guaranteed to retain at
least a certain minimal fraction of his initial wealth at the end of the trade. This
concept has probably first been introduced in [18], where a fixed saving rate for all
agents has been proposed. Randomness means that the amount of wealth changing
hands is non-deterministic. Among others, this idea has been developed in [27], in
order to include the effects of a risky market. Depending upon the specific choice of
the saving mechanism and the stochastic nature of the trades, the studied systems
produce wealth curves with the desired Pareto tail — or not.

In these notes, we analyze and compare a selection of recently developed models.
Mainly, we will split our analysis on two different types of interactions. The first type
is such that the binary trade is conservative, either microscopically, or in the sta-
tistical mean. In this situation, the mean wealth in the model Boltzmann equation is
preserved, and one expects the formation of a stationary profile. In the second type
of interaction, the mean wealth is not preserved, and therefore the long-time beha-
vior of the wealth distribution is not described by the approach of a stationary, but
rather of a self-similar profile.
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In the class of conservative trades, the focus is on models with risky investments,
originally introduced by Cordier, Pareschi and one of the authors [27], and on var-
iants of the model designed by Chakraborti and Chakrabarti [18]. The applied
analytical techniques, however, easily generalize to a broader class of conservative
economic games. These techniques have been applied in the current mathematical
literature [27, 48, 44, 45, 34, 32], where kinetic econophysics has been treated in the
framework of Maxwell-type molecules. These mathematical results are briefly re-
viewed, before they are applied to the specific models under consideration. The in-
terest reader, who wishes to obtain a deeper understanding of the mathematical
roots (and possible extensions) of the applied tools, is referred e.g. to [57, 16].

For the treatment of the class of non-conservative trades, our starting point is the
simplified model introduced by Slanina [54], which has subsequently been studied by
Pareschi and one of the authors [48]. This model can be easily generalized to random
mixing parameters, in order to include risky market effects. The risky effects are
designed with a certain bias to increase the total wealth in trade interactions; this is
in contrast to the conservative approach in [27], where risky gains and losses balance
in the statistical mean.

As a further approach, related to conservative models, we discuss a kinetic model
for wealth distribution in a market which comprises a whole number of countries, or
alternatively different social groups within the same country [35]. The goal is to
verify analytically the existence of a bimodal stationary distribution [40]. Bimodal
distributions (and a polymodal distribution, in general) are, in fact, reported with
real data for the income distributions in Argentina [36]. In the proposed model, a
bimodal steady state can indeed be obtained, e.g. when the saving parameter takes
only two fixed values, which are sufficiently widely separated. The population thus
consists of two distinctly different groups of people: some of them tend to save a very
large (fixed) fraction of their wealth, while the others tend to save a relatively small
fraction. The analytical observation is confirmed in computer experiments: the nu-
merical output evolves towards a robust and distinct two-peak distribution as the
difference in the two saving parameters is increased systematically.

The kinetic approach presented in these notes is complementary to the nu-
merous theoretical and numerical studies that can be found in the recent physies
literature on the subject, from which it differs in several subtle points. In particular,
the analysis is entirely based on the spatially homogeneous Boltzmann equation
associated to the microscopic trade rules of the respective model. Thus, here agents
on the market are treated as a continuum, just like molecules in classical gas dy-
namics. Not only does this approach constitute the most natural generalization of
the classical ideas to econophysics. But moreover, it clarifies that certain peculiar
observations made in ensembles of finitely many agents and in numerical experi-
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ments (like the apparent creation of steady distributions of infinite average wealth,
e.g. [22, 23, 21]) are genuine finite size effects. Unfortunately, this approach, while
powerful and robust, is up to now almost ignored by the pertinent literature of the
econophysics community. To close this gap, propaganda to the physicists commu-
nity has been made by resorting to a short description both of the mathematical
models and methods in a well addressed physical journal [33]. We will borrow from
this paper, from which the present notes differ mainly in the mathematical details.

For the sake of uniformity, we restrict ourselves in these notes to markets
characterized by binary trades. Other kinetic models have been recently pro-
posed, which, while maintaining the kinetic description, introduce more sophis-
ticated rules for trading. For example, a description of the behavior of a stock
price has been developed by Cordier, Pareschi and Piatecki in [26]. Further, we
mention that there are efforts to include non-microscopic effects, like global
taxation (and subsequent redistribution), for example in a recent work of
Garibaldi, Scalas and Viarengo [39].

To conclude this introduction, a comment on the justification of kinetic market
models is in place. The socio-economic behavior of a (real) population of agents is
certainly extremely complex. Apart from elements from mathematics and econom-
ics, a sound description — if one at all exists — would necessarily need contributions
from various other fields, like psychology. Clearly, the mathematical models pre-
sented in these notes are too simple to even pretend to reflect the real situation.
However, the idea to describe economic trades in terms of a kinetic equation gives
rise to a variety of challenging mathematical problems, both from the theoretical and
numerical point of view. In particular, it is remarkable that this class of simple
models possesses such a wide spectrum of possible equilibria (some of which indeed
resemble realistic wealth distributions). Moreover, kinetic market models are ex-
tremely flexible with respect to the introduction of additional effects. In this way, the
described models should be considered as basic building blocks, that can easily be
combined, adapted and improved. Hopefully, the reading of these notes will be en-
couraging for the introduction of more realistic models in the same spirit.

2 - Economic and kinetic dictionaries

2.1 - Wealth distributions

In a closed ensemble of agents (i.e. a market), the wealth distribution f(t;w)
refers to the relative density of agents with wealth w at time ¢ > 0. Debts are ex-
cluded in the models considered here, i.e. f(t; w) = 0 for w < 0, but concentration in
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w = 0 is allowed. The first moment of f(¢; w) yields the average wealth per agent,

(2.1) M) = J wf (t; w) dw.
R,

In the models under consideration, the density f(t; w) stabilizes at some stationary
wealth curve f,(w) in the large-time limit ¢ — co. The central notion in the theory of
wealth distributions is that of the celebrated Pareto index a > 1. This number de-
scribes the size of the rich upper class in the considered ensemble of agents.
Roughly, the smaller a is, the more of the total wealth is concentrated in the hands of
a small group of individuals.

The stationary curve f..(w) satisfies the Pareto law [49] with index a, provided
that f, decays like an inverse power function for large w,

(2.2) Frow) oxx w™ D ag w— +o00.

More precisely, f, has Pareto index a € [1, +00) if the moments

(2.3) M; = J Wi (w) dw

Ry
are finite for all positive s < a, and infinite for s > a. If all M, are finite (e.g. for a
Gamma distribution), then f,, is said to possess a slim tail.

According to empirical data from ancient Egypt until today [24, 21], the wealth
distribution among the population in a capitalistic country follows the Pareto law,
with an index a ranging between 1.5 and 2.5. Slim tails are typical for societies with a
highly equal distribution of wealth. Intuitively, one may think of socialist countries.

Surprisingly, the mathematical description of the stationary wealth curve f
attracted the interest of mathematicians many years before Mandelbrot works [43].
A description of this curve by means of a generalized Gamma distribution is due to
Amoroso [1] and D’Addario [28]. If one assumes for f,, a unit mean, the Amoroso
distribution reads

(@ — 1)"exp(—%1L)
]"(a) w1+a

(2.4) Ja(w) = . a>1.

Note that this stationary distribution exhibits a Pareto power law tail of order a for
large w’s.

2.2 - Wasserstein and Fourier based distances

Sinece Monte Carlo simulations produce distributions of point masses instead of
smooth curves, a good notion of distance between measures is important to quantify
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the convergence of numerical results to the continuous limit. In most of our appli-
cations, we will consider probability distributions possessing finite moments of some
order s > 1. Accordingly, for given constants ¢ > 0 and s > 1, define M, as the set
of (Borel) probability measures on R, satisfying

(2.5) J wf(w) dw = c, J w'f(w) dw < oo.
R, R,

Among other distances, the Wasserstein distance (of order one) of two density
functions f(w), fo(w) is an extremely useful instrument. This distance is given by

2.6) Wifi,fol = j IFyw) — Fo@)| do,
Ry

where the F'; denote the distribution functions,
2.7 F,(v) = in(w) dw (1=1,2).

Equivalently, the Wasserstein distance is defined as the infimum of the costs for
transportation [57],

2.8) Wifi, o]l == ingYJh) —w| dn(v, w).

Here /7 is the collection of all measures in the plane R with marginal densities f; and
f2, respectively. The infimum is in fact a minimum, and is realized by some optimal
transport plan m,,;. Convergence of densities f(f;w) to a limit f(w) in the
Wasserstein distance is equivalent to the weak convergence f(t; w)dw — f..(w)dw in
the sense of measures, and convergence of the first moments. Note that definition 2.8
is a particular case (p = 1) of the general expression of the Wasserstein distance of
order p > 0,

(2.9) W,lfi.fe) = in}f;J |v — w[’ dr(v, w).
S
There is an intimate relation of Wasserstein to Fourier metrics [38], defined by
(2.10) dlfi.fo] = sup (&R — AN, s> 0,
where f (t; &) is the Fourier transform of f(¢; x),

ft:0) = J e Cf(tv) do.

R4
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Note that the distance (2.10) is finite for some s > 1 if the distribution funetions have
the same moments up to [s], where [s] denotes as usual the entire part of s. The
interested reader can have an almost complete picture of the key properties of these
metrics by looking at the notes [16]. There, however, mostly the case of the
Wasserstein distance of order two (assuming finite second moment of the occurring
densities) is considered. In the economic framework, where the typical caseisp = 1,
for s > 1, the Wasserstein and Fourier distance are related [32] by

(2.11) W i, fo] < C(dy[fi, fo]) ¢ D/s@s=D
We sketch below the proof of this result.

Lemma2.1. Assume that two probability densities f and g have first moment
equal to one, and some moment of order s € (1,2] bounded. Then there exists a
constant C > 0, depending only on s and the values of the s-th moments of f and g,
such that

2.12) WIf,g1 < C(d,[f, g™ .
Conversely, one has
(2.13) dilf, g1 <WIf,gl,

even if no moments of f and g above the first are bounded.

Proof. To prove (2.12), we adapt the proof of Theorem 2.21 in [16], corre-
sponding to s = 2. Define

M = max J Vf(v) dw, J v g(v) dv
R, R,

Starting from the definition of the Wasserstein distance in (2.6), we estimate

(2.14) WIf,gl= J |F(v) — G()| dv

R,

R 00
< J |F(v) — G)| dv + R** J v HE@) — G)| dv
0 R

1/2 x
SHQ<JWm—G@FW) +B [0 P - G
R

R.
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where the parameter R = R(t) > 0 is specified later. By Parseval’s identity,

J [(F G dv = J (F=G)&)dé = j GO (F&) — )| de

R4 R R

< @[ g)" J 25D ge 4 4 j £2 e

[¢]<r [&]>r
= 25 — )2 Ndlf, g + 87!

< Cy(dslf, gD"*.

[10]

The last estimate follows by optimizing in the previous line with respect to » > 0. The
constant C; depends only on s > 1. This gives a bound on the first term in (2.14)

above. We estimate the second term, integrating by parts:

JW*Mm»waW%SJQ*W”w+G@UM
R R

00
R

_ %Tv (f@) +g@) do + (v (F@) +6w) )|
R

2M a
B0 (¢ (50 ).

The last expression is easily estimated by Chebyshev’s inequality, i.e.,

o0

Tlim (rFF(r) < 7llim (r*Prlv>7r]) < Tli vaf (w)dv =0,

since the s-th moment of f is finite. In summary, (2.14) yields
Wf.g] < C;RY2d,[f, g)"® + 25 ' MR,
Optimizing this over R yields the desired inequality (2.12).

The other inequality (2.13) is derived from the alternative definition (2.6) of

W f, 9], with n,,; being the optimal transport plan

dlf.g] = sup (é|1
#0

J e‘“’éf(v) dv — J e‘még(w) de

R, R,

< sup (él1 [ e = et dmt, w))
&£0 )

4
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< |1 _ ei@fw)é‘

vl > [v — w| dmop: (v, w)

< [
, €70

+

R

1— eix
:sup(| |>W[f,g].
reR |9€ |

In view of the elementary inequality |1 — exp (ix)| < |x| for « € R, this yields the
claim (2.13). O

Examples. Two Dirac distributions have Wasserstein distance W [d,, d;]
= | — y|. Likewise, di[dy,d,] = |& — y|, but notice that dy[d,,d,] = +oo for s > 1
unless & = y. More generally, a density f;(v) and its translate fo(v) = f1(v — z) have
Wasserstein distance W [fi, o] = |2| and Fourier distance di[fi,f2] = |2|. For com-
parison, if f; is supported in a small interval [— ¢, +¢], then || fi — fa]|;1 = 2 for all
|z| > &. Thus, both the Wasserstein and the Fourier based distances provide a more
sensible notion of “closeness” of densities than e.g. the classical L!-distance.

2.3 - Other Fourier based distances

One of the weak points of the Fourier based distance (2.10) is that, for a
given s such that 1 < s < 2, it is not known if the space of probability measures
M., with metric d; is complete or not. This unpleasant fact is discussed in [16],
together with a possible remedy. A further metrie, however, can be introduced,
which does not have the same problem, while it possesses most of the properties
of the metrie d,. This metric has been introduced in [4] to characterize fixed
points of convex sums of random variables with a small number of moments. For
s€(1,2),

(215) DJlfife] = j|zr<””m<a _hlde, s> 0.

Asprovenin [4], (M., Ds) is complete. A proof of the analogous of Lemma 2.1 would
be desirable.

Let f,(w) = l f (w) Then, the metric (2.15) is such that
wo\u

(2'16) Dsmygy] =1’ Dy[f, gl

The scaling property (2.16), which holds also for the metrie ds, is at the basis of most
of the applications of Fourier based metrics to kinetic models.
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2.4 - One-dimensional Boltzmann models

Here we consider a class of models in which agents are indistinguishable. Then,
an agent’s “state” at any instant of time ¢ > 0 is completely characterized by his
current wealth w > 0. When two agents encounter in a trade, their pre-trade wealths
v, w change into the post-trade wealths v*, w* according to the rule

(2.17) V= pv+ qw, W= qev + paw.

The interaction coefficients p; and ¢; are non-negative random variables. While ¢,
denotes the fraction of the second agent’s wealth transferred to the first agent, the
difference p; — g2 is the relative gain (or loss) of wealth of the first agent due to
market risks. We assume that p; and ¢; have fixed laws, which are independent of v
and w, and of time.

In one-dimensional models, the wealth distribution f(¢; w) of the ensemble coin-
cides with agent density and satisfies the associated spatially homogeneous
Boltzmann equation,

(2.18) of +f = Q+(f.1),

on the real half line, w > 0. The collisional gain operator @ acts on test functions
p(w) as

Q.(f. gl = j Q. (£, £)aw) duw
R,
(2.19)

2
2
R%

1
=35 J (p(") + pw"))f (W)f (w) dv dw,

with (-) denoting the expectation with respect to the random coefficients p; and ¢; in
(2.17). The large-time behavior of the density is heavily dependent of the evolution of
the average wealth

(2.20) M(t) = My(t) = J wf (¢ w) dw,

R,

Conservative models are such that the average wealth of the society is conserved
with time, M (t) = M, and we will generally assume that the value of M to be finite. In
terms of the interaction coefficients, this is equivalent to (p; + q2) = (P2 +¢1) = 1.

Non conservative models are such that M (¢) is not conserved with time. We will
restrict ourselves to the case in which (p; + q2) = (p2 + q1) # 1, so that the average
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wealth is exponentially increasing or decreasing
(2.21) M) = M(0)e!Prte)—1t,

From the point of view of its kinetic classification, the Boltzmann equation (2.18)
belongs to the Maxwell type. In the Boltzmann equation for Maxwell molecules, in
fact, the collision frequency is independent of the relative velocity [10], and the loss
term in the collision operator is linear. This introduces a great simplification, that
allows to use most of the well established techniques developed for the three-di-
mensional spatially homogeneous Boltzmann equation for Maxwell molecules in the
field of wealth redistribution.

3 - Analysis of conservative models

First, we shall give an overview on the available analytical results for con-
servative models, and indicate the derivation of these results on an intuitive, non-
rigorous level. The differences between pointwise conservative and conservative-in-
the-mean models are discussed. Subsequently, some mathematical details and
proofs are provided in Section 3.4.

3.1 - Pareto tail of the wealth distribution

We introduce the characteristic function

2

(3.22) S(s) = % (Z@f + q‘?>) -1,

i=1

which is convex in s > 0, with S(0) = 1. Also, S(1) = 0 because of the conservation
property (2.20). The results from [44, 32] imply the following. Unless S(s) > 0 for all
s > 0, any solution f(f; w) tends to a steady wealth distribution P, (w) = f..(w), which
depends on the initial wealth distribution only through the conserved mean wealth
M > 0. Moreover, exactly one of the following is true:

(PT) if S(a) = 0 for some a > 1, then P, (w) has a Pareto tail of index a;
(ST) if S(s) < 0 for all s > 1, then P, (w) has a slim tail;
(DD) if S(a) = 0 for some 0 < a < 1, then P, (w) = do(w), a Dirac Delta at w = 0.

To derive these results, one studies the evolution equation for the moments

(3.23) M= [ wrtdu,

R,



212 BERTRAM DURING, DANIEL MATTHES and GIUSEPPE TOSCANI [14]

which is obtained by integration of (2.18) against p(w) =

d

(3.24) p tM =Qlp] —

Using an elementary inequality for x,y > 0, s > 1,
(3.25) Ay <@y <@y 2 ey 2t y),

in (2.19), one calculates for the right-hand side of (3.24)

2
(326)  SM, < Q.lpl — My < SOM, +2°72 “(pigi ' + piqi) MM V%,

-1
Solving (3.24) with (3.26), one finds that either M () remains bounded for all times
when S(s) < 0, or it diverges like exp [tS(s)] when S(s) > 0, respectively.

In case (PT), exactly the moments M (f) with s > a blow up as t — oo, giving rise
to a Pareto tail of index a. We emphasize that f(; w) possesses finite moments of all
orders at any finite time. The Pareto tail forms in the limit t — oc.

In case (ST), all moments converge to limits M,(t) — M;, so the tail is slim. One
can obtain additional information on the stationary wealth distribution P..(w) from
the recursion relation for the principal moments,

22:( ) pqu kMk;Mg e S=23,...

1 i=1

,_.

S—

(3.27) —S()M; = %

=
I

The latter is obtained by integration of (2.18) against p(w) = w* in the steady state
of =0.

In case (DD), all moments M(¢) with s > 1 blow up. The underlying process is a
separation of wealth as time increases: while more and more agents become ex-
tremely poor, fewer and fewer agents possess essentially the entire wealth of the
society. In terms of f(¢;w), one observes an accumulation in the pauper region
0 <w < 1, while the density rapidly spreads into the region w > 1. The ex-
panding support of f(t;w) is balanced by a decrease in magnitude, since the
average wealth is fixed. This induces a pointwise convergence f(t;w) — 0 for all
w > 0. Such a condensation of wealth has been observed and described in several
contexts [42, 14, 15, 17] before.

An illustration of the solution’s behavior in the (DD) case is provided by the
“Winner takes all” dynamics, with rules

(3.28) v =v4+w, w=0.

In each trade, the second agent loses all of his wealth to the first agent. The solution
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for the initial condition f(0;w) = exp (— w) is explicit,
2 \2 2 t
(3.29) Ft;w) = <2Tt) exp (f 2Ttw> 57 Do)

Note that the average wealth is conserved at all finite times ¢ >0, so that
tlim My(t) = M1(0), but f, = dy has vanishing average wealth.

3.2 - Powntwise conservative models

The first explicit description of a binary wealth exchange model dates back to
Angle [2] (although the intimate relation to statistical mechanics was only described
about one decade later [42, 31]): in each binary interaction, winner and loser are
randomly chosen, and the loser yields a random fraction of his wealth to the winner.

From here, Chakraborti and Chakrabarti [18] developed the class of strictly con-
servative exchange models, which preserve the total wealth in each individual trade,

(3.30) v+ wt =v+w.

In its most basic version, the microscopic interaction is determined by one single
parameter 4 € (0, 1), which is the global saving propensity. In interactions, each agent
keeps the corresponding fraction of his pre-trade wealth, while the rest (1 — A)(v + w)
is equally shared among the two trade partners,

(3.31) V= v+ %(1 - Dv+w), w'=w+ %(1 — D +w).

In result, all agents become equally rich eventually. Indeed, the stochastic variance of
f(t;w) satisfies

1
(3.32) % J (0~ MPf ) dw = — 51— ) J (0 — MYF(t: ) oo,
R, R,
The steady state f..(w) = dy(w) is a Dirac Delta concentrated at the mean wealth, and
is approached at the exponential rate (1 — /2)/2.
More interesting, non-deterministic variants of the model have been proposed,

where the amount (1 — 1)(v + w) is not equally shared, but in a stochastic way:
(3.33) v'=v+ed -0 +w), w=w+A-ed-H+w),

with a random variable ¢ € (0,1). Independently of the particular choice of ¢, the
characteristic function

(3.34) S(s)= % (<u + o — D)+ ([1 — el — DF)+ [ + (1 — &)1 — JV)S) 1
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is negative for all s > 1, hence case (ST) applies. Though the steady state f., is no
longer explicit — for approximations see [52, 53] — one concludes that its tail is slim.
In conclusion, no matter how sophisticated the trade mechanism is chosen, one-
dimensional, strictly conservative trades always lead to narrow, “socialistic” dis-
tributions of wealth.

3.3 - Conservative in the mean models

Cordier et al. [27] have introduced the CPT model, which breaks with the
paradigm of strict conservation. The idea is that wealth changes hands for a
specific reason: one agent intends to invest his wealth in some asset, property etc.
in possession of his trade partner. Typically, such investments bear some risk,
and either provide the buyer with some additional wealth, or lead to the loss of
wealth in a non-deterministic way. An easy realization of this idea [44] consists in
coupling the previously discussed rules (3.31) with some risky investment that
yields an immediate gain or loss proportional to the current wealth of the in-
vesting agent,

1+2 1
(3.35) vt = (T—i—nl)v—i—Tw, w' =

(1%/1—1— nz)w—s—TAu

The coefficients 7, 5 are random parameters, which are independent of v and w,
and distributed so that always v*, w* > 0, i.e. 5y, 7, > — . Unless these random
variables are centered, i.e. () = (1) = 0, it is immediately seen that the mean
wealth is not preserved, but it increases or decreases exponentially (see the
computations in [27]. For centered #;,

(3.36) @ 4w)=QAQ+ E)w+ A+ ())w=v+w,

implying conservation of the average wealth. Various specific choices for the #;
have been discussed [44]. The easiest one leading to interesting results is ; = + 4,
where each sign comes with probability 1/2. The factor u« € (0, 1) should be un-
derstood as the intrinsic risk of the market: it quantifies the fraction of wealth
agents are willing to gamble on. Figure 1 displays the various regimes for the
steady state f., in dependence of 1 and x, which follow from numerical evaluation of
177144 s 1+ 4 s 1—-7\s

B30 Se=3|(5-w) + (Fprm) [+ (57) -1

Zone 1 is forbidden by the constraint u < A. In zone II, corresponding to low
market risk, the wealth distribution shows again “socialistic” behavior with slim
tails. Increasing the risk, one falls into “capitalistic” zone III, where the wealth
distribution displays the desired Pareto tail. A minimum of saving (1 > 1/2) is
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Fig. 1. Regimes for the formation of Pareto tails.

necessary for this passage; this is expected since if wealth is spent too quickly after
earning, agents cannot accumulate enough to become rich. Inside zone III, the
Pareto index a decreases from +oco at the border with zone II to unity at the border
to zone IV. Finally, in zone IV, the steady wealth distribution is a Delta in zero.
Both risk and saving propensity are so high that a marginal number of individuals
manages to monopolize all of the society’s wealth. In the long-time limit, these few
agents become infinitely rich, leaving all other agents truly pauper.

3.4 - Mathematical details

We will now give some details about proofs. One of the main tools is the use of the
Fourier transform. This idea, which goes back to the seminal work of Bobylev [9, 10],
is well-suited to treat collision kernels of Maxwellian type. In particular, the Fourier
representation is particularly adapted to the use of various Fourier metrics. An
auxiliary tool is the study of the evolution of moments.

34.1 - Evolution of Fourier metrics

According to the collision rule (2.17), the transformed kernel reads

338 QN =3 FneF@d + i @) ~FFo)

Assuming the initial distribution of wealth in M, ;, with s > 1, the initial conditions
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turn into

fo@ =1 and f{'0) =

Hence, the Boltzmann equation (2.18) can be rewritten as

5f (t 9

(3.39) +f(t;0) = <f<p1©f<q15> +F P20 (29) = Fpidf :9),.

Details about existence of solutions to equation (3.39) can be found in [44]. Let f; and
f> be two solutions of the kinetic equation (3.39), corresponding to initial values fi o
and fa0 in M, 5, with s > 1, and denote by fl , fz their Fourier transforms. Let s > 1
be such that dy(f10,/5,0) is finite. Then

0 (7O -H©) AO-HO  Heidfi@d - hp:idhqd),
a e B |

Now, since []?1(15; 8| <1and U?g(t; 8| <1forall £ € R, we obtain
‘ RDiOR@O) - F0:Of@id) .

1&I°
Qf> + <U/§(Qié)|
+

(3.40)

Fipid) — fapid)
Ipil®

F@:6) - falgid)

g<lf1<pii>| P

p§’>
+

D fl(é)—fz(é)‘@iJr s

¢

In terms of the auxiliary quantity

A©) f2(f)

h(t;
t:8) = B

the preceding computation shows that
S+ < o

Gronwall’s lemma yields at once that
(3.41) 1)l < exp {((p} +q7).. — Dt}loll -

This introduces into the game the quantity S(s) we defined in (3.22). Since
1R®)|| o = dslf1(®), ()], we obtain from (3.41)

(3.42) ds[fi®), 2] < exp{S(s) - t}ds[f1.0,/20]-
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In particular, if S(s) is negative, then the ds-distance of /1 and f> decays exponentially
in time. We remark that, thanks to the scaling property (2.16), the same result holds
for the metric D;. Thus,

(3.43) Di[f1®).f2()] < exp{S(s) - t}Ds[f1,0,f20].

Theorem 3.1. [44] Let fi(t) and fo(t) be two solutions of the Boltzmann
equation (2.18), corresponding to inttial values fio and foo in Mpyg,, v > 1. Let s > 1
be such that dglfi0,f20] ts finite. Then, for all times t > 0, (3.42) and (3.43) hold.

In particular, if S(s) is negative, then the Fourier based distances of fi and fo
decay exponentially in time.

Putting fi0 = o0 = fo in (3.42), and using s = 1 yields

Corollary 3.2. If fo is a nonnegative density in My,, v > 1. Then there
exists a unique weak solution f(t) of the Boltzmann equation with f(0) = fy.

3.4.2 - Evolution of moments

In Theorem 3.1 about the large-time behavior of solutions to (2.18), the essential
quantity S has been introduced. Below, we prove that the values S(s) also control the
asymptotic behavior of moments. In fact, if S(s) is negative for some s > 0, then the s-
th moment of the solution,

mo = | vrevde
Ry

remains bounded for all times. On the other hand, if S(s) is positive for some s > 1,
then M,(t) diverges exponentially fast as ¢t — oco. We exploit this information to
prove decay properties to the steady state.

To start with, we note that conservation of the total wealth allows to conclude that
at least all moments of order s < 1 remain uniformly bounded. In fact, by Hélder’s
inequality,

s 1-s
J vif(w)dv < ( J vf(v)dv) : ( Jf(v)dv) =Mj, 0<s<l.
R, R, R,

Now, let s > 1 and suppose that the initial density fy(v) satisfies

(3.44) M (0) = J Vo) dv < co.

Ry
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Then, putting ¢(v) = v* in the weak form (2.19), we obtain

2
(3.45) % J VIt v)dv = % < J (; (piv + qaw)* —v° — w8>f(v)f(w) dv dw>+.
R. z 7

In the following, we establish upper and lower bounds for the right-hand side of
(3.45). These bounds rely on the following elementary inequality.

Lemma 3.3. For arbitrary non-negative real numbers a and b, and s > 1,

(3.46) @’ + 05+ 0,(@* b+ ab® ™) < (@ + b)° < a’ + b+ Oy b + ab® ),

S (s>3)
s 2<s<3)
with 6, = ¢ 2535 2<s<3) and O;= .
25-3s  (otherwise)
0 1<s<?2)

Remark. An investigation of the limit behavior as a \, 0 and b > 0 makes
clear that 6; = 0 for 1 < s < 2 cannot be improved in general.

Proof. By homogeneity, it suffices to prove the inequality for a + b = 1.
Define for s > 1,

#(s) :=a’ + b° + sab.

A calculation yields ¢(@2) =¢@3) =1, independently of a and b=1-a.
Furthermore, ¢ is convex in s since
¢'(s) = a’In*a + b°In®b > 0.

Hence ¢(s) < 1 if and only if 2 < s < 3. Observe that a*~2 + b2 is concave w.r.t.
a=1-b¢e(0,1) for 2 < s <3, and convex for all other s > 1; the expression at-
1

tains its extremal value 225 at ¢ = b = > Hence
<2 5ab (2<s5<3)
@b+ ab ! = aba’ 2 + b
> 23-%ab  (otherwise)
Thus we obtain, for 2 <s <3
@ +b° 4+ 25 3s(a* o 4+ ab® ) < ¢(s) < 1= (a + b)’,

and with reversed inequalities for 1 < s <2 or s > 3.
Now let s > 1 be fixed and consider for a < [0, 1]

fila) := a® + b* + s(a*1b + ab* 1),
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with b = 1 — a. Observe that f;(0) = f;(1) = 1, and furthermore
fl@) = s(s — 1)(@*2b — ab*?),
1
so that f; has a= 5 as the only critical point in (0,1). For s < 3, one has

fol@) = (s + 1)217% > 1, so @ is a maximum point and hence f;(a) > 1 for a € [0, 1]; for
s > 3, it is a minimum point and f;(a) < 1. Consequently, for s < 3,

a® +b° +s@ b+ ab* ) =fi(@) > 1= (a+b).

The reversed inequality holds for s > 3. O

Using the upper bound in (3.46), estimate
(P + qaw)* < piv* + g’ + O, g w + pigi oY)

under the integral in (3.45), leading to

1
(3.47) %Ms(t) < §< J (] +p5 — 0° + (g} + 5 — l)ws)f(v)f(mdvd@f)>
R2
@8 s—1 s—1 s—1
+?< J (Pi g1+ 95 g w

2
R?

+ (p1g ™ + p2gs Howt ) ()f (w) dv dw>

=S(M(t) + Os(pi ' qi + pigi ), - Ma(®) - J w* L f (w) dw.
R,

Recall that the total wealth jvf(v) dv = M; is conserved in time. Further, by
Holder’s inequality, it follows that

J w L (w) dw < < J wf(w) dw> 17%.

R, R,

Hence, we obtain

-t
(3.48) %Ms(t) < S()M,(t) + 6,8 ()M - ( J V() dv> ,
R,

where

(3.49) S = (pf 'gi +pigi ). < P+, = S() + 1.
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In particular, if S(s) is a finite number, then so is $i(s). In this case, the s-th moment
grows at most exponentially, with rate S(s), if it was finite initially. Moreover, if
S(s) < 0, then the s-th moment remains uniformly bounded for all times. In fact, an
upper bound on the s-th moment is determined by the solution of the associated
ordinary differential equation

§=8-y+ OKEMy'

with initial condition %(0) = M;(0). The solution is explicitly given by

A S

v = | (.0 e {i500) "+ g (e { {50} 1)
Notice that the first term in the square bracket vanishes for ¢ — oo if S(s) < 0, so
that the limiting value depends on the initial condition fy only through the total

wealth M;.

By the same reasoning as above, we construct a bound from below on the time-
derivative of the integral. For this, we use the lower bound given in the elementary
inequality (3.46). Replacing the respective expressions under the integral, we obtain

d 1 A ) . '
LM > J (05 + D5 — 1) + (@ + @& — L) f@)f ) dv daw
R2
0
+ 5 < J ((p’i"lql +p3 v w

2
RZ

+ g+ pzqé‘l)vws‘l) £ (0)f (w) dv dw>

=S()M(t) + O, K(s)M - J w L (w) duw.

R.

We use Hélder’s inequality to estimate

s—1
J W (w) dw > ( J wf (w) dw) = M

R, R,

By Gronwall’s inequality, a lower bound is given by

0, - Si(s) - M3

M) 2 My(0) - exp {t-S©)} + =5

(exp{t-S(s)} —1).

We conclude that if S(s) > 0, then the moment M; diverges exponentially in time.
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In the special case that S(s) = 0, similar but simpler arguments give that the
corresponding moment remains either bounded (iff X(s) = 0) or diverges, but only at
the algebraic rate t°. Finally, if S(s) = +co, an easy argument shows that the s-th
moment of f(t; v) must be infinite for all positive times.

Theorem 3.4. [44] Consider a solution f to the Boltzmann equation (2.18).
Let s > 1 be such that M;(0) = [ v*fo(v)dv < <.
R,
1. If 0<S8(s) < oo, then the s-th moment diverges exponentially fast as

t — oo

0:8(s)
S(s)

M, (0) + M5 + o(1)

(3.50)
0,8 (s)
S(s)

M) {M%(O) +

< plt-5)] 'Ml] Foll).

2. If S(s) < 0, then the s-th moment remains uniformly bounded as t — oo:

O:8(s) ¢ O,8(s)
(3.51) ——— - Mj +0Q) < M) < <—|S(s)|

S| ) -M7 + o(1).

3. If S(s) = 0, then the s-th moment either remains bounded or diverges at an
algebraic rate:

0:8(s)
s

) M+ o) < £ My(t) < (983:(8)

(3.52) ( ) .-Mf +o(1).

4. Finally, if S(s) = +oo, then the s-th moment is infinite for all t > 0.

3.4.3 - Existence and tails of the steady state

The analysis of the previous sections shows that the long-time behavior of solu-
tions is essentially determined by the quantity S. For this reason, let us investigate
this function in further detail.

First recall that for an arbitrary non-negative number p, the exponential s+— p* is
convexin s > 0. Hence S(s), which is the average of convex functions, is convex on its
domain. By the dominated convergence theorem, S(s) is well-defined at least for
0 < s <1, but possibly S(s) = +oo for all s > s, > 1. Since S(1) = 0, convexity
leaves only three possibilities for the behavior of S:

1. S(s) is non-negative for all s > 0.
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2. S(s) is negative for some s € (0, 1), and positive for all s > 1.

3. S(s) is negative for all 1 < s < s, and positive for all s < 1 and all s > 5; here
either s = +o0, or S(s) = 0, or S(s) = +oo for s > s.

If S is differentiable at s = 1, then the first case corresponds to S'(1) = 0, the
second to S'(1) > 0, and the last to §'(1) < 0. These four cases are now discussed in
detail.

In the first case, no information about the existence of a long-time limit can be
extracted.

In the second case, » := —S(s) > 0 for some s € (0,1). Observe that f, = d,
corresponding to a mass concentrated in v = 0, trivially constitutes a stationary
solution of the Boltzmann equation. Recall that the initial condition f; is a probability
density of finite first moment. Since s < 1, it follows K := ds(fp,f.) < oco. By the
contraction estimate, ds(f(?),f.) < Kexp(—#t) — 0 as ¢ — oo. Thus, the solution
f() converges weakly to f.. It is worthwhile to observe that, by Theorem 3.1, all
moments M (t) with s > 1 diverge as t — oo. So, although each f(¢) for £ > 0 has the
same (positive and finite) first moment as fj, one cannot invoke Prokhorov’s theorem
to conclude that also the weak limit £, has positive first moment.

The third case is the most interesting one. Choose some s € (1,2) with s < s; then
r:= —8(s) > 0. Assume that the initial datum of f possesses a moment of order
S > s. In view of the completeness of (Myy s, D) when s € (1,2) [4], the existence of
the long-time limit can be concluded directly from the contractivity of the kinetic
equation in Ds-norm (cf. Theorem 3.1).

The same result can be achieved by means of the metric ds. In fact, f(¢; v) has the
Cauchy property in dg; notice that dg[f (), fo] is always finite since s < 2 and the first
moment (mean wealth) is conserved under evolution. Moreover, as we required
s < 8, there exists a s’ with s < s’ < min (s, S); by Theorem 3.4, the moment of order
s’ remains uniformly bounded. It follows that f(f) converges in ds to a limit dis-
tribution f, (v), which is normalized and has the same first moment as f(t).

This convergence implies that f.. is a steady state for the kinetic equation (2.18).
Indeed, denote by f.,(¢) the solution to (2.18) with initial datum f,,, then Theorem 3.1
gives

Al foc (), foo] < dslfoc @, F & + D) + dslfE + 1), /]
< e "dy[foo, S + dslf t + T, fo ).

The last expression can be made arbitrarily small by choosing 7' large enough, so that
foo) = foo for all £ > 0. Infact, £ is the only steady state with the respective value of
the first moment; for if f7_ is another steady state with the same first moment, then
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dlfs, [ ]1s finite, and so, invoking Theorem 3.1 again,
dslfoorfoo] < €7 dslfoo, 2],

which forces f, = f... Finally, consider a solution f which has arbitrary moments
bounded initially. Theorem 3.4 gives a time-uniform bound for moments of order less
than s. Since convergence f(f) — f., in ds implies weak* convergence of the asso-
ciated measures, it follows that f., has finite moments of all orders less than s. On the
other hand, no moment of order larger than s can be finite. To see this, simply apply
Theorem 3.4 to the steady state solution f,,(f) = f.. to derive a contradiction.

We summarize the results of this section.

Theorem 3.5. [44] Let f(t; v) be the (unique) weak solution of the Boltzmann
equation (2.18), which has nitially finite moments up to order S > 0. Further
assume that S(s) < 0 for some s € (0,S). Then f converges exponentially fast in Dy
(respectively in dy) to a steady state f.,

(3.53) Dlf®),foc] < Dslfo, foolexp{—[S(s)|t}.

If s < 1, then f, is a Dirac distribution centered at v = 0, and there are no other
steady states. If s > 1, then f., has mean wealth equal to M, and it is the only steady
state with this mean wealth. Moreover, if S(s') < 0 exactly for 1 < s’ <5, possibly
with s = 400, then f has finite moments of all orders less than s, while moments of
order larger than s are infinite.

3.4.4 - Regularity of the steady wealth distribution

Even if the most important property of the steady state distribution is its be-
havior for large values of the wealth variable, which clarifies the eventual formation
of Pareto tails, other characteristics can be extracted by a direct investigation of the
collision integral. In particular, it is surprising that in most cases one obtains that the
steady state is smooth.

Theorem 3.6. [44] Assume that there are positive numbers r and é such that
(3.54) pi+q;>14+0" as.

Assume further that S(s) < 0 for some s > 1, so that a non-trivial steady state f to
the kinetic equation (2.18) exists. Then either [, is a Dirac distribution centered at
v =M, or fy is a smooth function and belongs to the r-th Gevrey class, i.e.

(@] < exp (—pulé]")  for|& |>p,

with suitable positive numbers p and yu.
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Remark 3.7. Since the mean wealth is preserved, i.e. (p; +q;), =1, it fol-
lows that r < 11in (3.54). Notice that condition (3.54) imposes no serious restrictions
on the distribution of the interaction coefficients. For instance, it allows any
probability measure which is compactly supported in the interior of the first
quadrant of the p; — q;-plane.

The proof of Theorem 3.6 is done on the level of Fourier transforms, and is
divided into a series of Lemmas. The first is concerned with the behavior of £, near
the origin:

Lemma 3.8. Under the hypotheses of Theorem 3.6, either f, is a Dirac dis-
tribution, i.e. |f| = 1, or there exist positive numbers p and x s.t.

(3.55) [f(@)] < exp(—x&)  for |E]<p .

Proof. The following proof uses no properties of f, other than the finiteness of
the first moment. First assume that f.. also has finite second moment. Then f, is
twice differentiable at £ = 0, and

Fl® = 1M~ Q2 + @),

where M and @ denote the first and second moment of f,, respectively. This means
that

f@F =1-@—MHE +0o(&).
Now either @ = M?, which implies that f. is concentrated at ¢= M, or
K= i(Q — M?) > 0 makes (3.55) true for some small p > 0.
In the case that the second moment of f, is infinite, we write
7@ = [ e 0o = 1= [ (1= cos(@0)dfto) — i [sn oMdf 0,
R R R
so that, with the obvious meaning of H; and Hy,
[Fe@F =1 2H\(&) + H\(&F + Ha&)
The elementary inequalities 1 — cosa < |x| and |sinx| < |¢| for € R imply

Hi® < |4 jvdfoo<v> — Mg, H)| < I Jvdfoo(v) = MIé.

R R
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On the other hand, with the elementary inequalities
lfcosacZ%xz for |x| <1, 1—cosx>0 foruxecR,

one obtains for arbitrary £ € R

H >€2 J 2d o 2
123 vdfos(v) = A"

|év|<1

Here A(¢) is a positive, non-increasing function with limg_.g A(£) = +o0, since the
second moment of f,, diverges. Choosing p > 0 so small that A(p) > 2M?, it follows
that

f@F <1-2M°  for [¢] < p.
Hence (3.55) holds with « := %M 2, possibly after diminishing p suitably. O

From now on, we will make use of a method first introduced by Bobylev and
Cercignani in [12]. Gevrey regularity for the elastic Boltzmann equation for Maxwell
molecules has been recently posted in [30]. We introduce the fixed point operator

Frl® if €] < p,
wpidw(q:O), if |&] > p.

on bounded functions y : R — C. Notice that R is closely related to the Fourier
transform of the collision kernel. Furthermore, for 1 > 0, define K, as the set of
functions y with w(&) = £, (&) for |£| < p, satisfying the estimate

(3.56) (O] < exp(—pul¢]") for [¢] > p.

Here p is the constants from Lemma 3.8 above. Eventually, we wish to prove that
foo € K, for a suitable x > 0.

Rlyl©) = {

Lemma 3.9. Under the hypotheses of Theorem 3.6, and assuming that f is
not a Dirac distribution, there exists some 1 > 0, depending only on p and x from
(3.55), such that R maps K, into itself.

Proof. Lety € K,and¢ € Rwith|&| > pbe arbitrary. Lemma 3.8 assures that
the estimate (3.55) holds with y in place of f,.. We show that

(3.57) ¢ RIYAQ] < (@ - i) - [p(gid)]), <1.

To this end, we prove that the term inside the expectation value is less/equal one a.s.



226 BERTRAM DURING, DANIEL MATTHES and GIUSEPPE TOSCANI [28]

We distinguish four cases:
1. If both p;|&| > p and g;|&| > p, then the hypothesis (3.54) yields

e )] - w(qid)| < e Pl —ra I < gmildl T <
2. If both p;|é] <p and g¢;|é| <p, then we conclude from (3.54) that
P} +ai > 2777, s0
e ;&) - [w(qid)| < eI PP g1 < oIl G2
provided that p < 21-2/7p% 7 . .
3. Now assume that p;|&| < p while ¢;|¢| > p. Using (3.54) once again, one finds

< (i) - ()| < Ml PP —naflel < gt~ —mpIe

Obviously, the last expression is less than one if p; < J. Assume now that
p; > 0. Since |&| > p, one has p;|¢] > Jdp and hence the exponent can be esti-
mated by

wpl1E|” — wp?|E? < pllE (u — 10* PP,

The last expression is negative provided that x < (5/))24 ‘K.

4. The last case, p;|&| > p and ¢;|&| < p, is treated in the same way and yields the
same condition on u.

In summary, (3.57) holds if x is the minimum of 2-2/7p2 "k and (Jp)* " k. O

Lemma 3.10. Under the hypotheses of Theorem 3.6, and assuming that f. is
not a Dirac distribution, f, € K, with the u from Lemma 3.9 above.

Proof. Let yy(&) :fw(f) for |&] < p, and (&) =0 for || > p. Define in-
ductively the sequence y,,.; = Rly,]. By Lemma 3.9, each y,, belongs to K, C K.
Moreover, by the same estimates that lead to Theorem 3.1, one proves that R acts as
a contraction on Kj in the following sense. Clearly R maps K| into itself, and any two
functions v, ¢ € K satisfy

|RIVIE) — RIpl©)| < sup ( (&) — p(&)|
— ‘é/lS

(3.58) )i+ )

& 240
The supremum on the right-hand side is obviously finite since y(¢') = p(&') = foo(&)
for |£'] < p. By hypothesis, S(s) < 0, so 0 < (pf +¢f), <1, so (3.58) is a genuine
contraction estimate and thus implies local uniform convergence of the sequence y,,
to a limit function y__. Local uniform convergence in combination with the pointwise
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estimates (3.56) is more than enough to invoke Lebesgue’s dominated convergence
theorem and conclude

(3.59) Voo O = (oo iV (i), for [E] > p,

i.e. ., is a fixed point of the operator R. It is, in fact, the unique fixed point of R on
Ky because of its contractivity (3.58). But clearly f., € Ky is one fixed point. So
Jo =W € K, O

By definition of K,,, Theorem 3.6 now follows immediately from Lemma 3.10.

4 - Nonconservative models

A crucial assumption made for the models considered so far is the conservation
(at least in a statistical sense) of the average wealth per agent, i.e. the first moment of
the wealth distribution, over time. Wealth conservation sounds plausible on a mi-
croscopic level, whereas on a macroscopic level, it is arguable that the apparent
conservation is in reality a mixture of two effects. On one hand, wealth is created
through the production of goods, interests on savings etc. On the other hand,
(monetary) wealth is lost through inflation.

Kinetic models which take these two effects into account, were proposed by
Slanina [54], and were further developed by Pareschi and one of the authors [48]. In
order to incorporate the creation of wealth, the respective trade rules are designed
to “reward” agents for trading activity. In the CPT model (3.35), this can be
achieved by assuming that the market risk satisfies (;) = ¢ > 0. In other words,
the risky investment is more likely to create additional wealth, than to destroy
existing wealth. This is a genuine motivation for agents to engage in trades! The
effect of inflation is modelled by a time-dependent rescaling f(t; w)~» g(t; v) of the
wealth distribution,

(4.60) gt;v) = elft,w), w= e,

chosen so that the mean wealth of g(t;v) is kept constant. The monetary unit is
adapted in a way that people stay equally wealthy on the average. The Boltzmann
equation (2.18) is respectively modified by an additional drift term,

B )
(4.61) i Q+(g,g)—g+e%(vg)-

Solutions to this equation have been proven [48] to converge to a steady state g.,
which may or may not have a Pareto tail. Again, the evolution of moments can be
analyzed, and leads to a classification of the tail size in terms of properties of the #;.
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4.1 - Slanina’s model

Motivated by the analogy with a dissipative Maxwell gas, F. Slanina [54] in-
troduced an increasing wealth model where
(4.62) pr=4A q=1—A+¢ pe=1—A+e @qo=2..

In (4.62), the growth parameter ¢ is a fixed positive constant, which implies that the
total wealth has increased after the trade,

(4.63) v 4wt =0+ +w).

The aforementioned model is a particular case of the general mixing model in-
troduced in [5], where the collision rules read

(4.64) v =pv+qw, w'=qu+pw; p>q>0.

Similarly to the p; and g; in (2.17), the interaction parameters p and q determine the
agents’ behavior in binary trades. It suffices to consider constant p and ¢ instead of
random coefficients. Choosing ¢(v) = v in (2.19) shows that

(4.65) M) = J vf (¢;v) dv = M(0) exp{(p + q — 1)t}.

R

Therefore, unless p + ¢ = 1, which implies that the model is pointwise conservative,
the mean wealth is increasing, if p + q > 1, or decreasing, if p + q < 1, exponentially
in time. In both cases, however, stationary solutions do not exist. However, the large-
time behavior of the model can be described by self-similar solutions.

4.1.1 - Self-similar solutions

The standard way to look for self-similarity is to scale the solution according to
the rule indicated in (4.60). More precisely, define the rescaled solution g by

(4.66) g(t;v) = M@ (t; M(tw),

which implies that fvg(t; v)dv =1 for all ¢ > 0. Moreover g = g(t;v) satisfies the
equation

wen) o | gontvro—pq-1 | $0) 2 (ug) do
R, R,

= | g@gw)(@(") — ) dv dw.

RS



[31] ABOLTZMANN-TYPE APPROACH TO THE FORMATION OF WEALTH DISTRIBUTION CURVES 229

Choosing ¢(v) = e, with s € R, gives the representation of equation (4.67) in
terms of the Laplace transform g of g,

G . N
(4.68) 3¢ TSP 4= D5 =g(ps)(gs) — §(s).

Steady solutions to equation (4.68) satisfy

(4.69) s(p+q—1)

g .. _
5 9(ps)g(gs) — g(s).

Suppose /p + 1/q = 1. Then, since

pt+g—1=-2p\/2q,

direct computations show that the function
(4.70) Goo(s) = (1 + \/fz_s)a“g

solves (4.69).

4.1.2 - A Fokker-Planck approximation

The steady solution (4.70) is independent of the values of p and q, provided that
/P ++/q = 1. This gives us the possibility to obtain its analytic expression without
resorting to the inverse Laplace transform. Let us use a second order Taylor ex-
pansion of ¢(v*) around v

/ 1 "~
() — p(v) = ((p — v + qu)¢' (v) + 5 ((p— v+ qw)2¢ @),
where, for some 0 < 0 <1,
v=00"+1-0w.
Inserting this expansion in the collision operator, we obtain the equality

% J d)gt;v)dv + ¢ J ¢ W) — Dg(v) dv

R, R.
1 1
=5 J g(v)((p - 1)21)2 + (]2w2 +2(p — l)qvw)gb W) dv + R(p, q),
R,
where

(4.71) R(p,q) = % J ((p— v+ qw)z(gé”(i)) — ¢"))g()g(w) dv dw.

2
R2
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For small values of the parameter g, let us set
(4.72) t=qt, h(t;v) = gt;v),

which implies that k(v, 7) satisfies the equation

% J dW)h(z;v) dv + J ¢ () — Dh) dv
R, R,
(4.73) 2
=5 [ 10w i+ .o,
R,

where the remainder R is given by

1 p 1
Ri(p,q) = 5 J (qwz +2(p — Dow)¢" (v) dv + 6R(p, Q).
Ry

Since equation (4.73) coincides with the original Boltzmann equation, if p and q sa-
tisfy the condition /p + /g = 1, the function (4.70) remains a stationary solution. On
the other hand, under the same conditions on the parameters,p = (1 — \/(j)2 implies
that

12
(4.74) lim Py
-0 q
Then, equation (4.73) is well-approximated by
(4.75) % J d)h(t;v) dv + J ¢ ) — Dh@)dv = 2 J hw?d" (v) dv.
Ry Ry Ry

Equation (4.75) is nothing but the weak form of the Fokker-Planck equation

oh >* 0
(4.76) 5 Zw (v*h) + o (v — Dh),
which admits a unique stationary state of unit mass, given by the I'-distribution

(14, 27]

1
eXp(— _)
(4.77) P =\ 2V

Vor o2
This stationary distribution exhibits a Pareto power law tail for large ¢’s.
From the asymptotic equivalence of the Boltzmann equation (4.67) with the
Fokker-Planck equation (4.75), and from the invariance of the steady state, we can
conclude that P..(v) has Laplace transform g(s), and for this reason is a steady state
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of the Boltzmann equation in case \/p + ,/q = 1. In this case, however, the quantity
p + q — 1, which can produce exponential growth of wealth (when positive), or ex-
ponential dissipation of wealth (when negative), is negative. This is quite remarkable
since it shows that this uneven distribution of wealth which characterizes most
western economies may not only be produced as the effect of a growing economy but
also under critical economical circumstances. This simple example, in addition,
shows that the old intuition of Amoroso [1] about the shape of wealth distribution was
exact.

4.1.3 - Fokker-Planck equations

Apart from an investigation of moments, the Boltzmann equations (2.18) or (4.61)
are hard to analyze, even in the stationary regime. The method of the previous
section provides a useful way to generate from the kinetic equation a Fokker-Planck
equation, i.e. a parabolic differential equation of second order, which is better ac-
cessible.

This asymptotic procedure, which has been used in Section 4.1.2 in the case of
nonconservative economies, still applies to conservative (in the mean) models. Consider
the CPT model (3.35) with saving propensity 4 = 1 — % and market risks L7

(4.78) v =1 = P+ ppo + frw,  w =1 — O+ fyew + frv

where f > 0 is a small parameter, and #; and 7, are two equally distributed, centered
random variables with o2 := (11%) Expanding the collisional operator in terms of f3,

Q. (f.N)lg) — j o) d

R,

_ J (¢ @B — ) + il

2
RZ

A WU )+ B + 0 ff ) dvdu

= J v () (— M - v)f @] + 2 gﬁ [v2f(7))]) dv + 0.

R,
Finally, increase the collision frequency by rescaling ¢~ t/f%. In the limit § — 0, the
Boltzmann equation turns into the Fokker-Planck equation

0 a? &2

0
2
Uf]+%[(U—M).f]7
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which possesses an explicit stationary solution of Amoroso type [1]
2M >
— —(2+2/0%)
(4.80) S @) = C, 11 €xXp (— sz) CarZial

The solution f, constitutes an approximation of the steady state of the respective
(kinetic) CPT model for sufficiently small 5 > 0 [48]. For instance, in agreement with
results on the CPT model, more risky trades (larger o) induce fatter Pareto tails
(decreasing index a = 1 4 2/52).

4.2 - Large-time behavior of nonconservative economies

The analysis of Sections 3.4, can be easily extended to equation (2.18), even in the
case of nonconservative trades. In particular, Theorems 3.1 and 3.2 remain valid, and
insure the existence of a unique solution to the Boltzmann equation for the density f.
The real problem, on the other hand, is related to the scaled density g(t; w), which
satisfies equation (4.67).

4.2.1 - Convergence to self-similar solutions

In consequence of the scaling property (2.16)

10 =9(375 )

from (3.42) we obtain that the solution to equation (4.67) satisfies the bound

_ 018 — 9240 /1
(4.81) ds[g1(®), 921 = 3161[1;) = (M(t)

ER ) dulhto). A1

It follows that, if g1(¢) and go(t) are two solutions of the scaled Boltzmann equation
(4.67), corresponding to initial values fi o and fo o in My 5, for some 1 < s < 2, for all
times ¢ > 0,

(4.82) ds[g1®), 92O < exp{[(P* + ¢’ — 1) — s(p + q — D]t}ds[fr0./20]-
Let us define, for s > 1,

(4.83) Rys$)=p"+¢" —1-s(p+q-1).

Then, the sign of R, , now determines the asymptotic behavior of the distance
dslg1(?), g2(t)]. We give below the main result which characterize the sign of the
function (4.83).
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Lemma 4.1. There exists some 5 € (0,400] such that Ry, (s) <0 for all
1<s<s Ifp+q>1, but both p,q < 1, then s = +oo, while s 1s finite 1n all other
cases.

The main consequence of Lemma 4.1 is the following theorem.

Theorem 4.2. [48] Let g1(t) and g2(t) be two solutions of the Boltzmann
equation (4.67), corresponding to initial values fio and fop in My for some
1 < s <2 There exists a constant 5 > 1 such that, if 1 < s < s, then

(4.84) dslg1®), 921 < exp{—Cit}dslfi0./20]

Sfor all times t > 0. The constant Cs = —R,, 4(s) is strictly positive, so that the dis-
tance dg is contracting exponentially in time.

Existence and uniqueness of the stationary solution to equation (4.67) follow
along the same lines of Section 3.4, using now as convex function R, , instead of S.
The main result is now stated in the following theorem.

Theorem 4.3. [48] Let s > 1 be such that Ry, ,(s) <0, and let g..(v) be the
unique stationary solution (of given mean wealth M > 0) to the Boltzmann
equation (4.67). Let g(t;v) be the weak solution of equation (4.67) corresponding to
the mitial density fo € My s. Then

J V(t;v) dv < ¢; < 00,

R

with a time-uniform constant cs depending only on p and q. Moreover, g(t;v) con-
verges exponentially fast in Fourier metric towards stationarity,

(4.85) dslg(t), goo] < dilfo, goclexp{—|R ()|t}

where Ry, ,(s) has been defined in (4.83).

Depending on the values of the mixing parameters p and g, the stationary solution
0 may have overpopulated tails. The Fourier transform of g, satisfies

%=
o

In the following, let s € (1,2). We would like to decide if the stationary solution g,
has afat tail of Pareto index 5. More restrictively, we ask if g., belongs to every M

(4.86) —(p+q—DE—7 + G (©) = G PE)g(g0).
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for s < 5, but not to M. If this is the case, then its Fourier transform satisfies
(4.87) (&) =1 =i + AIEF + o(|Z).

Substitution of the expansion (4.87) into equation (4.86) shows that the coefficient of
the power |¢[* is AR, 4(5). Thus, the term A|¢|* can appear in the expansion of §(&) as
soon as R, ,(s) = 0. As before, tails in the stationary distributions are present in all
cases in which there exists a s € (1,2) with R, ,(5) = 0. With slight modifications, the
argument also works for 5§ > 1. Thus, the question of existence of a fat tailed steady
state is answered by Lemma 4.1.

To finish the discussion, we mention that the passage to the Fokker-Planck
equation can be made rigorous.

Theorem 4.4. [48] Let an initial condition fo € My s be given, with M > 0
and s > 1. Consider the corresponding family of solutions h'9(t) to the Boltzmann
equation (4.73) for the scaled densities h'9(t;v) = g9(t; v), with T = qt. The super-
wmdex (q) refers to the mixing parameter ¢ > 0, and

(p—1)? = Jq,

for some fixed J. > 0. Then, as ¢ — 0, the solutions h'?(t;v) converge weakly to a
limit h(t; w). The latter constitutes a weak solution of the Fokker-Planck equation
oh A 2 0

o (V*h) + — (= Dh).

(4.88) =

4.2.2 - Regularity of self-similar solutions

The Fourier transform of the steady solution g, of the scaled Boltzmann equa-
tion (4.67) solves (4.86). The regularity of g., can be recovered from the results of
Section 3.4.4 by rewriting equation (4.86) in an interesting way, which has been
proposed by Bobylev and Cercignani [12]. With the definitions

r:=1/(p+q—-1 and Fyl&) = pw(pdy(qd),
equation (4.86) takes the form

(4.89) 171G+ F ) — §uc(&) = 0.
Equation (4.89) can be rewritten as

4 5.0 = — - Flg
(4.90) d_é(é 0x(8) = R Flg..1(0).

In analogy to Section 3.4.4, we shall represent g,, as solution to a fixed-point
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equation,
(4.91) Joo = Rlgoc],

where the integral operator R is now defined by

oo [o.¢]

+ [ Flyln) Fly](z&)
Rly1©) :z?"éJ o] dﬂ:TJ s}

.

S

dr.

The function 6 with 0(x) = —— for > 1, and 0(c) = 0 for t < 1 is a probability
T
density function,

J () dr = JTL; dr = 1.

R* 1

Therefore, recalling the definition of F, the fixed point equation (4.91) takes the form
(4.92) GO = (G (PG GO)),

where now p = @p and ¢ = Oq are random variables and @ is distributed on R ; with
density 0(t). Thus, the results of Section 3.4.4 apply. In particular, since & > 1,
condition (3.54) is always satisfied for some r > 0.

Theorem 4.5. Let r > 0 be such that the mixing parameters satisfy condi-
tion (3.54). Denote by 9. the non-trivial steady state to the kinetic equation (4.61) of
given mean M > 0. Then g is a smooth function and belongs to the r-th Gevrey
class, i.e.

19O <exp (—pl]")  for €] > p,

with suitable positive numbers p and yu.

5 - Kinetic models for groups of traders

In this section we propose a generalization of the CPT model, where agents from
n different countries or social groups of individuals trade with each other. These
groups shall be identified with countries or social classes inside a country. We will
adopt the hypothesis that all agents belonging to one group share a common saving
rate parameter. This hypothesis can be further relaxed by assuming that the saving
rate is a random quantity, with a statistical mean which is different for different
social groups. Here we describe the model proposed in [35] which is based on CPT
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conservative model. A related problem, based on increasing wealth, has been re-
cently introduced and numerically studied in [25].

5.1 - The analogy with gas mixtures

This can be seen as the analogue to the physical problem of a mixture of gases,
where the molecules of the different gases exchange momentum in collisions [13].
When two agents from the same country with pre-trade wealths v and w interact —a
domestic trade event —, then their post-trade wealths v* and w* are supposed to be
given by (3.35) with a common saving rate parameter which is characteristic for this
country. On the other hand, in case of an international trade, i.e. when two agents of
different countries interact, we assume that each agent uses the transaction para-
meter which is characteristic for his country. Hence, when two agents, one from
country 7 (¢t =1,2,...,n) with pre-trade wealth v and the other from country j
(G =1,2,...,n)with pre-trade wealth w interact, their post-trade wealths v* and w*
are given by

(5.93a) vt =1 =y + pw + v,
(5.93b) w" =1 = y7w + 70 + nw.
In (5.93), the trade depends on the transaction parameters y and y; (¢ = 1,...,n), while

the risks of the market are described by #; (i,j =1,...,n), which are equally dis-
tributed random variables with zero mean and variance a?j. The different variances for
domestic trades in each country and for international trades reflect different risk
structures in these trades. For example, investments and trades inside different
countries or markets may be subject to different types and quantities of risk, and in-
ternational trading may face additional risks compared to domestic trades.

The trading rule (5.93) preserves, as in the original conservative CPT model, the
total wealth in the statistical mean

(5.94) W +w") = (14 my) v+ 1+ () w=v+w.

In this setting, we are led to study the evolution of the distribution function for
each country as a function depending on the wealth w € R, and time t € R,
fi = fi(t; w). In analogy with the classical kinetic theory of mixtures of rarefied gases,
the time-evolution of the distributions will obey a system of n Boltzmann-like
equations, given by

n

0 1 .
(5.95) /0 =3 Q). i=1....m.

=1
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Herein, 7; are suitable relaxation times, which depend on the velocity of money
circulation [58]. The Boltzmann-like collision operators are derived by standard
methods of kinetic theory, considering that the change in time of f;(¢; w) due to binary
trades depends on a balance between the gain and loss of agents with wealth w [27].
The Q operator now reads

(5.96) QU f)w) = < | (G-Aws0) - rws) dv>.
i

R.

In (5.96), (v.,w.) denote the pre-trade pair that produces the post-trade pair (v, w),
following rules like (5.93), while J;; denotes the Jacobian of the transformation of
(v,w) into (v*, w*). As before, we can fruitfully consider the weak form

(5.97) J Qfi, [)w)g(w) dw = < J (¢(") — ¢))f;(W)fj(w) dv dw>.

; A
R RZ

5.2 - A related system of Fokker-Planck equations

As briefly remarked in Section 4.1.3, it is rather difficult to describe analytically
the behavior of the solution to the kinetic system (5.95). By adopting the asymptotic
procedure sketched in Section 4.1.3, we can reduce our system to a system of
Fokker-Planck type equations. By means of this approach it is easier to identify
steady states while retaining important information on the microscopic interaction
at amacroscopic level. In the present case, this asymptotic procedure corresponds to
consider the joint limits y — 0, a?j — 0 and a?j /v — wye

The weak form of (5.95) is given by i = 1,...,n)

d "1

(5.98) < J Filts w)$uw) du — J S Lo fasaw) duw,
R, R, J=1 fi

where the terms on right hand side are given by (5.97). To study the situation for

large times, i.e. close to the steady state, we introduce for y < 1 the transformation

(5.99) =9t git;w)=f,tGw), @G=1,...,n).

This implies fio = gio and the evolution of the scaled densities g;(r;w) follows
t=1,...,n)

1

6100 5 [ awwswde = [ Y2 o g du,
j=1"Y

R R, 7=
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By the trading rule (5.93), it holds
(5.101) v — v = y(yw — 7v) + ;0.

Using a second order Taylor expansion of ¢ around v, we obtain
1,,-
(5.102) (") — ¢(v) = ¢ Wy(w — y) + U] + §¢”(v)[y(ij — 710 + vl

with ? = 6V + (1 — O)v for some 0 < 0 < 1.
Inserting this expansion into the collision operators yields

d
i J 9i(t; w)(w) dw

R,

== Z < J ($@ot — 300 + ngol + 58 @lytyw — 300 + o)
=l

R
x gi(t; v)g;(t; w) dv d@t)> + R(y, 0),

where the remainder R(y, ;) converges to zero as y,0;; — 0, in such a way that
012.]. — 17, provided further hypotheses on the random variables 7;; and on ¢ hold
(cf. [27]).

Recalling that (7;;) = 0 and (17%) in the same limit process we obtain

2] ’
n

L1~ 1 / 1,
(3108 lim ; - < J (8 @G0 = 70) + myo) + 58" @G0 = ) + o)
' R2

x gi(t; v)g;(t; w) dv dw>

-y L J[gﬁ'(v)(yjm] itpp + 508 g do,

=1 G

where

(5.104) pi(0) = J gi(t;w)dw, m;(t) = J wy;(t; w) dw
R, R,

denote the total population and the total wealth of the j-th country, respectively. This
expression is nothing but the right hand side of the weak form of the system of
Fokker-Planck equations (1 =1,...,n)

i N[k P s 10 Nos
(5.105) == ; [2%' 5,z (VPigi) + v (Grvp; = 7mgi) |




[41] A BOLTZMANN-TYPE APPROACH TO THE FORMATION OF WEALTH DISTRIBUTION CURVES 239

To formalize the above, let us introduce some notation. Let M, be the space of all
probability measures in R, and

(5.106) M, = {av e My : J PP (S dd < +o0, p > 0},

Ry

the space of all Borel probability measures of finite momentum of order p, equipped
with the topology of the weak convergence of measures.

Let F,(R}), p>1 be the class of all real functions 2 on R, such that
1(0) = B/ (0) = 0 and £™(v) is Hblder continuous of order J,

b

(M) (gy) _ J,(m)
(5.107) ”h(M)H(S — sup |\ (v) hé (w)| <
vFw [v —w|

the integer m and the number 0 < § < 1 are such that m + J = p, and 1" denotes
the m-th derivative of h.
Using the same ideas of [27], we obtain in this case the following

Theorem 5.1. [35] Let initial probability densities fo; € My, where M > 0
and p > 2, be given, and assume that the symmetric random variables n; have a
density in Mg with s > p. Consider the family — parameterized by y > 0 — of
weak solutions gg") of the Boltzmann system (5.95) for the scaled densities
9V (z;w) = £t w) with © = .

Then, as y — 0 and o;; — 0 in such a way that ;= ), the weak solutions
converge, up to extraction of a subsequence, to probability densities g;(t; w). These
densities constitute weak solutions of the Fokker-Planck system (5.105).

The (relatively) easy structure of the Fokker-Planck system (5.105) allows to
study in some simple case the evolution of the mean wealth in each community, as
well as the steady state solution. For the sake of simplicity, we will limit ourselves to
the case of two populations, in which y;; = 7;; = 1 for i = 1,2.

From the equations (5.105) it follows that the masses p,(7) and p,(t) do not vary
with time, while the total wealths m(7) and mga(r) satisfy the system of ordinary
differential equations

dm
(5.1082) = —(npama — ypyma)

dmz

(5.108b) ~dr = Tnpema = papymiz).
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System (5.108) can be solved exactly, to give

(5.1093) my(t) = ml(())e_(}'lﬂzﬂ’zﬂl)f + _ P (1 _ e—(}’lﬂzﬁ’zpl)f)
V1Pe + V2P1

(5.109b) Mma(t) = me(0)e~ 1Pzt 4 1Pz (1- e—(yl/fzﬂ’z/)l)r)_

Y1P2 + Yep1
Choosing equally large populations, p;(0) = ps(0), it follows from formulas (5.109)
that the total wealths m1(r) and mg(7) converge at an exponential rate towards
steady values mq ., and mg . The latter are inversely proportional to the y’s (a
bigger y produces a smaller mean wealth),

V2 71
5.110 Moo = —} Moo = ———.
( ) Y1+ 72 Y1+ 72

This effect can be directly deduced by examining the analytic expressions of the
steady states, given by

B c1 1 2(])1777/1 + ysz)
(5.111a) 91.006(V) = I {_},pv

B C2 1 2())17%] + Vzmz)
(5.111b) 92,00 (V) = IR C {_T '

In (5.111) the constants ¢, ¢ = 1,2 are chosen to have masses p; (respectively p,) for
the steady states. Note that here the size of the tail of g; ,,(v) is proportional to ;.
Hence, the smaller the y is, the smaller the number of bounded moments of the
steady state is. Taking the sum of the densities in (5.111) gives the expression of the
total density

_1 2! C2 2(yym1 + pams)
(5.112) Joo(V) = p (v2+2"/1/i + q)2+272/i) exp{— R P

The analysis of the steady density (5.112) reveals that, depending of the values of the

various parameters involved, one can have the formation of a bimodal distribution. In
fact, the extremals of the (nonnegative) function

b
(5.113) w() = (7% + E) exp{—c/v},

where a, b, ¢ are positive constants, and q > p, are located in the points solutions of
the equation

(5.114) D) = —pav? P — gbv + car?™P + cb = 0.



[43] A BOLTZMANN-TYPE APPROACH TO THE FORMATION OF WEALTH DISTRIBUTION CURVES 241

On the other hand, since @(0) > 0, while &(+ o00) = —o0, the curve y = &(v) crosses
the axis y = 0 either in a single point or in three points. In this last case, we have two
maxima and one minimum outside v = 0, and consequently a bimodal distribution.

6 - Two-dimensional models

The Chatterjee-Chakrabarti-Manna (CCM) model introduces into Angle’s ori-
ginal trade a noticeable novelty. Arguing that agents are not indistinguishable in
reality, but have personal trading preferences, Chatterjee et al. [22] introduced the
concept of quenched saving propensity. Now A is not a global quantity, but char-
acterizes the agents. The current “state” of an agent is consequently described by
two numbers, his wealth w > 0 and his personal saving propensity A € (0,1). We
shall only discuss the case where A does not change with time. Trade rules which
allow the agents to adapt their saving strategy in time (“annealed saving”) have been
investigated [22, 20], but seemingly do not exhibit genuinely novel effects.

6.1 - Sawing propensity as additional variable

The configuration of the kinetic system is described by the extended density
function f(¢; A,w). The wealth distribution A(f;w) is recovered from the density
f(t; 4, w) as marginal,

1
(6.115) ht;w) = Jf(t; 2, W) dA,
0

but is no longer sufficient to characterize the configuration completely. The other
marginal yields the time-independent density of saving propensities,

(6.116) 24 = Jf(t; A, w) dw.

R,

Clearly, x(1) is determined by the initial condition f(0; 1, w), and should be con-
sidered as defining parameter of the model. The collision rules are the same as
originally (3.33), but take into account the individual characteristics: two agents with
pre-trade wealth v, w and saving propensities A, i, respectively, exchange wealth
according to

(6.117) v =v+ el — v+ A — ww],

(6.118) w =uw+ 1 — o1 — v+ 1A — wwl.
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Clearly, wealth is strictly conserved, v* + w* = v + w, so the mean wealth M is
constant in time. The Boltzmann equation (2.18) is now posed on a two-dimensional
domain, (4, w) € (0,1) x (0, c0). The collisional gain operator @, satisfies

1
(6.119) Q. (Nl = j J<¢(v*)>f(/1, O () dv duw dg

R2 0

after integration against a regular test function ¢p(w). For simplicity, we assume that
¢ is symmetric around 1/2.

6.1.1 - Pareto tail of the wealth distribution

Due to its two-dimensionality, the CCM model behaves very different from the
strictly conservative model (3.33). In particular, %..(w) may possess a Pareto tail. In
analogy to S(s) from (3.22), define the function

2(4)
a-i a4,

1
(6.120) Q(r) := J

0

which determines the properties of the steady wealth distribution h..(w) as
follows [45]:

(PT’) if Q(1) < +o0, and a € [1, +00) is the infimum of » for which Q(+) = +o0, then
hoo(w) has a Pareto tail of index a;

(ST) if Q(r) < +oo for all » > 1, then % (w) has a slim tail;
(DD’) if Q(1) = +o0, then Ao (w) = do(w).

To derive these results, it is useful to think of the global wealth distribution /... (w)
as superposition of A-specific steady wealth distributions f,.(4,w)/x(1), i.e., the
wealth distributions of all agents with a certain personal saving propensity 4. The
individual A-specific distributions are conjectured [22, 50] to resemble the wealth
distributions associated to the one-dimensional model (3.33), but their features are
so far unknown. However, they are conveniently analyzed in terms of the A-specific
moments

. _ L o
(6.121) M) = J W s (O w) duo.

Ry

Integration of the stationary Boltzmann equation

(6.122) Joolhsw) = Q1(fos . fo0)
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against p(w) = w* for a non-negative integer s gives

MGy = J (U + 60— DT + el — 10w)* Yoo 0)f o a1, 20) gt o o

()
]

O e

R

Lo

After simplifications,
(6.123) (1 — D, MM:(A)

1
s—

= 3 () i = DG [ = N8 o d
0

—

=
I

0

where ¢,(/) is a polynomial with no roots in [0, 1]. The Z-specific steady wealth dis-
tributions have slim tails, and moments of arbitrary order can be calculated re-
cursively from (6.123). From

U751\ — Vil _ M !
(6.124) My =1, M) = @(1 A,

it follows inductively that
(6.125) MGy = r(HA - 2",

and 75(1) is a continuous, strictly positive function for 0 < A < 1. By Jensen’s in-
equality, formula (6.125) extends from integers s to all real numbers s > 1. In con-
clusion, the total momentum

2(4)

T di

1
(6.126) M: = JM;‘(A) dj J
0 0

is finite exactly if Q(s) is finite.

Q(1) = 400 would imply infinite average wealth per agent in the steady wealth
distribution by formula (6.126). This clearly contradicts the conservation of the mean
wealth at finite times. In reality, the first moment vanishes, and /., is a Dirac dis-
tribution; see Section 6.1.3.

We emphasize this fact since a noticeable number of theoretical and nu-
merical studies has been devoted to the calculation of h., for uniformly dis-
tributed A, i.e. y(1) =1, where clearly Q(1) = +oco. In the corresponding ex-
periments [22, 23, 50, 20, 51] with finite ensembles of N agents, an almost
perfect Pareto tail &..(w) = Cyw 2 of index a = 1 has been observed over a wide
range wy < w < Wy. However, the “true” tail of h..(w) — for w > Wy — is
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slim. As the systems size N increases, also Wy « N increases and
Cy x 1/InN — 0. In fact, one proves [45] weak convergence of /.. (w) to do(w) in
the thermodynamic limit N — oc.

6.1.2 - Rates of relaxation: Pareto tail

The discussion of relaxation is more involved than in one dimension, and we re-
strict our attention to the deterministic CCM model, ¢ = 1/2, in the case (PT’) of
Pareto tails of index a > 1. In fact, it is believed [23] that the randomness introduced
by ¢ has little effect on the large-time behavior of the kinetic system.

The stationary state of the deterministic CCM model is characterized by the
complete stop of wealth exchange. This is very different from the steady states for
the one-dimensional models, where the macroscopic wealth distribution is stationary
despite the fact that wealth is exchanged on the microscopic level. Stationarity in
(6.117) and (6.118) is achieved precisely if v(1 — 1) = w(l — u) for arbitrary agents
with wealth v, w and saving propensities 4, y, respectively. Correspondingly, the
particle density concentrates in the plane on the curve

(6.127) Ko ={(w|A-Hw=M/QQ1)},

and the steady wealth distribution is explicitly given by Mohanty’s formula [46],
M M

(6.128) hoo ) = ﬁx(l _E>’

with the convention that y(1) = 0 for 1 < 0.
The conjectured [51, 21] time scale for relaxation of solutions is ¢,
In W [h(t; w), hoo(w)]

(6.129) lim " —a—1.

It has been proven [32] for all a > 1 that the limit in (6.129) is at most a — 1, i.e.
relaxation cannot occur on a faster time scale. The complete statement (6.129),
however, was made rigorous only for 1 < a < 2 so far [45].
The key tool for the analysis is the equation for the A-specific mean wealth,
1
~ 1-— TR
M@t 4) + TMl(t;u)X(ﬂ)du-
0

a
dt

1-4
2

(6.130) Mi(t; 2) = —

Intuitively, the slow algebraic relaxation is explained by the temporal behavior of the
richest agents. By (6.130), the A-specific average wealth M;(¢; 1) grows at most lin-
early in time,

(6.131) Mi(t; 2) <t + My(0; ).



[47] ABOLTZMANN-TYPE APPROACH TO THE FORMATION OF WEALTH DISTRIBUTION CURVES 245

Thus, the tail of the wealth curve A(t; w) becomes slim for w >> t. The cost of trans-
portation in (2.8) to “fill up” the fat tail .. (w) oc w~ @V is approximately given by
(6.132) J W Moo (W) dw o< J wdw ot @D,

t t
That equilibration works 7o slower than this (at least for 1 < a < 2) follows from a
detailed analysis of the relaxation process. In [45], it has been proven that

1
. M
6.133 Mi(t: 2) — ——— | y(A)dA oc t~@ D
(6133) [ it - s |z
0
by relating (6.130) to the radiative transfer equation [37]. Moreover, the A-specific

variance
(6.134) V(t; 2) = My(t; ) — My(t; )

was shown to satisfy
1

(6.135) J(l — PVt () di ot
0

provided 1 < a < 2. Combination of (6.133) and (6.135) leads to (6.129).

Moreover, relaxation may be decomposed into two processes. The first is con-
centration of agents at the /-specific mean wealth M 1(; A); i.e., all agents with the
same saving propensity become approximately equally rich. According to (6.135),
this process happens on a time scale t~%/2, Second, the localized mean values tend
towards their respective terminal values M /1Q(1). Thus, agents of the same saving
propensity simultaneously “adjust” their wealth. By (6.133), the respective time scale
is t @D, which is indeed slower than the first provided a < 2.

6.1.3 - Rates of relaxation: Dirac delta

Finally, the deterministic CCM model is considered with a density y(1) where
lim;\ o x(4) > 0, e.g. x =1 on [0, 1]. Clearly, @(1) = +occ. An analysis of (6.130) pro-
vides [45] for 1 < 1 the estimate

4

_;LglntMl(t;i)g

(6.136) t>T,),

1-4

with0 < ¢ < C < +oo,and T; — + oo as 4 — 1. Convergence of h(t; w) to a Delta in
w =0 is a direct consequence, since M (t; 1) tends to zero for each 0 < 1 <1 as

t — oo.
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Estimate (6.136) has a direct interpretation. Agents of very high saving pro-
pensity / ~ 1 drain all wealth out of the remaining society as follows. At intermediate
times t > 1, agents equilibrate in microscopic trades so that the product (1 — Hw
becomes approximately a global constant mu(t). Agents with low saving propensity
A <1—m()/t indeed satisfy w =~ m(t)/(1 — 1). Agents with higher saving pro-
pensity, however, are in general far from this (apparent) equilibrium; their target
wealth m(t)/(1 — 1) is very large, whereas their actual wealth is bounded by ¢ on the
average. Correspondingly, a “Pareto region” of the shape h(t;w) ~ y(1)m(t)w 2
forms over a range 1 <« w < t, whereas the tail of A(t;w) for w >t is slim. The
average wealth per agent contained in the Pareto region amounts to

¢
(6.137) th(t; w)dw ~ y(1)m(t)Int.
1

By conservation of the average wealth, the global constant m(t) tends to zero loga-
rithmically in ¢ and gives rise to (6.136).

6.2 - A Fokker-Planck equation for distributed trading rate

In the previous section we analyzed the two-dimensional model of Chatterjee-
Chakrabarti-Manna, namely a kinetic model of Boltzmann type, in which the saving
propensity represents an additional variable. In the same spirit, a two-dimensional
model of Fokker-Planck type has been recently described in [35]. The idea is to
generalize the Fokker-Planck system (5.105) to the case in which the trading rate is
randomly distributed on the interval (0, 1), with distribution /°(1), where

') = J gL, v)dv, 0<i<1,
Ry
is the A-marginal of the initial density of wealth. In this case, the unknown densities
gi(t;v) (i = 1,...,m) are substituted by g(t; 2,v), while ", g; becomes
1

(9., = j g0 v d.
0

Note that here and below we will denote

1
(PW), = J(D(},) dA.
0
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If we assume i = 1 andt; = 1(2,j = 1,...,7n)in (5.105), the corresponding Fokker-
Planck equation with a continuous varying trading rate reads

dg(hv) O

(6.138) ot 2002

(v(p(r; 1)), 9(4,0))

+ 2 (olptes ), — (M (e 29),)gt0. ).

Taking into account that the total mass is preserved, (p(1)), =1, while the dis-
tribution

I'(r;2) = J 9(t; A, v) dv

Ry
does not depend on time, i.e. I'(t; 1) = I'(1), equation (6.138) simplifies to

290, v) _p &

(6.139) o200

(V*g(4,v)) + % (= (AM(2)),) 9, v)).

The analytical study of the behavior of the solution to equation (6.138) would cer-
tainly deserve attention. The main difference between the CCM model and the
present one is related to the fact that the Fokker-Planck equation (6.139) is obtained
from the CPT model with risky components. A detailed study of the Fokker-Planck
equation (6.139) is forthcoming.

7 - Numerical experiments

The numerical simulation of kinetic equations of Boltzmann type is in general a
challenging problem, due both to the nonlinearity of the collision operator, and to the
presence of fat tails in various dissipative systems. A recent overview of the main
existing numerical methods can be seen by looking at the recent books [29, 47]. The
most widely used methods for the discretization of Boltzmann type collisional
equations are Monte Carlo methods, spectral methods and finite-difference meth-
ods. To verify the analytical results for the relaxation behavior of the wealth kinetic
models, we resort to Monte Carlo simulations. This approach is quite standard to
reconstruct steady distributions, even if, in presence of fat tails for the large-time
wealth curve, one has to deal additionally with the problem of reconstructing the
profile in the zone in which there are few particles. On the other hand, it is not clear
that a marked improvement can be obtained by resorting to spectral methods, where
the large-velocity zone is discarded. This approximation produces a small error in
classical kinetic theory, where the stationary Maxwellian distribution decays ex-
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ponentially fast, but it could destroy completely the fat tailed part. Numerical ex-
periments by means of Monte Carlo methods have been recently done in [32, 33] for
both the CPT and the CCM models. Kinetic system (5.95) has been subsequently
investigated via analogous methods to show the (eventual) formation of a bimodal
steady distribution [35]. In view of their interest in application, we present here the
main results, together with a brief presentation of the underlying numerical method.

In these rather basic simulations, known as direct simulation Monte Carlo
(DSMC) method or Bird’s scheme, pairs of agents are randomly and non-exclusively
selected for binary collisions, and exchange wealth according to the respective trade
rules. One time step corresponds to N/2 such interactions, with N denoting the
number of agents. In all experiments, every agent possesses unit wealth initially.

The state of the kinetic system at time ¢ > 0 is characterized by the N wealth
values w; (%), . .., wn(t) in the CPT simulations, and additionally by the saving pro-
pensities A1, . .., Ay for CCM. The densities for the current wealth f™(¢; w) and the
steady state f&Y) are each a collection of scaled Dirac Deltas at positions w;. The
associated distribution functions are build of a sequence of rectangles,

FN(t;w) = #{agents with wealth w;(t) > w}/N,

and respectively for Y (w).

The goal is to monitor the convergence of the wealth distribution f™(¢; w) to the
approximate steady state f&(w) over time in terms of the Wasserstein-one-dis-
tance. This amounts to computing the area between the two distribution functions
FM(t;w) and F&(w), which is performed as follows. The starting point is re-
presented by two arrays of length N, one containing the current wealth values w;(?),
and one the steady state data w;(co). One concatenates these arrays, sorts them in
ascending order, and computes the array of differences between consecutive ele-
ments. This array represents the widths of the rectangles. To construct the array of
the rectangles’ heights, one concatenates two arrays of length N containing the
entries 1/N and —1/N, respectively, into one, and permutes it in the same way as the
wealth vector in the step before. The absolute value of this array’s cumulative sum
represents the heights. The Wasserstein-one-distance is now readily obtained by
evaluation of the scalar product of width and height vector.

7.1 - CPT model

The relaxation behavior of the CPT model (3.35) is investigated when the random
variables 7, 7, attain values + x with probability 1/2 each. According to the analytical
results, the shape of the steady state can be determined from Figure 1. Results are
reported for zones I and I1I. Recall that zone I is forbidden by the constraint |x| < 4,
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Fig. 2. CPT model: Decay of the Wasserstein distance to the steady state in zones II (left)
and IIT (right).

whereas parameters in zone IV lead to wealth condensation (without convergence in
Wasserstein metrics). For zones II and III simulations are performed for systems
consisting of N = 500, N = 5000 and N = 50000 agents, respectively.

The relaxation in the CPT model occurs exponentially fast. Though the system
has virtually reached equilibrium after less than 10? time steps, simulations are
performed for 10* time steps. In order to obtain a smooth result, the wealth dis-
tribution is averaged over another 10° time steps. The resulting reference state P&
is used in place of the (unknown) steady wealth curve.

For zones IT and 11T a risk index of 4 = 0.1, and a saving propensity of A = 0.7 for
zone IT and / = 0.95 for zone I11, respectively, are chosen. The non-trivial root of S(s)
in (3.22) is s &~ 12.91 in the latter case. For each choice of N and each pair (u, 1),
averages over 100 simulations have been made. Figure 2 shows the decay of the
Wasserstein-one-distance of the wealth distribution to the approximate steady state
over time. In both zones, we observe exponential decay. The reason for the residual
Wasserstein distance of order 102 lies in the statistical nature of this model, which
never reaches equilibrium in finite-size systems, due to persistent thermal fluctua-
tions. Note that before these fluctuations become dominant, relaxation is extremely
rapid. The exponential rate is independent of the number of agents N.

7.2 - CCM model

The CCM model is expected to relax at an algebraic rate (6.129). As simulations
indeed take much longer to reach equilibrium than in the case of CPT, the numerical
experiments are carried out for about 10° time steps, and then the wealth dis-
tribution is averaged over another 10* time steps. Again, this reference state is used
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Fig. 3. CCM model: Decay of the averaged Wasserstein distance to the steady states for
e =1/2 and for ¢ € (0.4, 0.6) uniformly distributed.

in place of the (unknown) steady wealth curve. The saving propensities for the agents
are assigned at the beginning of each run and are kept fixed during this simulation.
Agents are assigned the propensities 4; =1 — a);/ %5 where the w; € (0,1) are rea-
lizations of a uniformly distributed random variable. Simulations are performed for
the deterministic situation ¢ = 1/2 as well as for uniformly distributed ¢ € (0.4, 0.6).
In both situations, computations are carried out for systems consisting of N = 500,
N = 5000 and N = 50000 agents, respectively.

The steady state reached in one simulation is typically non-smooth, and
smoothness is only achieved by averaging over different simulations. However, in
contrast to the CPT model, the steady states for CCM do depend on the initial
conditions, namely through the particular realization of the distribution of saving
propensities 4, ..., Ay among the agents. Consequently, there are two possibilities
to calculate the relaxation rates.

One can monitor either the convergence of the wealth distributions in one run to
the steady distribution corresponding to that specific realization of the saving pro-
pensities, or the convergence of the transient distributions, obtained from averaging
over several simulations, to the single smooth steady state that results from aver-
aging the simulation-specific steady states.

Figure 3 shows the evolution of the Wasserstein-one-distance of the wealth
distributions to the individual steady states, both in the purely deterministic setting
¢ = 1/2 (left), and for uniformly distributed ¢ € (0.4, 0.6). (The curves in the figures
represent averages of the Wasserstein distances calculated in the individual simu-
lations.) In comparison, the distance of the simulation-averaged wealth distributions
to the single (averaged) steady state is display in Figure 4. Again, results are shown
for e = 1/2 (left), and for uniformly distributed ¢ € (0.4, 0.6), respectively.
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Fig. 4. CCM model: Decay of the Wasserstein distance to the averaged steady state for
& =1/2 (left) and for ¢ € (0.4, 0.6) uniformly distributed (right).

Some words are in order to explain the results. The almost perfect exponential
(instead of algebraic) decay displayed in Figure 3 obviously originates from the finite
size of the system. The exponential rates decrease as the system size N increases. In
the theoretical limit N — oo, one expects sub-exponential relaxation as predicted by
the theory. We stress that, in contrast, the exponential decay rate for the CPT model
in Figure 2 is independent of the system size.

7.3 - Winner takes all

Third, the “Winner takes all” model (3.28) is simulated. As time evolves, all agents
but one become pauper and give rise to a Dirac Delta at w = 0. We run M = 100
simulations for systems consisting of N =100, N = 1000 and N = 10000 agents,
respectively. Figure 5 displays the simulation-averaged fraction of the population

o
o

©
o

80

Agents with zero wealth (%)
Agents with zero wealth (%)

0.988¢

70 0.987}
~~~~~~ N=100 - N=100

60 -=-N=1000 || 0.9861 ---N=1000 ||
---N=10000 0.985f .. R e ---N=10000 ||
— Analytical : — Analytical

505 . = ) 4 0.984 ‘

10 10 10 10 10 190 200 210
Time (steps) Time (steps)

Fig. 5. “Winner takes all” model: Evolution of the fraction of agents with zero wealth (left)
and blow up (right).
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with zero wealth. This fraction of pauper agents grows linearly until a saturation
effect becomes visible. The blow up figure shows the improving approximation of the
theoretically predicted rate for growing system size.

7.4 - Bimodal distributions

Finally, the Boltzmann system (5.95) has been investigated. The numerical ex-
periments refer to the situation of two countries, i.e. n = 2. It will be straightfor-
ward, however, to extend the following to the general situation of an arbitrary
number of countries. Hence, let us consider

1 1
(7.140a) % filtw) = — Q(fi, W) + — Q(fi.f2)w)
1 T12

(7.140b) % Flt0) = 2 O, fo)aw) + Qo f)00).
722 721

Herein, O(f1,f1) and Q(fs,f2) represent the collision operators which describe the
change of density due to binary domestic trades, while Q(f1,/2), Q(f2,f1) are the col-
lision operators which describe the change of density due to binary international
trades.

In previous simulations (cf. the examples of Sections 7.1, 7.2 and 7.3), pairs of
agents are randomly and non-exclusively selected for binary collisions, and exchange
wealth according to the trading rule under consideration. To extend this procedure
to the present situation, we pursue the following approach. Let us indicate with N;
(2 = 1, 2) the number of traders of the two countries we will take for our simulation.
Assume without loss of generality, that N1 > Ny. One time step in our simulation
corresponds to N; interactions. Since we have to perform trade events for both

0.04 0.05
0.04
0.03
> >
= = 0.03
8 2
'8 0.02 8
a i 0.02
0.01
0.01
000 Nﬂﬂ .. .

0.0
i0A-1.5 10~-1 107-0.5 10°0 10705 10M  10M.5 104 10/-2 1070 1072 1004
Wealth w Wealth w

Fig. 6. Histogram of steady state distribution for y; =y, =0.875 (left) and for
71 = 75 = 0.99 (right).
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groups, each of these interactions has two stages, which are described in the fol-
lowing.

In the first stage, select randomly an agent from group 1. Then select randomly a
trading partner from the whole population, where the probabilities for each agent to
be selected depend on 711, 712. For example, if the trading frequency in group 1 for
domestic trades is twice as high as for international trades, the probability to select a
trade partner from group 1 has to be twice the probability to select a trade partner
from group 2. Once the trade partner is selected, the trade takes place and wealth is
exchanged according to the trading rule (5.93).

In the second stage, we need to perform trades for group 2. Since N < Ny, we
only perform a trade for group 2 in every k-th interaction, where k = [N1/N;]. If a
trade is carried out, it is done similarly as for group 1: select randomly an agent from
group 2 and a partner from the whole population, where the probabilities for an agent
to be selected as a partner depend on 721, 722. Then, carry out the trade according to
the trading rule (5.93).

In all our experiments, every agent possesses unit wealth initially. The relaxation
in the CPT model occurs exponentially fast [32]. Hence, to compute a good ap-
proximation of the steady state it suffices to carry out the simulation for about 10*
time steps, and then average the wealth distribution over another 1000 time steps. In
every experiment, we average over M = 100 such simulation runs.

In a first example, we consider two groups with N; = Ny = 5000 agents. We
investigate the relaxation behavior when the random variables 7;;, i,j € {1, 2}, attain
values + i with probability 1/2 each. We set the coefficient y = 1. We set u = 0.15
and 7;; = 1 for ¢,j € {1,2}. If we choose y; =y, = 0.875 and y; = y, = 0.99, respec-
tively, the system reduces to the standard CPT model. The probability density for
both cases is plotted in Figure 6.

10°

Cumulative Probability
Cumulative Probability

10° 1072 107 10° 10’ 10°

Wealth w Wealth w

Fig. 7. Cumulative wealth distribution for y, =y, = 0.875 (left) and for y, =y, = 0.99
(right).
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Fig. 8. Histogram of steady state distribution for y;, = 0.875 and y, = 0.99 (left) in
comparison with the histogram for the union two disjunct populations with the same
parameters (right).

The cumulative distribution functions show a Pareto tail; see Figure 7. The
Pareto index a of the tail is determined by the non-trivial root of (3.37) — strictly
speaking this holds for the limit N1 2 — oo —, which is given by 28.068 and 1.875,
respectively. These tail indices are indicated in Figure 7 by a thick line.

Now, we choose y; = 0.875 and 7, = 0.99 and keep u = 0.15 and 7; =1 for
1,j € 1, 2. The probability density for the whole population is plotted in Figure 8 (left
plot). It shows a bimodal shape. The distance of the two peaks in the distribution
decreases with decreasing difference between y; and y,. Such bimodal distributions
(and a polymodal distribution, in general) are also reported with real data for the
income distributions in Argentina [36, 40].

This distribution features transport of wealth from one group to the other, which

Cumulative Probability
Cumulative Probability

1072 10° 10° 10" 1072 107 10° 10 10

Wealth w Wealth w

Fig. 9. Cumulative wealth distribution for y, = 0.875 and y, = 0.99 (left) in comparison
with the cumulative wealth distribution for the union two disjunct populations with the same
parameters (right).
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Fig. 10. Cumulative wealth distribution for group 1 with y; = 0.875 (left) and group 2 with
7o = 0.99 (right).

makes it different from the probability distribution for the union of two groups with
the same parameters which do not interact, see Figure 8 (right plot).

The associated cumulative distribution functions are shown in Figure 9.

The cumulative distribution functions for the two groups are shown in Figure 10.
For comparison we plot the same Pareto tail index lines as in Figure 7.

8 - Conclusions

We have reviewed and compared various approaches to model the dynamics of
wealth distribution in simple market economies. The considered models were based
on a kinetic description of the binary trade interactions between the agents, com-
parable to collisions between molecules in a homogeneous gas. The macroscopic
statistics of the models display wealth distributions that are in agreement with
empirical data.

The existing kinetic models can be mainly classified into two groups, depending if
the total wealth is preserved into a single trade, or not. Conservative models, that
belongs to the first class, can be further divided into two smaller groups, which are
characterized by the property that the total wealth is preserved pointwise, or in the
mean. The risky market approach (CPT) by Cordier et al. [27] belongs to this last
class, while the model with quenched saving propensities (CCM) by Chatterjee et al.
[22] is obtained from pointwise conservative trades. Both models constitute refine-
ments of the original idea developed by Angle [2]. An overview of important models is
given in Table 1. For CPT, randomness — related to the unknown outcome of risky
investments — plays the pivotal rdole. In contrast to Angle’s original model, the
market risk is defined in a way that breaks the strict conservation of wealth in mi-
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croscopic trades and replaces it by conservation in the statistical mean. The
founding idea of CCM is to incorporate individual trading preferences by assigning
personal saving propensities to the agents. For suitable choices of the respective
model parameters, both approaches are able to produce realistic Pareto tails in the
wealth distribution. In direct comparison, the CPT model appears more natural,
since the dependence of the stationary wealth distribution on the system parameters
is more robust, and the steady state is exponentially attracting in contrast to alge-
braic relaxation for CCM.

Second, nonconservative trades model were considered. Here, the pioneering
idea goes back to Slanina [54], who first noticed the robust connection between the
increasing of the average wealth in a simple market society, and the cooling of a
dissipative gas in classical kinetic theory. In this important group of models, tails are
developed in consequence of the self-similar scaling. In particular, a Gamma dis-
tribution of Amoroso type [1] is produced through this approach in a simple market
society in which the mean wealth collapses (the cooling phenomenon in dissipative
kinetic theory!). The mathematical description takes advantage from the analogous
methods introduced to describe dissipative Maxwell gases [8, 16]. The methods allow
to recover precise analytical details for the description of the self-similar profiles.

Animportant finding is that one must be careful with numerical simulations when
delicate features like Pareto tails are concerned. The simulated ensembles in kinetic
Monte Carlo experiments are necessarily of finite size, and the qualitative features
of finite-size systems differ in essential points from those proven for the continuous
limit. Most remarkably, the finite-size CCM model exhibits non-trivial steady states
with (apparent) Pareto tail in situations where the continuous model produces a
Dirac distribution. Also, the typical time scale for relaxation in the deterministic
CCM model changes from exponential convergence (finite size) to algebraic con-
vergence (continuous).

It is arguable which kind of approach (finite size or continuous) provides the
better approximation to reality. However, it is important to notice that the predic-
tions are qualitatively different. This should be kept in mind in the further devel-
opment of these (currently over-simplistic) models.
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