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Abstract. Averaging lemmas consist in a regularizing effect on the average of the
solution to a linear kinetic equation. Some of the main results are reviewed and their
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Introduction

Kinetic equations are a particular case of transport equation in the phase space,

i.e. on functions f(x, v) of physical and velocity variables like

of +v-Vof =g, t>0, x,veR%
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As a solution to a hyperbolic equation, the solution cannot be more regular than the
initial data or the right hand-side. However a specific feature of kinetic equations is
that the averages in velocity, like

Pt ) = jf(t, 2,0 ¢ dv, ¢ CPRY),

R¢

are indeed more regular. This phenomenon is called velocity averaging.

It was first observed in [24] and then in [23] in a L? framework. The final LP
estimate was obtained in [17] (and slighty refined in [3] to get a Sobolev space instead
of Besov). The case of a full derivative g = V, - h was treated in [45] and although it is
in many ways a limit case, it is important for some applications as it can replace
compensated compactness arguments.

In addition to these works, this course presents and sometimes reformulates
some of the results of [6], [17], [22], [31], [32], [36], [37], [45].

There are of course many other interesting contributions investigating averaging
lemmas that are not quoted or only briefly mentioned through the text.

1 - Kinetic equations: Basic tools
1.1 - A short introduction to kinetic equations

For a more complete introduction to kinetic equations and the basic theory, we
refer to [6] or [21]. Many proofs are omitted here but are generally well known and
not difficult.

1.1.1 - The basic equations

During most of this course, we will deal with the simplest equations
(1.1) hf +a@) - Vof =gt x,v), teR,, xeR) vew,
where w is often R? (but might only be a subdomain); or with the stationary version
(1.2) a@) - Vi f = gx,v), teRy, x€0, v e w,
where O is an open, regular subset of R? and w is usually rather the sphere S?~1. The
transport coefficient a will always be regular, typically Lipschitz although here
bounded would be enough.

Of course (1.1) is really a subcase of (1.2) in dimension d+ 1 and with
d®) = 1,a)), 0 = R x R%, 0 = w.
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Neither (1.1) nor (1.2) have a unique solution as there are many solutions to
Oif +a@) - Vuf =0,

for instance. Indeed for (1.1) an initial data must be provided

(1.3) [t =0,2,0) = f,v),
and for (1.2) the incoming value of f on the boundary must be specified
(1.4) f,v) =f"@,v), x€d0,aw) @) <0,

where v(x) is the outward normal to O at x.
It is then possible to have existence and uniqueness in the space of distributions.
Theorem 1.1. Letf* € D'(R? x w) and g € L}, (R, D'(R? x w)). Then there
18 a unique solution in L}OC(R+, D’(Rd x w)) to (1.1) with (1.3) in the sense of dis-
tribution given by

¢
(1.5) ft,x,v) =% — aw)t,v) + Jg(t —s,x—a)s,v)ds.
0
Note that if f solves (1.1) then for any ¢ € CgC(Rd X )
g J b0 ,0) € LL (R,
R

so f has a trace at t = 0 in the weak sense and (1.3) perfectly makes sense.

Proof. It is easy to check that (1.5) indeed gives a solution. If f is another
solution then define

t
f=f-'—awtwv) - Jg(t — s, — a()s,v)ds.
0

Remark that - -
Of +a@)-V,f =0,

and hence 8t(f(t, 2+ a(@)t,v) = 0 so that f =0. O
An equivalent result may be proved for (1.2) with the condition that the support of

the singular part (in «) of the distribution g does not extend to the boundary 00.
On the other hand, the modified equation, which we will frequently use,

(1.6) a@)-Vof +f =g, xR vew,

is well posed in the whole R? without the need for any boundary condition.
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Theorem 1.2. Let g € S (R? x w), there exists a unique f in S'(R? x w) so-
lution to (1.6). It is given by

(1.7 fle,v) = Jg(ﬂc —a()t,v)etdt.
0

1.1.2 - Liouville equation

The equation reads
(1.8) Of +a@) - Vof + Ft,x,v)-Vof =0, t>0, xe RY, veRY,

where F' is a given force field. In many applications, like the Vlasov-Maxwell system
1.2, F' is in fact computed from the solution f.

Eq. (1.8) describes the dynamics of particles submitted to the force /" and as such
is connected to the solution of the ODE

aXE52.0) _ v s ),
(1.9) dt

X(s,s,x,v)=u, V(s,s,2,v) =0,

dV(t,s,x,v)

o7 =FtX,V),

which represents the trajectory of a particle starting with position and velocity (x, v)
at time ¢ = s.
The ODE (1.9) is well posed for instance if

a@) € W (RY, F e WhX (R, x R*),

loc loc

(1.10)
la| + |F| < C@H) (A + || + o)),

thanks to Cauchy-Lipschitz Theorem. Weaker assumptions are however enough,
Wt and bounded divergence in [16] or even BV, in [1], but will not be required

here.
Under (1.10), (1.8) is also well posed

Theorem 1.3. Assume (1.10) and V, - F € L*(R, x RZd), for any measure
valued initial data f°ec M LR, there exists a unique f included in
L0, 11, Ml(Rd)) solution to (1.8) in the sense of distribution and satisfying
1.3). It 1s given by

f(t7 x, 7)) :fO(X(O7 t7 X, ’U), V(Oa ta X, ’I)))

If F and a are regular enough (C*), the same theorem holds if f* is only a dis-
tribution.
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This theorem implies many properties on f, for example

Proposition 1.1. (2) f > 0 if and only if f* > 0.
(1) If O € L®(R*) then f € L®(R, x R*) and

(i37) If 0 € LP(R¥) then f € L>([0, T, L?(R*")) and
1F @, ey < IOl oz €1V 1=/,

From the point of view of averaging lemma, Eq. (1.8) does not have a particularly
interesting structure. Indeed most of the time, the acceleration term F' - V,, f will be
considered as a right hand side with no particular relation to f. Surprisingly enough
this is generally optimal.

1.1.3 - A simple case: local equilibrium

Let us consider (1.2) in the special case where
S, v) = plx) M(v).

This might seem like an over simplification but it will nevertheless provide many
examples of optimality later on. For the moment we will be satisfied with a few
remarks.
We have
M©®)a() - Vyp(x) = g.

Let us hence write g = M) h(x, v).

Assuming that / is a regular function (L! N L™ for example), this provides some
regularity for p but not necessarily in term of Sobolev spaces.

Notice first that some assumption is needed on a. Indeed if there exists a di-
rection & € 8?1 such that a(v) is colinear to £ or a || & for enough v

{v e R | a@) || &} # 0,

and if M is supported in this set (no matter how regular) then it is only possible to
deduce from (1.2) that
E-Vyp € L™

Nothing can be said a priori about the derivatives in the other directions.

Even if a(v) is not concentrated along some directions like a(v) = &, some as-
sumption is needed on M. If not, M itself may be concentrated along one direction ¢&
in which case the same phenomenon occurs.
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This shows the two features of all the averaging results that will be proved: some
assumption is needed on |{v € R?| a(v) || £}| and the more regular in velocity f is,
the more regular p is.

In fact the regularity provided by averaging lemmas (in terms of Sobolev spaces)
is in many situations not the optimal way of describing the regularity of solutions to
(1.2) (see [10], [12] and [52] for example in the case of scalar conservation laws).

1.2 - An application: The Viasov-Maxwell system

The Vlasov-Maxwell system describes the evolution of charged particles and it
reads

(111)  Of +0(p) - VoS + (B(t, )+ v(p) x B, @) -V, f =0, ¢>0, 2,p e R%

The fields £ and B are the electric and magnetic fields and are solutions to Maxwell
equations
O —curl B=—j, divE =p,

(1.12)
OB +curlE =0, divB =0,

where p and j are the density and current of charged particles and therefore com-
puted from f

(1.13) p(t,x) = Jf(t,x,p)dp, Jtx) = Jv(p)f(t,x,p)dp-

R? R?

Initial data are required for the system
(1.14)  ft=0,2,p) = @, p), Et=0x)=E%), Bt=0x)=B"®).

Finally the variable p represents the impulsion of the particles. In the classical case
(velocities of the particles much lower than the light speed), it is simply the velocity
and

vp)=p.
In the relativistic case, the velocity is related to the impulsion through

p

(p) =—55 .
wp 1+ |pP

For simplicity all physical constants were taken equal to 1.

Globally in time and in dimension 3 and more, only the existence of solutions in
the sense of distributions is known (and thus no uniqueness). This was proved in [15]
and it is one of the first examples of application of averaging lemmas.
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As usual one considers a sequence of classical solutions f;, £, B, to a regular-
ized system. The form of this system is essentially unimportant as long as it has the
same a priori estimates as (1.11)-(1.12). For (1.11) and from the analysis in 1.1.2, one
first has

(1.15) 1ot s M ey < W pogreay,  ¥E20, Vp €1, oo,

The only other available a priori estimate is the conservation of energy

J EWt, 2. p) dudp + J (B, 0 + Bt ) dae

(1.16) & &
< j E(p)f°@,p) dedp + j (B@)E + B da.

R R?

This relation is an inequality instead of an equality as the regularized system typi-
cally dissipates a bit. The term E(p) is equal to the usual kinetic energy |p|2 in the
classical case and to (1 + [p[*)"/? in the relativistic case.

Therefore assuming that

(1.17)  fO>0, f° e L' nLX(R), J E(p)fdedp<oco, E°, B' e LA(RY),

RZLL

then the same bounds are uniformly true in ¢ for f,(¢, ., .), E.(t,.) and B(Z,.).
On the other hand, we obviously have that

(1.18) Jps(t,x) = Jf,g(t,x,p) = Jff.

Rd RZd ]RZd

In the relativistic case

(119 | litolde < [ineami= |2,
RY R R
while in the classical case, through Cauchy-Schwarz inequality
1/2 1/2
(1.20) | litorde= [wir< | |£] | [0k

R? R2 R R

As a consequence p, and j, are uniformly bounded in L?.
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Moreover a simple interpolation estimate may provide L? estimates for p, and j,

1

pta< | fdps | fdp < RUAN. + g | Bt dp
B(0,R) |p|>R R¢

d

d+a

# j Epfdp |

R¢

<|fe

through minimization in B; a = 1 in the relativistic case and a = 2 in the classical
case. So

J (,(t, ) de < I J E(p)f. dp de.
R R*

Eventually one may obtain the following uniform bounds
(1.21) p(t, ) € LY N L9/RY) - jt, ) e L' n L@+0/d+a-D(Rd),

We may thus extract weak-* converging subsequences for f;, £, B, and p,, j. in the
corresponding spaces. One may then try to pass to the limit in (1.11) and (1.12). This
works just fine for all terms except

(Bt ) +v(p) x B¢, %) -V fo = V) - (E(E,x) + v(p) x B.(t,2))f.),

as it is of course not possible to pass to the limit in a product of only weakly con-
verging sequences.

Unfortunately, it is not possible to prove compactness of f; and Maxwell eq. being
hyperbolic the compactness of £, and B, would require it for p, and j,. However for
¢ € D(R™)

j Bt 2)f,(t, . p) b, p) dae dp — J Bt ) er@, x,p) $(@, p) dp de,

R R? R?

and what is only needed is the compactness of moments of f; like

(1.22) Jﬂ(t, x, p) ¢, p) dp.

R¢
From the estimates proved in the third chapter, one gets that uniformly in ¢
st(t, x,p) ¢z, p)dp € HV4(RY),
R¢

and that all moments are compact. This proves the following
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Theorem 1.4. Assume that (1.17) holds then there exists
feL®R,, L' nL=(R¥)
with
| By dedp € Lxo,
R*
and E, B € LR, Lz(Rd)) solution in the sense of distribution of (1.11)-(1.12).
Note finally that from the compactness of the moments like J; e, 2, p) $(x, p) dp,
it would be possible to deduce the compactness of p, and j, arll%d then of E; and B,.
This is not necessary to obtain the existence though.

2 - The L? estimate

2.1 - Presentation
This chapter is entirely devoted to proving the following: if f and g satisfy Eq.
(1.2) namely
a)-V.f =9, xeRd, V€ w,
with f, g € L2(R? x w) then the moment

2.1) @)= [ f@ 0y,

w

belongs to the Hilbert space H¥(RY) with % depending on the assumptions on
a: w— R?but at best & = 1/2.
Following [6] and [32], (1.2) is rewritten as

a(v)V@f—f—f :f+gv

and we get
p@)=Tf+Ty,

with

(2.2) Tf(x) = J Jf(x —a)t, v) e tdt dv.
w 0

The aim is now to determine the exponent k£ such that T is continuous from
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LZ(Rd X ) to Hk(]Rd). For further use, we will work with

oo

(2.3) T, f(x) = J Jf(ac —a)t, v)t et dtdv.

w 0

This estimate on T is the core estimate for averaging lemmas. With the exception of
the one with a full derivative in [45], most others estimates can be derived from it,
usually through some kind of interpolation procedure. The L? regularizing effect
presented here was first obtained in [24] and precised in [22], [23].
The operator T and in particular its dual 7* in the case a(v) = v
T h(x,v) = J h(x +vt)e b dt
0

are related to the X-ray transform X : R — R? x §9-1

X h(x,v) = J h(x + vt) dt.

—00

Note that T takes a function of two variables # and v and makes it into a function of
only x (because of the average), so conversely the dual 7* takes a function & of only
the x variable and makes it into a function 7/ of the two variables x and v.

This operator was studied separately in harmonic analysis (see for instance [9],
[18], [54]) but with emphasis on mixed type inequalities like the continuity from
LP(R% to LA(R?, LP(S?1)) and not on the gain of differentiability which is our main
goal here. These other inequalities are nevertheless very usefull and can be seen as a
kind of dispersion estimates for (1.2).

Note that even though this chapter deals uniquely with the stationary case, most
of the proofs can easily be adapted to the unstationary case (1.1) (which can anyway
be obtained as a subcase of this one) or to more general averages like (1.22).

Finally the Fourier transform in « is denoted F and we recall that it is an iso-
metry on LZ(R?) and that

HARD = p e SR J(1+|é|)2’“|7-'p(é)lzdé<oo
Rd

The homogeneous Sobolev space (used in the next chapter) is simply

H®D = { pe s RY| J|¢|2’“ FpORdE<oc

R?
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2.2 - Averaging lemmas through Fourier transform

The proof here is mainly taken and adapted from [6]. Applying Fourier transform
to (2.3), one gets

fTsf:J}'f(é,v) J e i1e0¢ € gy,
0

w

This is simply equal to
J Ff(E,v)
1+ia() - &
if s =0.
Denote
< —t
_ | ite €
7)) = Je vz t—sdt.
0

Notice that of course

ot
@) < Jet— dt < C<oo,
0

provided that s <1. This already gives that

FT.f < J FFE W) do,

w

and thanks to Cauchy-Schwarz that

(2.4) J|Tsf(x)\2dx§|w| J |f (e, ) dac do.
R? Rxaw

On the other hand, if |z| > 1, we have in addition
J Sdt J e‘”z
K

<CK'v™* + Jeﬂts st dt
K

@) < +
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through minimization in K. The combination of both yields

lx(®)] <

1+ 2]
Now by Cauchy-Schwarz, we have that
PP j GO [ awfdo

C

7 v | ———5d
‘ f(é 7))| v 1 + |a(v) 5 é|2728 v

s%
S —

We recall that for all ¢ € C1(R)

w

jqﬁ(\a(v).a)dv: - Jqs'(y) o€ o; la)- &<y} dy.
0

Let us assume that

(2.5) VeST Vee Ry, |{vew; |aw) - <e}| <&
We obtain that
C T c C
J 2—2sd”<J 3zsy_0dy§_0’
J 1+ Ja() -] L+ Jy"™ €] €]

provided that 6 — 3 + 2s < — 1. Together with (2.4) and assuming that |w| < oo, this
implies that

J(H\éI)”IFTsdeésc J | f (e, )| dee .
R¢ R

As a consequence we have proved the

Theorem 2.1. Assume |o| <oo, that (2.5) holds and that 6 + 2s <2 then T is
continuous from LERY x w) to HO2(RY).
Consequently if || <oo, (2.5) holds, and if f, g € L2(R? x w) satisfy (1.2) then p
defined through (2.1) belongs to HY/2(R?).

Notice finally that 0 is at most 1, in the case a(v) = v and @ = S%! for instance. If
0 = 1 then s can at most be equal to 1/2 and the average p belongs to H'/2.
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2.3 - Real space method for averaging lemmas

The use of Fourier transform is not strictly necessary for averaging lemmas; it is
sometimes useful to proceed otherwise, for discretized problems like in [5] for in-
stance. The proofs however rely on orthogonality properties of the operator 7' so that
a direct proof is difficult. The method presented here uses instead a 7' 7* argument
and is taken from [32]. We restrict ourselves to the case

(2.6) aw) =v, o=8"",

to simplify the exposition and since the general case was already dealt with in
Section 2.2.
The dual of operator T is

(2.7 T:hx,v) = J h(x + o)t~ et dt.
0

Itis then equivalent to prove the lemma and to show that 7 sends H /2 in L2(R%x §-1)
or LZ(RY) in L2(S%-1, HY/2(RY)) since T commutes with the derivation in x.
Denote by Az the differentiation operator
Ah = F (¥ Fh),

with obviously 4. = —A the laplacian.
Now compute

J AT - AT D dos do — J AT T - () d.
de Rd
We then observe that

T, T ()

||
o3

J i’ — (e + E—ww)e " do du dt

-1

I
)

I,
oot
JJ J Wy ——h(x+ t— ww)e " dv du dt.
0081

With two changes of variables from ¢ — « to r and from the polar coordinates v to y

¢
1 —2t+71
J J 5o h(x + tv)e dvdrdt
0

o2+l dy

-———dt.
G~y
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Hence when differentiating 7 T';, we obtain exactly the structure of a Riesz
transform provided still that s <1/2. Therefore the operator T's T”; is continuous from
L2(RY) to H'(RY) or AY/2T, T* is continuous inside L2(R?).

We finally recover Theorem 2.1. This proof is even slighty simpler than the
previous one but only in the simple case of (2.6), the general case would be somewhat
more complicated.

2.4 - A direct proof

We present here a direct method in L? for the dual operator 7* from [32]. The
proof is much longer than the two previous ones, it is nevertheless interesting be-
cause it more clearly exhibits the orthogonality argument at the core of the result.

Precisely we prove the slighty suboptimal

Proposition 2.1. The operator T with (2.6) is continuous from LARY) in
L2871, HY(RY) for 0 <1/2 provided s <1/2.

A direct proof could be written for T'; by adapting the one for T';, it would even be
slighty longer though.

In the spirit of [18], we first prove Proposition 2.1 for characteristic functions of
sets and even only for sets which are composed of small hypercubes C;. The heart of
the argument is that for an operator T derived from T: (it is a derivative of a
regularization of T’;) then the scalar product

J J Tl[ci Tﬂq dv dx

R Sd-1

is very small provided the two cubes C; and C; are far apart.

Hence if # = Iz and E is composed of N hypercubes then the L2 norm of Th
behaves only like /N times the L2 norm for one hypercube Tl¢. For L' or L™
though, the norm of Th behaves like N times the norm for one hypercube.

This gain of one v/N is typical of such orthogonality argument (or almost or-
thogonality like here) and it is responsible for the gain of 1/2 derivative.

24.1 - The case of characteristic functions: Reduction of the problem

The first point to note is that we may work in a domain Sy in v which is in-
cluded in {v e 8% 1/4d<v;<1/2Vi <d} instead of working in the whole
sphere since the sphere may be decomposed in a finite number of domains of the
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same form as Sy and the result is the same on any of them due to the invariance
by rotation of the problem.

Next for any N > 0, we say that a set £ belongs to Cy if it is the union of
closed squares (or cubes or hypercubes) of the form [i;/N, 91/N +1/N]
X ...X[tg/N, 1q/N + 1/N] where 11,...,1; are integers. Of course we choose
this form for Cy because the “bad” directions which are along the axis of co-
ordinates do not belong to Sy. Then we prove

Lemma 2.1. Forany N > 0and any E € Cy, we have for 0<1/2 and s<1/2

2
||T:HE||L§(SO’ HiRYy S C|E)|.

Proof. We compute directly the norm using the well known expression

1T 1) g = j j|T;HE<x,v>fT;uE<y,v>|2\xfy|*d*2”dvdydx.

x,yeR? V€S,

Let us decompose according to the distance between x and y

1Tl = || I 0-T e 0oy dvdy da
Je—y|>1 veS,
+2
= 27i<fw—y| <27
Of course the first term is dominated by the power 2 of the norm of ;1 in L,
which is trivially bounded by the measure of £, as we already noticed that T is
bounded from L2(R?%) to L2(Sy x RY). Since we do not want to get the precised

critical case 8 =1/2, it is therefore enough to show that for any M and any
0<1/2

(2.8) J J T 1 (e, v)— T 1y, v) "M dv dy dxe < C|E).

1/M<|e—y|<2/M veS,

Indeed fixing 0 <1/2 and choosing ¢ € 10, 1/2[ , one would have from (2.8) with ¢/
that

176720y < CIE|+ 3 C | x 27020 < C' .

i=1

The next point to note, is that we may limit ourselves to the case where £ has a fixed
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bounded diameter K independent of M or 7 and where we integrate over a ball of the
same diameter. Indeed let us fix a ball, then

T’THE(x,v)—T’fIE( ,v) 2Md QHdQ)d dx
| s s Y Y
xeB(xy,K) 1/M<|x—y|<2/M veS,

< C J J J |T;1EQB(900,2K)(9€7 1)) — T;IEQB(ﬂco,ZK)(y7 ,U)|2Md+20

Bao,K) |r—y|~1/M v

+Ce K J J J('T;ME(%', 1))|2 + |T;1[E(?/, U)‘Z)MOHZ‘)’
B(0,K) 1/M<|z—y|<2/M v

because of the e~! term in 7" of course. If we are able to prove that for ' > 0 but with
0<1/2

£ % 2 ;
| T 1 grB @, 260 @, V) — T IgnBw, 260, V)| Ma+20
(2.9) B(xo,K) 1/M<|y—x| <2/M v

< Cg|E N B(xy, 2K))|,

summing on the balls, we get

J J J T Mg, v) — T gy, v) M2 do dy dac
weR? 1/M<|a—y| <2/M veS,
< CxM""|E|
+Ce ™ J J J(IT;‘T[E(W, VI + [T gy, v) M

RY 1/M<[e—y|<2/M v
< CkM* Y |E| + Ce XM |E)|.

A simple scaling argument shows that, in (2.9), Cx is dominated by a power of K
(depending on p). So choosing eventually K in terms of M we may deduce (2.8) from
(2.9). Hence from now on, £ will have a given finite diameter and the integrals in x or
y will be taken inside a ball.

Before finaly turning to proving (2.9), we remark that we may choose M = N (not
a great surprise). If &' € Cy then E belongs to every Cy simply by dividing each
hypercube in 2% smaller identical hypercubes: so we may always take N > M. And if
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(2.9) is true for M = N, it is true for all M < N since for instance

d+20
izt -1t (3) dodyas
2/N<|x—y|<4/N v
N d+20
<2 J J‘T:HE(QC,@)—T;HE(%—F(y—x)/271))|2 (E)

2/N<|c—y|<4/N v

d+20
vz [ i s g - azo-TmgoR ()
2/N<|x—y|<4/N v

4
< gare

2020 J J T 15, v) — Ty, )PN? do dy de.

1/N<|e—y|<2/N @

Then 4N?"-27 is less than 1 (unless N is of order one but the proof is trivial then) if
0 >0+ C/InN.So (2.9) for M = N implies (2.9) for M = N /2 and by repeating the
same argument In N/ Inln N times, for In N < M < N with a final number of deri-
vatives equal to 0y = 0y — C/InIn N, which is all right. Now of course if M <InN
then the argument is obvious because we may lose at most a In N factor which does
not matter.

The last reduction of the problem we make is to regularize T';. Indeed by the same
kind of argument, we may take T'; of the form

Tlg = JHE(%+Dt)(1/N+t)S dt,
0

and denoting C;, 1 < 7 < n, the hypercubes which compose E and «; their center, we
approximate Tl by

Tn(xe,v) = Zli(x,v)gbi(mx
=1
i e*\%%‘zl
i, v) = b[ HC,;(% + vt) dt, ¢L(9C) = m

We may do so because

] ot

_T* < s—1 )

T (@, v) — T (e, ) _CJT[E(x+vt)N e
0
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Therefore since s + 6 <1, we have

J|(T;‘1E—TN)(90, VN dvdy de < C||T51g||72, < C|E|,
2/N<|z—y|<4/N v

and in proving (2.9), we may replace Tz by T.
Instead of (2.9), we prove

sup J Vo Tn (e + & )| dv da
l¢<1

(210) B(0,K) veS,

< J J |V@TN(.%', ’l))‘z dvdx < N272() |Ev|
B(O.2K) v€S,
Estimate (2.10) implies (2.9). Indeed, writing
1

J(y — )V, Tn(x + sty — x),v)ds
0

|Tn(x,v) — Tn(y,v)| =

1
< |e—y| x J\VxTN(aﬁ—s(y —x),v)|ds,
0

and inserting this in the left hand side of (2.9), we find after a simple Hélder estimate
ins
J J J T N grBay 220, V) — T g, 200 (Y, v) PN
BO.K) 1/N<|y—a|<2/N v
1
< J J J J|VxTN(x + &, 0)PN20-2 qy dy dae ds
0 B(wy,K) 1/N<|é|<2/N v
1
< J J J J (Vo Tn (@ + sEv)[PNT2-2 dy de dy ds < C|E|,
0 |¢|<2/N B(o,K) v

if (2.10) holds. To prove (2.10), we compute the derivative of 7y which may be de-
composed into

VTG, 0)| = | Y Vb, 0),@) + i, v) V@)

i=1

e_‘x_xil

< —_—
- 1/N + | — a]

> Vali, v)g;(x)

+CN* > L)
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The last term is not a problem, it leads to the same computation as for the approx-
imation of Tz by Ty (as s + 0 <1) and so we do not repeat it here. We focus on the
first term instead.

It is easy to compute V,/;. It has a non zero component only in the space ortho-
gonal to v. We denote by L(x, v) the line passing through « and of direction v and by
ni*(oa v) the outward normal of the side of the hypercube C; through which L(x,v)
enters C; and n; the outward normal of the side of the hypercube through which

L(x,v) leaves. Then

. + . .
e-n; e-n,;

(2.11) e Vlix,v) =

+ -
venS o v-n;

Consequently this derivative is zero if the two sides are parallel and since v € Sy,

(2.12) < CKN.

> Vb, v) ¢,)

i=1

This estimate would not however provide any gain in derivative.

Since v - V,l; = 0,it is enough to do the proof for the first d — 1 components 0yl; of
V.l;. We choose k = 1: the computation for any other k¥ < d — 1 is the same because
of the symmetry in Sy.

24.2 - The orthogonality argument

Define N; as the set of j such that C; intersects one of the half lines centered
inside C; and of direction inside Sy (because of the definition of Sy, for any x, on a line
connecting x, C; and Cj;, C; is between x and Cj).

Note that, with B; the set of « such that L(x, v) enters C; on a given chosen side Cf,
k=1...29,

n

2 n
dode =23 3 | [ 0ligi0nls ¢y

i=1 jENi Sy B;

aacl l; ¢i (x)
1

BO2K) $ | =

Then we perform a change of variable from (x) to (3, t) where t = |x — ;| and 5 + «; is
the point where L(x, v) crosses the chosen side of C; (thus || < 1/N) to get

" 2
BO2K) S, | =1
n
<02 J J J (D, i &; O,y )i + vt + 1, v) w(n, b, v)dn dt do.
ig=1
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Define for 7 a vector with || < 1/N

A1) = 3 [ dutitn + -+ 0t 008,01+ o
jENi So
X O, Li(n + xi + 08, 0)@;(n + x; + v8) w(v) dv.
The estimate that we are looking for is a consequence of

(2.13) |4l(x)] < Ct* x log N.

Indeed since y is a perfectly regular function, we may switch the order of integration
and apply (2.13) to find

|

B(0.2K) So

2 n
dvde < ClogN > J J t 2 dydt

1=1
1<2K neCf—xi

| 3 Vg @)

i=1

n
<ClogN) N'"'<CNlogN|E|
i—1
which would finish to prove (2.10) and the lemma. The bound (2.13) is thus the almost
orthogonality property that we want.
Fixj € N;, areal t and a side of C;, we denote by S; the subspace of Sy so that
L(xy,v) enters C; on the chosen side and therefore 0,,; is a constant. Then since 9, [;
is non zero as a function of v, on a space of measure C(|x; — x;| N )1_d,

J Db + 2; — vt, V) y@) dv| < CN~ x |w; — ac]-|*d+1.

S;
But using the cancellations and provided y is a regular function, we can prove the
better inequality

(2.14) J O Li + 26 — vt, V) p@) dv| < CN~ x | — 5",
S
This additional cancellation is behind (2.13).
Denote by C} and C7 the sides of C; whose normal vectors n; and 7 are parallel to
e; and a]’?(m, v) the function with value 1 if L(x, v) intersects C]’? and 0 otherwise. Note
that since v € Sy, there cannot exist v,7' € Sy such that L(x, v) enters the hypercube
on the side le but L(x,v’) leaves the hypercube on 072 or the converse. Therefore

Jaxllj(n i = ot vy dy) < J(a;(’?JF @ — vt v) — 6 (p + @; — vt v)) vﬂdv :
; . :
8, H
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We know that ajz(oc, V) = a}(x,Rijv) with R;; such that |Rjv —v| < C/N |a; — ;]
Since the functions y and 1/v; are C* over Sj, we immediately get (2.14) from the
fact that aj? is the indicatrix of a subset of S; of diameter at most C/(V |x; — ;).

Now note that in 4;(t), in fact ¢,(5 + x; — vt) and ¢j(i7 + x; — tv) are almost con-
stant since | + x; — vt|isequaltot+1/N and |n + x; — x; + tv|to |v; — ;| + ¢+ 1/N
(the points x; — tv, ¥; and x; are almost on the same line if V/; is not zero). So up to an
approximation of the kind we already performed, we may take it constant and we
then have thanks to (2.14)

|A1®)] < CN= Y (i — | + 07 oy — | ¢
JEN;

N
<SCON“U% N (/N +6)% (e/N) " x k7,
k=1

summing first on all j € A; which are at the same distance of x;. Eventually we
find (2.13).

24.3 - The general case and the proof of Prop. 2.1

The proof uses Lemma 2.1 and a standard approximation procedure.

Let us consider any nonnegative function f with compact support and
which is constant on any hypercubes of the form [i1/N, i;/N +1/N]
X ...x[tg/N, iq/N +1/N] for a given integer N. Therefore f takes only a finite
number of positive values 0<a; < ... <a,. Denoting by E; the set of points x
where f is equal to a;, we know that E; € Cy from the assumption on f. Hence for
any 0<1/2 by Lemma 2.1

n n
1/2
U5 fllrem <> aill T Nl e < € ail B,

i=1 i=1

Denote by f*(t) the decreasing rearrangement corresponding to f (see [2]). Then

f*() has value a; on the interval [f;,, f;] with f;, = Z |E;|. Consequently the
Lorentz norm of f satisfies =

o0

dt n n
Ifler = Jtlﬂf*(t)7 =N - B > 0> wlE.
=1

0 i=1

So eventually we showed that for any 0 <1/2
1T fllrzmy < Cllfllzes-
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Since L>! is embedded in H* for any k > 0 and since we do not care about the
critical case, this implies that for any #<1/2 and any function f as described at the
beginning

17 £l e < Cl

Now it is enough to note that functions with compact support and whose level sets
belong to Cy for a given N, are dense in L? which concludes the proof of Prop. 2.1.

3 - The L? estimates

3.1 - Presentation

Consider a solution to
3.1 a) - Vo f = 4Y%g, reRY veM, a<l,
X

and with the average for some @ € C:°(M) and M a regular hypersurface of R?

(3.2) po(x) = Jf(ac, V) (V) dw.

M

Let us assume that

(3.3) 30, VEe 8T Ve |{ve M st |aWw) - ¢ < e} < Cé.

Note that in the usual unstationary case a(v) = (1, a(v)), M = R% and the previous
condition simply becomes

(3.4) 3C, Ve e RY!, vive  [{ve R st |aw) & —1| <&} <Cé

Then the following holds

Theorem 3.1. Let f and g satisfy (3.1) and

f e Whom, Lr(R%), g >0,

(8.5) . p
g € WraM, L2(R?)), —co<y<l—k/2,

with 1<ps, gg<oo, 1 <p; <min(pe, p;) and 1 < ¢ < min(ge, ¢;) where for a
general p, p* is the dual exponent of p, and assume moreover that y — 1/q; <O0.
Then,

1-0 0
Pl < ClF llggpon ey X N9 llwm g2y
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with
%:1_0+ﬁ, s=1—a)k,
(3.6) D2 qz
1+5—-1/m

T1+B—-1p—y+1/q

For simplicity in this chapter we consider only the simplified setting: the equation
reads

(3.7) v-Vof =4, xeR) veR? a<l,
and the average is
(3.8) ple) = Jf(x,v) (V) dv.

R?

The aim is to prove and investigate the optimality of

Theorem 3.2. Let f and g satisfy (3.7) and

f e WhP(RY, LP(RY)), g >0,

(3.9) T
g € Wia(R", LERY), —co<y<l,

with 1<pz, g2<o0, 1 <p; <min(pz, p3) and 1 < g1 <min(ge, g3) where for a
general p, p* is the dual exponent of p, and assume moreover that y — 1/q; <O.
Then,

1-0 0
Hp”BiQ’,x < C||f||W(fv1’1(L1;2) x HgHWz'“l(Lzz)v

v

with
1:l_eJrﬁ, s = (1 - a),
(3.10) r P2 q2
. 0 1+8—-1/p

148 -1/p—y+1q

This result essentially uses the L? regularizing effect given by Th. 2.1 and a lot of
interpolation. The definition of the spaces W*? and B‘Zﬁ’m are recalled later on.

Notice that as predicted by the simple example in the first chapter the regularity
of the average p depends only on the regularity in velocity of f and g. The more
general case of (1.2), (2.1) with the condition (2.5) would just give the same result
provided 3, y < 0 (the regularity would in fact depend on the exponent in (2.5) with the
one given in Th. 3.2if itis 1). However dealing with § > 0 or y > 0 would likely require
a more stringent assumption; at least it is not known how to do it with only (2.5).
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For a large part (the case p;1 = ps, g1 = q2, f = 0 and y < 0), Theorem 3.2 was
proved in [17] using dyadic decomposition in the Fourier space to interpolate and
obtaining the average p in the Besov space B!. This was improved in [3] using
product Hardy spaces for the interpolation with an average in the Sobolev space
Wsr. We also refer to [6], [13], [46].

The case of positive derivatives in v (but still with p; = p2, g1 = q2) was ob-
tained in [31] with a simpler but less effective interpolation method that we use
here also.

3.2 - Sobolev, Besov spaces and real interpolation

This section only aims at recalling or introducing the basic tools that we will need.
No proof is included and the reader should refer to [2] for instance for more details
and information.

Definition 3.1. Let E and F be two Banach spaces. An interpolated space at
order 0 between E and F is a space G included in E + F such that for all operators T
continuous in E and in F then T is continuous in G and

ITlle < I3 I Tl -

Note that there is no reason why the interpolate should be unique (and in most
cases it is not). The definition in fact works also if 7' is an operator between two
Banach spaces

Proposition 3.1. Let T be a continuous operator from E1 to Ey and from Fy
to Fo. Let G; be an interpolated space at order 0 between E; and F;. Then T is
continuous from Gy to Gz and

1-0 0
1Tllg,—c, < ITlg,—g, ITNp,—F,-

It is for example well known that an interpolate at order 6 between the spaces
LP(R%) and L1(RY) is the space L"(RY) with

1 1-0 0

rop g
Let us recall the definition of Sobolev spaces
Wi (R = {f € LP(RY)| Vf € LP(RD)},

W PR = {f =g+V-h|g e L"RY, he TR},
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and homogeneous Sobolev spaces

W (R = {f € D(RY| Vf € LP(RD},

W PR = {f =V k| h e PR},
with the obvious extensions for W*? where k € 7. Then the spaces stp(Rd) with
s € R can be obtained by interpolation: for instance if s € [0, 1] then WsP(RY) is an
interpolate at order s between LP(RY) and WIP(RD). If 1< p < oo then an equivalent
definition is that f € W*?(R?) iff #/2f € LP(RY).

Different approaches exist to interpolation theory namely the complex methods
and the real methods which are a bit more complicated but more constructive. We
describe here one real method: the so-called K-theory from [35].

For E and F two Banach spaces and p € E + F we define

(3.11) K,@t) = p:i;}£p2 (il + thpelip)-

We define (K, F'), . as the space of functions p such that

- 1/k
(J K )t %) <oo,

0
and in the particular case k = co

sup K, (t) t7<o0.
¢

All spaces (E, F)y forany 0 € 10, 1[, k € [1, oo] are interpolated spaces at order 0.
The method generates all Besov spaces (and Lorentz spaces for the interpolation
between LP and L7). We will use it only for ¥ = oo and describe the main interpolated
spaces.
The space (W5 2(R%), W2P(R%)), . is the Besov space BP(R?) with
s=1—-0)s; + 0ss.

This space is very close from the Sobolev space and in particular
W P(RY) © B3P(RY) € WHP(RY) s/ <s.

For the homogeneous spaces (Ws1p (Rd), Weep (Rd))&o@, we obtain the homogeneous
Besov space Big"(Rd) with on a compact support Q

WeP(Q) C BSP(Q) c WP(Q) Vs'<s.

Unfortunately the space (W"”l‘p(Rd), W""Z*‘I(Rd))o_,OO is not a Besov space if p # q, we
denote it B but it also satisfies

WHP(RY) € BSP (R ¢ WP(RY) Vs'<s.
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3.3 - Proof of the Theorem

We regularize the operator v - V, by adding Af (1is a parameter of interpolation
which will be chosen later in terms of f and g)

(4 v Vo) [, 0) = 42g(,v) + If (x,v).

We denote by T'; the operator

(3.12) T,f(x) = J Jf(oc —ot, v)e M p(v) dv dt.
0 r?
Consequently
(3.13) p) = [ Fw.0)¢0) o = AT, f + 2P T

R?

We study this operator 7', in the next subsection and conclude the proof of Theorem
3.2 in the last one.

3.3.1 - Estimates for T}

We prove

Proposition 3.2. For any 1 <p; < min(ps, p3) with 1<pz<oo, for any s
with s < 1/py, we have

T;: Wil' R?, LPE(RD) — WH=1rep(RY) aith norm €227V,

loc,w

Notice first that with a simple change of variable

T, f@ = J Jf(ac ~ ot/ vy et $) dvdt = TG,
0

R?

with f(x) = f(x/,v). Therefore it is enough to show Prop. 3.2 for 1 = 1, i.e. for the
operator 7.

We begin with the simple case where we only have L' regularity in velocity. In
this case T can at best exchange derivability in v for derivability in &, more precisely
we have

Lemma 38.1. V0<s<l1, T: Wf)’lloc(Rd, LERY) — Ws2(RY),  for every
1<p<oo ’
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Proof. It is a direct computation, once one has noticed that
1 1
Oy, [l —vt,v) = —gavi(f(x —t, v) + Z(avif)(ac —ot, v).

First of all, simply by commuting the integrals, it is obvious that

J fl@—t, )¢ dv|| < ClflLe,

R? Lp

where C does not depend on ¢. Then we also obtain from our remark that

| Q

||f||W}~1L;]~

0 | -t oW <

R? L

By interpolation, we conclude that for any s<1

C
J fa—vt, )g@dv| <L fllwyy,
R W

t

and by integrating in ¢ against e~* we get the desired result. O

With exactly the same idea, one obtains for negative derivatives,
Lemma3.2. Vs<0, T: W (R? LE(R?Y)— WsP(RY),

It remains to combine this with the L? case provided by Theorem 2.1. In fact one
has for any s € R
APh(x + vt) = £ PR +vt) 5,

which implies for the dual operator 7 and if s<1

it —t
AT = £ J hix + vt)i—s dt = AT h,
0
according to the definition of T's (2.3). As we precisely proved Th. 2.1 for 7T and
therefore T'; one obtains
Lemma 3.3. Vs<1/2, T: H3(L2)— H*/2,

To obtain the behaviour of 7' on any space of the form Wi*' (L£2), we only have to
interpolate between Lemma 3.1 and Lemma 3.3. A slight problem arises because the
operator Afc/ 2 does not operate nicely on L.
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For any 1 < pg <2, we first point out that the proof of Lemma 3.1 also shows that T
sends Wg’l(Hi) in4, $/214! with H' the Hardy space; this would also be true with any
Banach space whose norm is invariant by translation (i.e. the norm of f(x + k) is
equal to the norm of f).

Then we can interpolate without any problem between W5!(H1) and H3L? to
obtain W2 L}? whose image by T'is in the interpolation of 4;*/?H* and H*+/2, that is
W1-1/p22, Finally we interpolate between W#!(L22) and W L2?, which is the space
WEP'LP2 with its image in the interpolate between W*?2 and W'-1/#22_ That pre-
cisely gives Prop. 3.2.

3.3.2 - Conclusion of the proof of Theorem 3.2

We are ready to prove Theorem 3.2. We first do it with the additional assumption
that f<1/p;. Indeed with that we may apply Proposition 3.2 to both f and g.
We have

p=pt+p*=IiT0f + 47Ty,
with by Proposition 3.2
||pl||W1+/f*1/P1-P2 < Cix iﬂil/pl X Hf”W{jﬁlLI;zv

12l < CEM0 5 g llgm o

We then minimize in 4 according to the K-method of real interpolation which was
earlier described. We take

1 1/(1 -1 —y+1
) = tY/AHF-1/pi—r+l/q),

and we indeed find

K@) <175 £y % 9l
with
0 1+f—-1/m

T1+f-1p -7+ 1q’

as given by Theorem 3.2. Consequently p belongs to the space B;Z" - as the inter-
polation of order (0, o) of the two spaces Wt#=1/pupz and Witr—1/a—0.gz,

It only remains to indicate how we prove Theorem 3.2 for f > 1/p;. Clearly if
Proposition 3.2 were true for these values, we would be done since there would not be
any difficulty with the previous argument of real interpolation.

If one tries to prove any of the lemmas in the previous subsection for § > 1/p;, the
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problem is that we do not have enough integrability in ¢. More precisely, we would
have to integrate a term in ¢ * with & > 1 which is not possible. However

T.f

J ) f(ax — vt, v)e ™ $(v) dvdt

R¢

Se—m—m— g o—R

J fle —ot, v) dte™ $(v)

R?

+ J J V- Vef(e —ot, vite ™ $()

0 g

= J Jf(ac —vt, v) Ate™ " $(v)
0 pd

R

ol =

+ J J A2 g — vt, v)Ate™ $w).
0

R¢

The first term has the same homogeneity as 7' f but with more integrability around
the origin in t. The second term, once it is multiplied by 4 behaves exactly like the
usual T',g.

Therefore, repeating this simple trick as many times as necessary, we avoid any
problem of integrability in ¢ for 7', f and we may consider f as large as we want.

Notice finally that this would not work for 7,9 because we have used that
vV f = A;/ 2 g and we do not have anything like that for g. This is only natural as
one cannot expect to gain more than one derivative from averaging lemmas.

3.4 - Optimality

This is the exact analogue in a slighty more general situation of the two notes [36]
and [37], which show that the usual averaging lemmas (with p; = p2, ¢1 = g2 and
B = 0) are optimal.

They are given in dimension two for simplicity. We do it in two steps. For the first
one consider two C° functions a and b and take

fv(e,v) = NOVP=B) 5 q(N 1, 20 /N) bNvy),

(3.14) i :
gn (e, v) = N10H/P=08 o 5 (N w1, 25 /N) Nov; b(N°vy).

We then simply choose J such that gy belongs to the space W, (L) uniformly in N
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for every qq, so
5= 1
1-1/p1+p+1/qn -y

Notice that if <0, we also have to require that wb(w) be the y derivative of some
function. Moreover, we have

v-Vufn =gy + Iy,
with for any »

—20
1| iy < CN72

Therefore the contribution from %y to the regularity of the average is one full de-
rivative and (from the point of view of counterexample) we may neglect this term.
To finish with this counterexample, it is enough to notice that for any 1 < r < oo

o llyiger > N3—=0A=1/p1+p)

Hence for this norm to be bounded uniformly in N, we need that

1-1/p1+p
1-1/p1+p+1/q1 -y’

which is precisely the value given by Theorem 3.2. This counterexample also shows
that, provided p; < ps and ¢; < g9, the regularity gained by averaging does not
depend on the integrability in « of either f or g.

Now we prove that the exponent r given by Theorem 3.2 is optimal. To do so we
consider

s<o1—-1/pr+p) =

fv(a,v) = NYPHOUP=R o q(N 2y, 202) B(Nwy),

3.15 i
(815) gn (e, v) = NYF/P2=0t0/i=0B o 5 (N 1y, i65) N°v3 b(N°wy).

To bound uniformly gy in the space given by (4.3) (fy was correctly normalized), we
need to take

__ 1+1/p—1/ge
1-1/pr+B+1/q1—y

We again have
v-Vefn =9gn + Iy,
with 2y more regular than gy and so negligible for our purpose. Finally

o s > Ns+1/p2=1/r=00-1/pr1+f)

Since we already know that s is at most the value given by Theorem 3.2, we take that
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one and deduce that for py to be uniformly bounded, we need that

1.1 5.5
r o p2 P2 Q2

which is the value given by Theorem 3.2. If we care only about local regularity then
any 1/r larger than this will do of course.

4 - Limit Cases

Some limitations of Theorem 3.2 are investigated here. The first two are the case
of afull derivative (¢ = 1in (3.7)) and the case of only L' regularity in velocity for f; in
both cases, only compactness can be expected from averaging lemmas and of course
no gain of derivatives. These two situations however have important uses: the first
one as it replaces compensated compactness arguments in some cases (see for ex-
ample [40] and [50] for compensated compactness) and the second one for Boltzmann
equation or other collisional models. The last part of the chapter is devoted to the
limitation p; < min (p2, p3) (or ¢1 < min(gs, ¢3)) and it illustrates the complexity of
averaging lemmas with mixed norm.

4.1 - The case of a full derivative

The main result here was obtained in [45]. We deal with Eq. (3.1) with ¢ = 1 or
(4.1) v-V.f =div,g, xeR? vesi

Very little can be expected in this case as indeed all functions f satisfy (4.1) with a
right hand side just as regular as themselves. Nevertheless (4.1) is enough to ensure
some compactness for the average

(4.2) plx) = J f(x,v)dv.
Sd—l

In fact one may first prove the

Theorem 4.1. Let f and g satisfy 3.7) and

f e Whrysd=t Le(r%),  p>0,

4.3 .
(43) g e Wr n(8e-1 L (RY), —co<y<l,

with 1<ps, gz<o00, 1 <p; <min(pz, p3) and 1 < g1 <min(ge, g5) where for a
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general p, p* is the dual exponent of p, and assume moreoverthaty — 1/q; <0. Then,

1-0 0
IPllgr < CllF llggon ey > N9 llwm gz

with
1 1-0 0
v D2 +@’
(4.4)
0 1+5—1/p1

14 p-1p -7+ g

The space ng:oo is again obtained by interpolation but here as p trivially belongs
to LP2(R%) we have that p belongs to all L” with 7 € [ps, 7[ or Ir, p2]. Moreover it is
possible to deduce from Theorem 4.1

Corollary 4.1. Consider two sequences f,, and g, solutions to (4.1). Assume
moreover that f, is uniformly bounded in Wf Prgd-1, L”Z(Rd)) with

>0, 1<pz<oo, 1 <p; <min(pz, p3),
and that g, 1s uniformly bounded and compact in Wg’ql (Sd-1, LqZ(Rd)) with
—oo<y<l, I<ga<oo, 1 <q; <min(ge, ¢5).

Then the sequence p,, is compact in any L” with v’ € Ips, v[ or Ir, psl and r given
by (4.4).

These two results were obtained in [45] (with a different decomposition of the
operator v - V, and thus with p in a true Besov space). They are quite useful for
kinetic formulations as the next chapter illustrates.

Proofof Cor.4.1. Itisan almost straightforward consequence of Theorem4.1.
As f,, is uniformly bounded, it converges weak—x to some limit /" (at least after ex-
traction of a sub sequence). On the other hand, still after extraction, g, converges
strongly to some limit g and thus

vV f =div, g,
or

v- Vel fou —f) = divy (g, — 9).

Applying now Th. 4.1 to f,, — f and g,, — g, we find that

P = pallgsr < CIF = Fullt i oy % g = Gullgyror -
o Wi P2y VIR
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As g, — g strongly converges toward 0 and f,, is uniformly bounded, we deduce that
P, — p converges strongly toward 0 in ngjm. Therefore it also does in all L” with
¥ € Ipe, 7l or Ir, pql since p — p,, is uniformly bounded in L?2.

Proof of Theorem 4.1. We follow the steps of the proof of Th. 3.2 and

decompose .
p=py+pe=AT;f + divy T)g.

From Prop. 3.2 we get that

||/)1||W1+/;,1/p1_,,2 <Cix /1/)’71/191 x ||fHWf-P1L§27

15 s < CZ79 X gy e

So again minimizing in / in the functional K(t) we take
1= tl/(1+ﬂ*1/p1*}’+l/%)7
and we indeed find
K(t) <t x ”f”%,;{gﬁmz X ||9||€V;~01L327
with
0— 1+8—-1/p
1+f—-1/pr—y+1/q°

Therefore p belongs to BY!  and it only remains to notice that
s=1-00+p~-1/p)+0(—1/q) =0,

which finishes the proof. O

4.2 - L' integrability only for f

Theorem 3.2 does not give any regularity for the average if 1/p; — f = 1. A case
of notable interest is

(4.5) v-Vuf =y,

where f is only in Ll(Rd x S4-1), Tt is notably crucial for collisional models: see [15]
for the existence of renormalized solutions to Boltzmann equation, and [26], [27], [48]
for the famous derivation of hydrodynamic limits.

In that situation the average p is not generally in any Sobolev spaces. Even
though it was shown in [25] that some compactness property still holds namely.
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Theorem 4.2. Let f, and g, be two sequences uniformly bounded in the
space Ll(Rd x S41) and solutions to (4.5). Assume moreover that the sequence f, is
uniformly equi-integrable in v. Then the sequences of averages p,, s compact in
L (RY).

The proof relies first on the fact that if f,, is equi-integrable in velocity then it is
in both variables:

Proposition 4.1. Let f, and g, be two sequences uniformly bounded in
LY(R? x 871) and solutions to (4.5). If the sequence f,, is wniformly equi-integrable
in v e S then it is uniformly equi-integrable in (x,v) € R? x §7-1,

It is then possible to get

Theorem 4.3. Letf, and g, be two sequences uniformly bounded in the space
Ll(Rd x 841 and solutions to (4.5). Assume moreover that the sequence f, 18
uniformly equi-integrable in (x,v) € R? x 891, Then the sequence of averages p,, 1S

compact in L}OC(Rd).

With the additional assumption that g, is equi-integrable, this last result was
already noticed in [23].

We only give here the proof of 4.3 with a slight variant of the method used in [25].

Iff and g satisfy (4.5), and if there is an increasing function @ € C(R..) with ¢(&)/&
increasing and @(¢)/& — oo as & — oo and such that

1) = j () f e, ) dar dv < o,
R?x Sd-1
then there exists a function &(k) depending only on @ with lime(k) = 0 as & — 0 and
such that for any ¢ € C1(R?, R,)

(4.6) J o + ) = p@)| $x) dwe < Cg &(h) (If 11 + [lgll e + T

R¢

Of course (4.6) would imply Theorem 4.3.
Notice that

v-Vu@f) = 9@ +fv- V.
Now decompose

G+v-V) (@) =g+ 1M+ M,
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with
M=o lpem, BT =¢fyom, G=9¢+fv-Vop.
Then
op="T,g+ T/ + 211"
Obviously
j Ip(e+ ) — pl@)| $(a) de
R¢
< [ |6+ hp@ + 1) — $@p@)| de + 1V IlpllL
Rd
< J |Tyg(x + 1) — T, g| dec + J AT M+ h) — AT, fM| da
RY R?
+ J AT 1+ By — 2T, £ dae + Cy | | 0
R?
<2(|T3gll 0 + 22| T3 | + J 2T @ + 1) = AT, [ | dee + Cy b f ] 11

R¢

From Prop. 3.2, we have

_ C C
17591l < = Mgl < = gl + Cell 1l

and

C M

as (remember that ¢(&)/¢ is increasing)

J | f @, )| 150 dee dv = J (| flax, V)DL p>m (p|]|c| dx dv

R?x -1 R?x§d-1

&
=a® J B(|f(, v)|) da .

R?xgd-1

For the last term 7' £, notice first that is compactly supported in the support of

¢ so
M M
||T/1f1 ||W1/2,1(][af’> < C¢||Tif1 HHI/Z(R")-
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Furthermore as f¥ belongs to L2(R? x S4-1) then

M -1/2 || ¢gM ,—1/2 M 11/2
||Tif1 HHl/z(Rd) <Ci / Hf1 HLZ(Rdxsdfl) <Ci / M Hf1 ||L/1 :

Consequently

J AT G+ 1) — 3T £ de < B2 T £ s
Rd

I < C¢ h1/2 /11/2M1/2 ||f1M||£/12

Combining all estimates, one obtains
M

QD) I(f)

C
[ 1+ = p w2 die < gl + Calr o+ ©
R7 N

+ Cy 22 R MY FME 4 Ca |l

For any #, it only remains to minimize in 2 and M to obtain (4.6).
Notice finally that in most applications, @ is equal to & log¢ (from entropy
bounds). In that case, the function &(%) is
1

&) :logl/h'

4.3 - Mixed norm inequalities

A disappointing condition in Theorem 3.2 is that p; < min (pz, p;) (and the same
for q; and ¢2). First of all it tells that the best case would be when f or g belongs to
LP(R? x 8§91 and any additional integrability in velocity is “lost”. This somehow
contradicts the idea that the regularity of the average depends only on the regularity
in velocity; this idea though is supported by some heuristics arguments and results
like [53] (where the average is however obtained in a weak space).

It turns out that this question is probably quite difficult. We give a proof (but only
in dimension 2) which improves Theorem 3.2 but also an example showing that this
cannot be carried out too far (namely if f is only L! in  then nothing may be gained
even it is L™ in v).

4.3.1 - An improvement on the condition p; < p,
We can prove the following
Proposition 4.2. Letf, g in L*3(R?, LA(SY) satisfy (4.5). Assume moreover

that f and g are even in v then the average p = [ f(x,v) dv belongs to Ws4/3(R?) for
all s<1/2. st
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Therefore we gain 1/2 derivative on the average even though we work only in L*/3
in «. This result is proved only in dimension 2, an equivalent in higher dimension is
unknown (and would probably involve another critical space than L*/3). In dimension
2, L*/3 is probably critical in the sense that any LP with p <4/3 would give less than
1/2 derivative.

If f or ¢ is in LA(S!, L*3(R?%)), then nothing is known. Notice that, of course, by
Holder estimates, L*/3(R?, L*(S")) is stronger (included in) than L2(S*, LY3(R?)).

The assumption f even in v is not necessary, and Prop. 4.2 can of course be
combined with the other estimates in Chapter 3 by interpolation to give more ela-
borate estimates (we refer to [32] for more details).

Proof of Prop. 4.2. We again decompose
p=Tf+Tyg.

Since f and g are even

Tf = J Jf(ac —wt,v)e ldt = J
Sd-1 0 -
Now we have to prove that T is continuous from L43(R2, L2(S')) to the space
Ws4/3(R?) for any s < 1/2. By duality this is equivalent to the continuity of the dual T3
from L4*(R%) to Ws4(R?, L2(SY)). Finally with a decomposition similar to the one
performed in Subsection 2.4.3, it is enough to show

Jf(x—vt,v)e’tdt: Tof.

Sd-1

Lemma 4.1. Forany set E and any 0 < 0<1/2,

(4'7) ||Az/2TSI[EHig(RZ,Lg(Sl)) <C |E‘

Proof of Lemma 4.1. First of all, we decompose the sphere S! into sub-
domains Sy with k = 1, 2 such that |v;| > 1/2 in S. Of course it is enough to prove
(4.7) with Sj, instead of S! and by symmetry we do it only for S;.

Now we are going to make two reductions.

Step 1: Reduction to the compactly supported case.

We explain why it is enough to prove for any K > 0 and any set £ € B(0, K), the
inequality

(4.8) ||Az/2T3 g ”All,f&(B(O,K).L%(Sl)) < C(K) |E].
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Take any set E C IR? with finite measure and any K > 0. We decompose E into U; E;
with E; C B(x;, K) and |x; — a;| > K/2 and E; N E; = 0, Vi # j. Then

) =3 15w,
i
and consequently

TolgGe,v) = Tolp @) lpe,20@) + > Tilp@, v) Ly psox =1 + 11
i 5

Now, of course because of the condition |x; — x;| > K/2
2

2
J J|Ag§/21|2dv de=0C)» J J|A$/2T31[Ei(x,v)|2dv dx

R2 \ Si b B 2K) \ S

< CRK)>_|E;| < CQK)|E|,

since (4.8) is obviously invariant by translation and hence true as well if we replace
B0, K) by B(y, K) for any y.
As for the second term, we remark that, as E; C B(x;, K)

TSHEi(OC, ?)) T[\wfx,ijK < e—\m—mi\/g_Kﬂ’

and that furthermore (that inequality is proved in [18]), for any

J T35, (e, v)[* dv < C |E;.
Sy
Eventually we simply bound in L*
2
j j I dv | doe < Ce B[ By j ¢/l 2 g
RZ \S1 b R?
<CeX|E|
We have decomposed 7;lz into two terms for any K. The first one belongs to
WO4(L2) with norm (C2K) |E Y4 (which is obviously at most polynomial in K) and
the second one in L* with norm e %/4 |E |1/ 4. By real interpolation, we deduce that

T 1z belongs to W 4(L2) with norm C|E["/* for any ¢ <0, which is exactly what we
want.
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Step 2: Reduction to the X-ray transform.

The aim here is to get back the case where T;Ig(x, v) is invariant along any line
with direction v like the X-ray transform. So first of all, we write

0
A(’./ZT*IE(QU, V)| =42 | v -V T + tv,v)dt
x 0 f7 0

+00
< J |02 0 - N, T g + to,v)| dt.

—00

All these expressions make sense because now £ C B(0, K)

vV, Tolgl +tv,v) = J v-Vlgl +tv+rv)e " dr
0

o]

(4.9) = J % (Ig@ + tv +1v)) e " dr
0

(e 4+ tv +rv) e " dr,

O —_ R

by integration by parts in 7. Then 7T is the integral on the whole line by (2.3) and so

(4.10) vV, Tlp(e + to,v) = J g + tv +rv) e " x % dr.

Now we denote

+00
Tlg(x,v) = J 4020V, T (e + to,v)| dt.

—00

Thanks to (4.9) and (4.10), we know the following properties on 7', for some ¢ > 0 (in
fact @' =1/2 - 0)

(4.11) v VT lge,v) =0, || 472 T 1g|. < C|E|">.
B(0.K)xSy
We want to deduce from (4.11)
(4.12) ||T][E||21,§(B(O,K),L%(S1)) < CK) |E].
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Step 3: Deduction of (4.12) from (4.11).

We begin with
2

4 2
1T &l Lok, 26 = J J [T g, v)]"dv | dw
BO.K) \veS;

- J J TG, v)F x | TG, w)| dv dw di

B(0,K) v,weS;

= J J J T g, v)[? | T g, w)[? dw dac d.

veS; xeB(0,K)weS;

We change variables in & decomposing x in i + lv with y in the plane H; of equation
21 = 0. Since |v1| > 1/2, the jacobian of the transformation is bounded and as all the
terms in the integral are non negative, we may simply bound

K

4 2
171521 m0,5), 2251 < J J J J T gy + v, )|
UGSl y€H1 I=—K weSl

x| Tg(y + W, w) | dwdl dy dv

K
< j J|THE<y,v>|2x j J T sty + o, w)2dwdl | dydv,

UESl yEHl I=—K weSl

because Tf(x,v) is constant on any line with direction v and therefore T lg(y + (v, v)
does not depend on [. We denote

K

Iy, v) = J J | Tlg(y + W, w)| dwdl,
I=—K ’M)Esl

and we want to show that I belongs to L. So we fix y and v and we first decompose Sy
into the union of S} with S} = {w € S, 27" <|v — w| <27} and so

K

I v) = ili(l,v) = i J J |T gy + lv,w)|2 dwdl.
i=0 i

0K e

Of course T lg(y + v, w) is constant along any line with direction w so we may
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bound
K K

J J J|T1E(y+sw+lv,w)|2dsdldw.

weS! I=—K s=—K

1
12_2K

We change again variables from [ and s to z = % + sw + lv. We denote by C,, ,,, the
set {y +sw+ W, |s| <K, |l| < K} and by |(v,w)| the sinus of the angle between v
and w. Then

1 o dzdw
g —_—
higg | ] msewtESy
ZUGS% zecy;vw
2i+1 9
< oK J J |T gz, w)|" dz dw.

WESTI zec}/,v.w

Denote Cy, = |J Cypwand E=En Cy». Clearly, as all the terms are non negative
weS?

2i+1

I, <

) 2
Soxk J J |T (2, w)|" dz dw.

7,U€S71.' 260_1/.1:
Using a Holder estimate, we find for any p > 2,
2/p

x|Cg,_v|1*2/'°xj J|THE(z,w)|pdz dw

weSi ZECW;

i+1

g
IZ_ZK

2/p
gC(K)Zi“xZ*i(l*Z/p)xJ J Tl wlPde | dw,

weSt \zeB(0,2K)

because the measure of C,, , is bounded by a constant depending on K times 271, Now
by Sobolev embedding, for 1/2 — ¢ /2 < 1/p <1/2, the last integral is dominated by
the L2 HY norm of T'1;. Therefore, taking 1/p = 1/2 — ¢ /2, we get by (4.11)

I; < C(K)2t x 2710 « J J |Ag/2TI[E(z,w)|2 dz dw
weSt zeB(0,2K)

< CK)2H x 271 x C|E| < C(K) x 27,

because the measure of £ is less than the measure of Cy». Eventually we may sum up
the series and get

1= f:zi < C(K).
=0
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This has as immediate consequence that

’I)€S1 ?/EHl
< C(K) x ||,

using again the known L? estimate (4.11) on 7. O

Note that it is relatively simple to find a set £ for which the lemma would be false
if p > 4 in dimension two. Indeed, one may take for example a set composed of the
N sets E; of equations in polar coordinates r, 0, 0 € [¢/N, i/N 4+ i/2N] and r < 1.
Then |E] >1 and for any x in the square of size 1/N centered at the origin
[14Y*1g(x,v)* dv = N and so to have
v

p/2
N2 xNP < J (J | A g (e, v)|2dv) dx < CNP/2,
BO2K) \v
one must have p < 4.

4.3.2 - A example in L'

The example that we give below shows that in Ll(Rd) (in &) no derivative may be
gained.
Consider the following function gy

N N .
gn@,v) =3 Y (=D Ly ijvjcajne X 0@z =j/N) x Oy ().

i=1 j=1

Instead of true Dirac masses, we should take approximations of them in L! so that gy
belong to L. However to keep things as simple as possible, we will do just as if Dirac
masses belong to L!. Then, we obviously have

lgwllz e =N x N x N7% x || @y < 1.

The function @y will be determined later on but with an L norm less than one.
Next we define fy by means of gy

In(e,v) = alw) x ngv(x — vt,v)dt,
0

with a(x) a regular function with compact support and value 1 in the ball of radius 2.
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Therefore we have
v-Vefn =gn + Iy,
with

hy =@W-V,a) x JgN(ac —ot,v)dt.
0

It is obvious that Ay is at least as regular as gy and so

(4.13) o Vafwlpipe <C.

Now let us compute the L. L norm of fy. Given x and v the value of fiy depends on
the number of times the line issued from x, and with direction v, crosses one of the
small segments of which gy is composed. This almost never happens. For instance, if
Nuxo is an integer and if v is along the x;-axis, then fy is the average of Dirac masses.
This case is avoided by assuming that @&((a, 0)) = 0, for any @ and it ensures that fy
does not exhibit any Dirac mass itself.

However, it remains the other cases where for example x; = i/N +1/N? for
some 4. Then if |v;| < 1/N?, f(x,v) is of order N. Finally the norm of fy may be
estimated as

(4.14) Il SCA+NxNxN?<C.

For py those points of concentration of fyr do not have any importance. Indeed py
is the average of fy in v and if fy is of order N at some points, it is only for values of v
in an angular sector of size N~2. Consequently, py is at most of order one. Then
consider a segment with relative coordinates (a, b) (relative with respect to x), this
segment is seen from & with an angular variation of

(1 b
*\N% ' NZa?

Hence for a given « which is typically at a distance 1/2N of the closest line xs = j/N,
the measure of the set of velocities v, such that the corresponding line crosses at least
one segment, is

- J/N
;( _+ZN2@2/N2> ~1

Note that this also justifies that a given line almost never intersects more than one
segment.

Now of course there is the question of the alterning signs in gy which could
produce cancellations in py;. This is where the definition of @y, and the fact that it is
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L but not in any Sobolev space, plays a crucial role. Indeed let us choose a @y such
that py is indeed of order 1 at the point (1/2, 1/2) for instance. This is possible but
only because we do not need any derivability on @y.

Then notice that p is almost periodic of period 2/N. If the segments in gy where
equidistributed in the whole space, it would be exactly periodic but as it is, some
small perturbation has to be expected from the compact support in gy. Because the
derivative of py is obviously at most of order N, this means that py is of order one on
a domain a measure of order one also.

To conlcude this counterexample, we remark that p, changes sign if we add 1/N
to x; due to the alterning signs in gy. Therefore, the derivative of py is exactly of
order N and

(4.15) ol ~ "

The combination of (4.13), (4.14) and (4.15) shows that, although fy and gy are uni-

1L, py is not uniformly bounded in any Wi, s > 0.

formly bounded in L

We turn to the case of exponents p > 2. We use polar coordinates in « and v, hence
x = re’ v = ¢?, We take
gn(e,v) = e,y x e,
such that
‘lgNllLZL,?C = N®/4.

As in the previous case, we define fy as

fn(e,v) = ( Jg(ﬂc —ot,v) dt) x a(r/N),

0
for a a C;° function. We obtain
(4.16) [0 Vafivls e ~ N0,
Given any a = 7e", if we choose v = ¢/?*™, then fy(x,v) is equal to N, so that
(4.17) ||fN||LfL;< ~ NP,
Now given x and assuming that v is not parallel to x, then there are cancellations in
the integral defining fy. As a matter of fact, the order of fy is the typical length on

which there cannot be any cancellation. It is easy to see that this length is N /» or N if

r < 1. Therefore, given the oscillation in p, coming from the ¢’V in gy

(4.18) ||pNHW;;; ~ N,
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As previously, this norm has to be bounded by the norm of g to the power s times the
norm of fy to the power 1 —s. Estimates (4.16), (4.17) and (4.18) have as a con-
sequence that s has to satisfy

2s 2 2s
1+4s<—+1-s54———,
q p D

or
1/p
<—1r
ST 1+ 1p

This again corresponds to the result predicted by Theorem 3.2.

Before ending this subsection, we would like to point out that these examples do
not rigorously allow us to conlude that the conditions p; < min (ps, p3), or the same
for g;, are absolutely necessary. At least a counterexample with an exponent ps <2
for f and an exponent g2 > 2 for g (or the converse) is missing.

5 - Application to Scalar Conservation Laws

The purpose of this chapter is to present a (relatively short and self-contained)
application of the previous results namely for kinetic formulations of scalar con-
servation laws. Its scope is much too limited to give an overview of conservation laws,
or even scalar conservation laws, kinetic formulations or regularity results for these
equations. Hence many major contributions to the field are not described. We refer
the interested reader to [42] for a more complete description of kinetic formulations,
and to [11], [28], or [47] for example for an introduction to the theory of conservation
laws.

Scalar conservation laws are hyperbolic equations on a scalar u(t, x) € R

O+ Vi - (At ) =0, t>0, xR,

5.1
(6.1) w(t = 0,2) = u’(x),

where the flux A will always be regular here, namely A € C%(R, R%).
The characteristics for Eq. (5.1) are lines. More precisely if u is a regular (C')
solution then

ult, x + ta(’ (@) = u’(x),
where a(&) = A'(&). Of course this also shows that regular solutions cannot exist in

general for all times :if & = x1 + ta(u’(x1)) = 22 + ta(u’(x2)), then u(t, x) would have
to be equal to both %°(x;) and u’(x).
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This lack of regular solutions in large times requires the use of weak solutions for
which, unfortunately, there is no uniqueness; hence the introduction of entropy to
discriminate.

We present here the theory of entropy solutions through kinetic formulations, as
this is the simplest way to apply averaging lemmas. Other approaches are of course
as valid; the more tradional being the use of vanishing viscosity and Kruzkov en-

tropy.

5.1 - Kinetic Formulation
5.1.1 - The definition

The kinetic formulation for scalar laws was first introduced in [38] (and at the
same time in [39] for isentropic gas dynamic).
Assume that u is a classical solution to (5.1). Define then

1 if 0 <v<ult,x),
(5.2) ft,x,v) = { -1 if u(t,x)<v <0,
0 in the other cases.

Compute (in the sense of distribution)

Of = O o(u(t,x) —v) = —a(ut, x)) - Vyult, x) o(u, ) — v)
= —a(v) - Vyult, x) o(ut, x) —v) = —a() - V., f,

and so f solves the free transport equation. When u is no more C' this computation
cannot be done. Instead one may define

Definition: A functionu € L}OC(R+ x R%is an entropy solution to (5.1) if and

only if there exists a mon megative measure m € M} (R, x R*), such that the
Sfunction f defined through (5.2) satisfies

(5.3) of +a)-V.f = oym.

Note that if f satisfies (5.3) then f is of bounded variation in time with value in a
negative Sobolev space (BVjo (R, W-1-01(R%1))). Therefore the trace of f att = 0
(t = 0+ more precisely) is well defined and since % can be recovered through

(54) u(t,x) = Jf(t, x,v) dv
R

the value of u at ¢ = 0 makes perfect sense and one may add an initial condition to the
definition.
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Through the rest of this chapter, we will assume for simplicity the equivalent of (2.5)
(55)  3C, V¢eRY v, Vee Ry, |[{veR; |a®)-&—1 <&} <e

This condition enables us to use the equivalent of Theorem 3.2. However most of the
theory would remain valid under the weaker assumption

(5.6) 3C, veEe Ry, vr, Vee Ry,  [{veR; |aw)-&—1 <&} <&,
for some 0 > 0.

The main aim of this chapter is to prove the following

Theorem 5.1. Assume (5.5). For any u’ € Ll(Rd), there exists a unique
function u € L*(R,, Ll(Rd)), entropy solution to (5.1) with u(t = 0)=u’.

Moreover if u® € L™ the solution satisfies u € W;Oi’/ Z(R: x RY) for any s<1/3.

5.1.2 - Propagation of L? norms

Let us begin by showing the easiest property of entropy solutions, namely

Proposition 5.1. Take any ¢ € C3(R), convex and assume that

J $u°(@)) dar < oo,
R?
then for any t > 0 and any entropy solution w with initial data u°
J Bult, x)) de < J B’ (x)) da.
RY R?
In particular if u® € LP then w € L®(R, LP(R%)).
Proof. Define ¢, asequence converging toward ¢ with ¢, € C.(R). Notice that
because of (5.2)
J ¢, (u(t, x)) de = J ¢, () f(t,x,v)dxdv.
R? RIxR
Now multiplying (5.3) by ¢, (v), integrating in space and velocity

d

7 J ¢, W) f(t,x,v)dadv = J ., (v) dym dx dv

RIxR RYxR
"
= - J L, mdxdv <0,

RYxR
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because ¢, > 0 and m > 0. Consequently

J ¢, (u(t,x)) de = J ¢, ) f(t, x,v)dxdv

R? RIxR
< J ¢, @) f(0,2,v)dxdv
RIxR
- | et

R¢

and passing to the limit in 7, one obtains the proposition. Notice that the sign of the
measure is crucial to get the estimate. O

5.2 - Existence by transport-collapse approximation

As usual the existence of a solution is obtained by an approximation procedure.
The classical one is the vanishing viscosity method, it however requires the use of
compensated compactness arguments or velocity averaging lemmas with a full de-
rivative in « (see 4.1). Here we instead use the transport and collapse introduced by
Y. Brenier (see for example [7], [51] for the convergence of the method or [29] for
other relaxation schemes).

5.2.1 - Presentation of the method

For any n we define the function f;, recursively on the intervals Ji/n, (¢ + 1)/n].
The approximate solution u,, is then always given by

5.7) w@@=b&%ww
R
Step 0: Initialization. We start with

1 if0<v<ult o),
0. 2,0)=<¢ -1 if ult,x)<v <0,
0 in the other cases.

Step 1: Transport. Given f,(i/n,x,v), f, on Ji/n, (@ + 1)/n[ is the solution to
Ofn +a@) - Vyufy =0,

with the corresponding initial data at ¢ = i/n. Finally u,, on Ji/n, (i + 1)/n[ is given
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by (5.7). This explicitly gives
Jult,2,0) = fu(i/n, @ — a(v) ¢ — i/n),v).

Notice however that on this interval, one does not necessarily have the constraint
(5.2) as there is nothing in the free transport equation to ensure it.

Step 2: Collapse. We introduce the non linear collapse operator L on the functions
of the variable v by

1 if 0 <ov< Jf(v)dv,
R
(5.8) Lfw =4 1 if J fw)ydv<wv <0,
R
0 in the other cases.

Then one defines
Sul(@+1)/n,x,v) = L(f,(i/n, ¢ — a®@)/n,v) = L0+ 1)/n—, 2,v),

where f,,((t + 1)/n—, 2, v) is the limit of £, (¢, x,v) for t — (i + 1)/n with t<(i 4+ 1)/n.
Therefore one recovers for all ¢

1 if 0 <wv<u,(i/n,x),
(56.9) Fu@/nye,v) =< =1 if w,(i/n,x)<v <0,
0  in the other cases.

Finally let us point out the main property of the collapse operator. For any f with
sup | f| < 1 and any regular function ¢(v) with ¢'(v) > 0

(5.10) j¢(v)Lf<v) dv < j¢<v)f(v> .
R R

The proof of this estimate is not given here (see [7]).

5.2.2 - Convergence to an entropy solution
In the sense of distribution f;, satisfies
(5.11) Ofn + V) - Vi fu = gn,
with
On = io: ot —i/m) (fu(i/n,x,v) — f,(i/n—, x,v)).
i—1
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Moreover
sup | fu(0,2,v)| = 1, J | /00, 2, v) dac dv = J u®(xe) doe < o0,
R*! R¢
and by induction on the intervals [i/n, (¢ +1)/n], for any t > 0

1ty Mpaggasny = It Mpsgey = 1ulle, sup|fult,z,v)| = 1.
0

Hence we may extract a converging subsequence, still denoted f,,,
fo—Ff, w—xL>.

And in addition we may use (5.10) to deduce that for any test function &(x, v) with
0,P>0

D(x,v) (fu(i/n,2,v) — fr,(i/n—, x,v)) dx dv < 0.

Rd-+1
Hence there exists a non negative measure M; ,(x,v) such that

(fu(/n,2,v) — f(i/m—, 2, v)) = 0,M; (2, v).
Obviously this implies that
(5.12) gu = Oymy, My >0,
with

my(t,x,v) = ié(t —t/n)M;,(x,v).
=1

Now define @y,

Oy(w)=v for [v] < M,
Dyw)=M forv>M,
Dy (v) = -M forov< -M.

Multiplying eq. (5.11) by @, and integrating on [0, T x R**!, one gets

T
J <DM(fn(T,w,v)—fn(O,x,v))dwdv:—J J 0y By i, 2, 0).
Rdﬂ 0 Rdﬂ

So from the L! estimate on f;,

M

T
J J J dm(t,,v) < 2M||fult, ., Mlgn < 2M || py-
0 —-M Rd
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Therefore still extracting a subsequence, we obtain
My —sm, w—*M.,
with 72 a non negative measure in M} (R, x R?™'). The limit f then satisfies

of +a)-Vf = dym.

It remains to show that the constraint (5.2) holds. Assuming that u,, is compact in L'
then this follows from (5.9) and we are done.

5.2.3 - Compactness of u,
Take a function @ € C*(R) satisfying
d)=1 if p| <1, d)=0 if p|>2, 0<PW)<1 Wo.
Then define

uy = an(h x,v) d(w/R) dv.
R

This uf is an average of f;, as defined by Eq. (3.2). Moreover we have

Oufn + W) - Vi fr, = Oy,
with m, bounded in any W "P(0, T] x RY x [-R, R]) for >0 and
p<@—r/d)" as

0
172nllyyr0, 71 1—R, RY < Cr J dm, < Cr R |[u”]| .

[0, TIxR?x[~R, R]
Next the supremum of f, is less than 1 so f;, is locally in any L? and in particular
Ifull 200, mixBO.OX1-R, R) < C VTKR.

Using Theorem 3.1, one gets that u* belongs to Wlso’f/ 3R, x RY) for any s<1/5
with

(513) ||U/§ ||Ws.5/3([0y T1xB(0,K)) S C(Sa T7 Ka R)a

and therefore uf is locally compact so that

loc *

(5.14) ulf —uf = J ft,x,0)dw/R)dv  in L3
R

Now as u” € L! there exists an even convex function y € C%(R) with »(0) = 0,
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2()/|E] — + oo as |£] — +oo and such that
J 2 (@) dae < oo.
R¢
Note that from the definition of f,, this implies that
J 7 @) [t =0,2,v)dvde = J 7)) de < oo
RIxR R¢

Indeed assume that «°(x) > 0 (the negative case being the same as y is even) then

u0(x)
J%’(v)fn(tZO,x,v)dvz J 2@ dv = 2°@).
R 0

Multiplying Eq. (56.11) by ' and integrating, one gets from (5.12)

d d
& | wolsteviwa -5 | zonteowe
RTxR RIxR
= J Gy dacdv = — J My, y" (W) dvdae < 0.
R7xR RIxR

This shows that

J |?,Ln — %fl dﬁC S J J |f}’b(t7 X, 7))' dv

R¢ R? [v[=R
1 , 1 0
< B J K fudxdy < 0] J 7’ () dee,
RYxR ’ R¢

and so u, —uf in L goes to 0 as R tends to infinity, uniformly in %. From the
compactness of uff (5.14), we deduce the compactness of u,, in Llloc and we are done.

The heart of the argument here is the compactness provided by averaging lem-
ma. Non optimal averaging lemmas would be enough though.

5.3 - Uniqueness and propagation of BV bound

Uniqueness for scalar conservation was first obtained in [34]. We give here a
formal argument corresponding to the proof in [43] which uses directly the kinetic
formulation.
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5.3.1 - Uniqueness

Consider two entropy solutions %; and uz to the scalar law, then

Proposition 5.2. (L! contractivity ) We have for any t > 0
a1, ) — ua(t, .)”Ll(Rd) < Hu(l) — %gHLl(Rd).

This of course implies the uniqueness of the solution but it does even more than
that (see the next subsection).

Denote f and f; the two functions defined from u; and us by (56.2) and my, my the
measures in (5.3). For simplicity assume that «; and ug are non negative and hence so
are f and fo.

First note that as a consequence fZ = f;. The function f? solves the same equation
but multiplying (5.3) by 2f; we also get

Hf? + aW) - Vo f? = 2f; dym;.

Thus

2f; Oymy; = Oymy,
and
(5.15) J . Oumidv = 0.

R

Of course this is only formal. The rigourous argument requires the use of convolution
as in [43].
Now use (5.3) for f; and f> and compute

d
G | vn-sfaed= | - p@m - om
RYxR RYxR
. J (fi Bz +f5 Byma),
RYxR
by (5.15). As f; is non increasing
J fi Omedxdv = — J Oy fime dxdv > 0,
RIxR RxR

and the same is true for the other term. Finally

d

7 J |fi — fol? daedw < 0.

RIxR
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To conclude note that |f; — f2| isequal to 0if 0 < v <wujand 0 <v <wug orifv > ug
and v > ug; it is equal to 1 if u; <v <ug or ug <v <u;. Therefore

| 1h-pPdedo= [ - wlde

RYxR R?
and

%J luy — ug| dee < 0.
R?

Again this computation is only formal.

5.3.2 - Propagation of BV norm
Take any & in R? and apply Prop. 5.2 for a solution u(t,«) and the solution
u(t, x + h) which corresponds to the initial data u°(x + &), it shows that
J lut,x + h) —ut, )| de < J |u0(ac +h) — uo(ac)| dex,
R? R?
and so

(5.16) J [utt, @ + }F}z" Ut g, < J IV,20@)) d.

R? R?

Hence as a corollary

Corollary 5.1. Let u be an entropy solution to (5.1) and assume that
u® € BV(RY) then u(t,.) € BV(RY) and

ot Mgy < 14°]| gy
Note that typically, there is no equality (the inequality is strict). Indeed the
equality holds only as long as there is a strong solution.
There are many ways to prove this result. The regularity will typically be shown

to hold uniformly for a sequence of approximating solutions. If one considers the
sequence f, obtained through transport-collapse, it is easy to check that

||fn(t7 B ')HBV(\[{"', MYR) — ||fn(2/’n+, B ')”BV(RdA, ML(R))’ Vit € [Z/’I’L, ('L + 1)/"[7
and that the collapse operator contracts the BV norm or

G/, I pyre, any < 1FaG/m—= 5 gyt ancry-
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One then gets that
0
1 - Mgy, anery < 10 gy, ey = 1 | pyray:

and from that an estimate on the BV norm of u,,.

Finally let us point out that the proof through uniqueness given here is inter-
esting because if one goes back to the estimate on f, it bounds

J |t + h,v) — f(t, @, 0)

dx dv,
I

RIxR
which is not the BV norm of f as it would be natural but looks in fact like the H'/?
norm on f. Of course as u is the average of

ut, gy = I, ., -)HBV,(M,g)?

and this in turn dominates any H*(L?2) norm of f with s <1/2 (by interpolation as f is
also BV in velocity by its definition). However it is only the very specific form of f
which provides the bound the other way around. In fact the argument in Section
5.3.1 could be used to directly bound

|f(ta 9(:, ’l)) _f(ta ya ?))|2

|9€ _ y|28+d

Hf“%{;;(L%) = J dx dy dv.

R¥xR

5.4 - Regularization

The first section proves a regularization of the solution in L?. Then averaging
lemmas may be directly applied to get the regularization of Theorem 5.1. We finish
by showing Oleinik BV regularizing property and with some comments on other (non
Sobolev) regularity properties.

5.4.1 - Dispersion estimates and L? regularity

As all other regularizing effects shown here, this one relies only on the properties
of free transport. The use of dispersion estimates on the kinetic equation to improve
the L? norm of u was already performed in [38] (see also [42] where a simple illus-
tration is given and [44] or [19] for a more complete treatment but purely for kinetic
equations).

Let us first take the simple example

1 1

8tf+v'vtf:0> f(t:O’xav):ii'
! 1+ o 1+ |xf
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Then the solution is simply

1

1
f(t,.%','l)): .
L+ " 14—t/

Therefore although [ (1 + \v| Yt =0)dv e Lloc(Rd) only for k<mn — d, we have that
Ja+ \'v| V@) dv € Lloc(Rd) for anyt > 0 and forall k<n +1—d.

This shows that the solution enjoys additional decay in velocity, depending on its
decay in space.

The same feature is true for the solution f to (5.3) with the additional remark that
moments in velocity imply L? norm for . In order to simplify the exposition, let us
assume that

(5.17) [v]|a' )| < Cla®@)], C|a(v)| > |v|l, for |v| large enough.
Note that from (5.6), one would expect [ = 6 but of course (5.6) does not imply any

estimate like (5.17) (which is not strictly necessary in addition). Now we have

Proposition 5.3. Assume that for some p > 1, u’ ¢ LP(RY), then for any
t>0, ult,.) € L'URY) and for any k > 1

loc

z |v‘p+lfl
(5.18) J J L |f@,x,v)|dedvdt < C J [u®()|? de.

A + |
0 i+t R®

Proof. By Egq. (56.3) we have
¢
f@t x,v) =f0,x — a)it,v) + Japm(t —s,x —a@)s,v)ds.
0

Therefore fort > 0

T P2 L pH-1
J J |”‘ o) dedudi = J J (ll?)' Ty el
0

R’ d+1 0 ~Rd+1

|,v|p+l 1
_ J J L O — a0 de do

1+ ||
0 R(Hl

T t

| |p+l 2

+JJ J v@vm(t—s,x—a(v)s,v)dwdvdsdt.
1 (1+| D&
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On the one hand, for k£ > 1, by (5.17)

T

‘v|p+l 1
J J a A+ [z)F /(0,2 — a()t, v)| du dv di
) ] av

A |,U‘p+l71
:J J 10, 2,0)| dedv dt
0 i A+ |x+ a@)t])

dt dx dv

T
<c | pirio,e, J latv)
- J W™ 70,0 A + |z + a@)t])
RI+1 0

<C J P10, 2,v) de dv = C J @) P da.

R%+1 R?

On the other hand with a change of variable, and an integration by parts

Tt
|p+l 2
vOym(t — s, x — a()s,v)dx dvdsdt
l l J A+ |z

T
|Q)|p+l—2
:JJ J = 0 Oym(t — s,x,v)dedvds dt
00

Tt
( l)JJ J |v|p+l 1 m(t — s, x,v)dxdvds
= p+ T 9,

49 M(1+|x+a(v)s|)k

m(t — s, x,v)dedvdsdt

J P @) - (@ + a)s)
] A+ e+ a@)s) x o+ a@)s|

r |v|;0+l 2
J J k+1 m(r, x,v)dx dvdrds
0 o (1 + |z + a()s))

R +1

[58]
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as m is non negative and by (5.17). With the same argument as for f(0) one
concludes that

Tt
|p+l 2

J J J vIym(t — s, x — a)s,v)dx dvdsdt

00

1+ [
T T
<Ck J J |v|p*2m(r,x,v)J 9O 4 dw dwar
) ) 0(14—|90+0L(v)s|)Jr
R +1

Notice that from the estimate on the propagation of the L bound for »
¢

J lu(t, x)|P dw+J J |v|"’_2 m(t,x,v)dedvdt < J [’ ()P de,

R? 0 Rt R?

so finally

r |v|p+171
J J aLaf |, x,v)|dedvdt <C J |u’(@)|? de.
0 R+t  led R =

It is in fact conjectured that with suitable assumptions on a, then the solution %
becomes immediately bounded. This is still unproved however. If one could prove an
estimate like

|?/L0(90)|p

A |p+l 1
J J ——— |ft,x,v)|dedvdt < C J e |)k,
0

1+ x|

R d+1

then by boostraping it, it would show that the solution belongs to L? for any p < cc.
But notice that the argument of Prop. 5.3 may precisely only be used once because it
requires the full L? of «° and not only a weighted L?.

5.4.2 - Regularization by averaging lemma

Define as before for a regular @

= Jf(t, x,v) D(/R) dv.

R
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Note that from the definition of f (5.2)

J |avf(t,90, 7))| dv = 2.
R

Indeed (at least for a continuous ), assuming for simplicity that u(t,x) > 0
O ft,,v) = 0w — ult, x)) — o(v),

integrating this gives the claimed estimate, which is then easy to extend by density
for any u € L}, ..
So that

IF 1l (. xR BV < C-

As on the other hand ||f{|. . .ge1) = 1, by interpolation for any s <1/2
Hf”Loc(nhwa% Hs(R)) <C.
Because ||f{| .. pigerty = %l o~ 11rey With alast interpolation for any 7' > 0
1A 2o, miet, sy < € UMl e, aray)-

Since m is a locally bounded measure, it belongs to Wfo’cl(RJr x R for any 0<0.
Thanks to (5.5), we may apply Theorem 3.1 and get

ul e WPE(R, x R, vs<1/3.

loc
Now if u € L* then for R > |[u||;~, u® = u and

(5.19) we WiAR, x R™Y), Vs<1/3.

loc

This is the regularity given in Theorem 5.1

Proposition 5.4. Assume that u° € L! N L>*(RY) and that u is the entropy
solution to (5.1). Then if (5.5) holds, u € Wz;i’/ 2Ry x RY for any s<1 /3.

If w is only in LP, then the argument would be more complicated and we only
give a sketch. It is necessary to do another interpolation using R as a parameter,
namely

u=uf +o8 = J(l — ®(W/R))f dv.

R
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The control on v® is simple, for any 7' > 0, K > 0,

T
||”R||Ll([0, TIxBOK) = J J J Sfdvdxdt
0

BO.K) |v|>R
T
=
R
0

So it would remain to bound the behaviour of ||| .= in terms of R. That is more
delicate because it depends on the behaviour of a(v) for large v so the final result also

1
J ijplfdvdxdtgly o, 150,20
B(0,K) R

depends on this behaviour.
Let us only give the example where d =1 and v = a(v). Define then
frt,x,v) = Rf(t/R,x, Rv) and mp(t,x,v) = R m(t/R,x, Rv)

Ofr +vVufr = Of + RoV, f = Oymp,

and
uf(t/R,x) = J DdW/R)f(t/R,x,v)dv = J D) fr dv.
R R
Moreover
_1\3/2
Ryj3/2 1+RY R 3/2
I S ——%— lw'@/R, x)HW*3/2(ORT]xB(OK))

Ws3/2([0, T1xB(0,K)) — R

N1+ RHY
R

IN

R
[t/ ”)”W”ﬂ(mk 1), Th]x BO.K)"

k=1

By Theorem 3.2, as [T'(k — 1), Tk]is of length T, for »<1/2

R 1—
| @/ R, ) lwssrzqrge), ThIxBO.K) = /R ”LZ(?T(kfl), Tk]xB(0,K), H(R))
X ”mRH?Wl([T(kfl),Tk]xB(O,K)x[—Z, 2))
Note that as r<1/2

Tk/R

2 2 2
el meson men <B || [0l
T(k-1)/R B(0,K) R

2
SREET|fllzxw®, «r, mrry < CR.
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With the same computation
Tk 2
J mp(t,x,v)dvdxdt

T(:~1) B(O.K) —2
Tk/R

<R J J J m(t, x,v) dv d dt.
T(—1)/R BOK) [v|<2R
And from the computation on the propagation of the L” norm of u (see the corre-
sponding subsection), one deduces that
T

(=

J J WP 2m(t, @, v) dvda dt < ||u’].
R

R R

So finally with p = min (2, p)
Tk 2
J mg(t,x,v)dvdedt < CRZ P71,
T(k—1) B(0.K) —2

and

R 1/2—8/2+2s—sp—s _ 1/245/2—sp
[|lw (t/Rvx)”W&W([T(kfl).Tk]xB(O,K)) < CRVE /2575075 — O RIZHS/2750,

Concluding

R 1/2—5/2+2s—sp—s 1/2+s/2—sp
Hu HWS_;;/Z([OA’ T]XB(O,K)) S CR / 5/ +28—Sp—S§ — CR / Jré/ 6p7

so that using the real method of interpolation described earlier, we get that u € W,
with r<(p —1)/@C(p —sp—1/2+s/2))and 1/q = (1 — 2r) + 47/3.

5.4.3 - Oleinik BV regularization

It is possible to show that the solution immediately becomes BV in the particular
case of a strictly convex flux in dimension 1: inf a/(v) > 0.

The original argument was given in [41] for the vanishing viscosity approxima-
tion, with first proving a semi-Lipschitz bound on u. Here we instead use the
transport collapse scheme described in Subsection 5.2.1.

To simplify assume that

(5.20) a@w)=v, u’>0, u’eL®R).

This is not a huge hypothesis as anyway the computation can only be done for strictly
increasing a(v).
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The following uniform bound holds for the sequences f,, and u,, defined in 5.2.1

Proposition 5.5. Foranyt >0, any R >0
[t Octn(t, ) = Ulap—r, gy < 2R|[u’|| -~ + 2¢ HMOHioc :
Proof. We argue by induction on every interval Ji/n, (i +1)/n]. Let us start

with the first J0, 1/n]. For t<1/mn, f, is simply the solution to the free transport and

hence
.fn(ta X, ’U) :f(o, Xr — 'Ut, 'U).

So
Osutn(t, ) = J O [0 (0,2 — v, v) dv

R

— [ (- {002 - ) + @£ — 0t 0)) o

R

_ % J(&, 100, 2 — vt, ) do.

R

As such for 0<t<1/n, since f(0) satisfies (5.2)

tOsu,(t, ) — 1 = J(&(v) — 0w —ulx —vt)))dv—1=— Jé(v —u(x — b)) dv.

R R
Therefore
R R+t
J | Ot (8, ) — 1| doc = J J o — u’(x) dev dv
“R R —R+ot
B[l t
< 6w — u'@)) dwdv < 2R ||u’|| .
R[] t R

As u,, is continuous in time at ¢t = /% (the collapse operator only modifies f;,), the
same estimate is true at t = 1/n.
Next, assume that the estimate is true at time ¢ = 7/%. Define

Gn(l,,v) = f,(i/n+, 2 +vi/n,0),

and notice that

Do = Oufu)i/mtr e+ vi/m0) + %axfnu'/m, &+ i/, ).
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On the other hand for ¢ € Ji/n, (i +1)/n]

Uy, (t,x) = an(t, x,v)dv = Jgn(i,x —t,v) dv,

R R

so with the same argument as before

Dty :% J(avgnxa & — vt,0)dv = % J Ouf )i/ nt + 0/ — ), 0)
R R

i Ja%fnu'/nﬁ @+ v(i/n—1),v)dv.
R

By the definition of f,,(¢/n + ) (5.8), one gets the induction relation

t Dt — 1 = J (6@ = 6(v = wlifm,z + v G/m— 1)) dv -1
R

+ % J O (i, + v (i/m — 1),0) 6 (v — w, i/, @ + v (i/n — 1)) dv
R

(5.21)

= J (%&cun(i/n,x +v(i/n—t) — 1) S(v—un(i/n, x40 (i/n—1)) dv.
R

Consequently for i/n<t<@ + 1)/n

R
J |t Optty, — 1] dc
“R

RA(t—i/m) |[u®|| o

< J J [t/nOyun (11, 2) — 1| 0(v — uy(i/m, &) dv dx
—R—(@t—i/n) |u’ 0 R
R+@t—i/n) ||u’||

< J i 1detn i, @) — 1| dee

—R—(@t—i/n) ||u’|),
. 0 0 21 012
S 2R+ ¢ —i/m) [wllp) el + - ez

< 2R[| x + 28],

because we have assumed that u(i/n, x) satisfies the estimate. O
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544 - Comments on the regularization effect

In dimension one there is a wide gap between the previous BV regularity and the
1/8 derivative provided by averaging lemmas. So of course it is natural to wonder
whether in higher dimensions (or for non convex fluxes) one could not improve the
result of averaging lemmas and possibly reach BV, which for many reasons would be
a crucial step.

The answer is not known for entropy solutions. However there is a counter-
example if one considers the larger class of solutions with bounded entropy pro-
duction. Those are % such that the function f defined through (5.2) solves (5.3) with m
a bounded measure (but not necessarily non negative). Obviously there is no un-
iqueness in this case. For those solutions an example detailed in [12] shows that the
1/3 derivative is optimal.

What is missing is a precise and careful use of the sign of m (this is true as well for
the L? regularization). The kind of techniques that are used for averaging lemmas do
not make that easy however, and again it is not sure at all that the regularity can be
improved anyway. We refer to [8] for more on the regularity of scalar conservation
laws (not necessarily with averaging lemmas).

Regularity in Sobolev spaces is not the only interesting property of solutions. For
instance BV regularity is interesting over W/33/2 because, in particular, it provides
the existence of strong traces of the solution. Instead of trying to get BV bound, one
may directly study the traces though. This kind of approach is better able to take
advantage of the structure of Eq. (5.3). So for example, strong traces are proved to
exist for the solution in [52] (even for solutions with only bounded entropy). More
recently it was shown that the solutions enjoy a “BV like” structure (see [10]).

Finally let us mention that kinetie formulations and the corresponding averaging
results are not limited to scalar conservation laws: see [39] or [30] for other examples,
[49] for a class of hyperbolic equations with possibly degenerate second order terms,
or again [42].
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