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Abstract. Fluid flows in small systems become increasingly important in
various applications such as micromechanical systems. The present article
focuses its attention on internal rarefied gas flows, in particular, flows induced
by temperature fields, and summarizes some of the results that seem to be
useful or interesting for applications to micromechanical systems. In the first
half, after a brief description of the Boltzmann equation, its boundary-value
problems for small Knudsen numbers are considered, and the results of the
asymptotic theory that gives the recipe to obtain correct solutions via fluid-
dynamic systems are summarized. Numerical analyses of flows induced by
temperature fields at intermediate Knudsen numbers are also presented. In the
latter half, potential applications of the flows caused by temperature fields are
surveyed, with special emphasis on the Knudsen compressor and its variants.
Convenient convection-diffusion systems for the Knudsen compressor are
proposed, and the methods of numerical analysis of fundamental problems, such
as Poiseuille flow and thermal transpiration, are reviewed in the connection to
the convection-diffusion systems.
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1 - Introduction

Fluid flows in small systems become increasingly important in various applica-
tions such as micromechanical systems. In the case of gas flows in micro scales, the
mean free path of the gas molecules is not negligibly small compared with the
characteristic length of the systems. Therefore, the effect of gas rarefaction, which is
peculiar to low-density gases, also manifests itself in this situation. In other words,
the ordinary fluid dynamics is not applicable, and a microscopic approach based on
kinetic theory is necessary.

In the present paper, we focus our attention to internal rarefied gas flows, in
particular, flows induced by temperature fields, and summarize some of the re-
sults that seem to be useful or interesting for applications to micromechanical
systems. The paper is organized as follows. To begin with, we summarize the
Boltzmann equation in Sec. 2. Then, in Sec. 3, we consider boundary-value pro-
blems of the Boltzmann equation for small Knudsen numbers (near continuum
regime) and summarize the results of the asymptotic theory that gives the recipe
to obtain correct solutions via fluid-dynamic systems. Section 4 is devoted to
numerical analysis of flows induced by temperature fields at intermediate
Knudsen numbers (transition regime). In Sec. 5, we overview potential applica-
tions of the flows caused by temperature fields with special emphasis on the
Knudsen compressor and its variants. Then, in Sec. 6, we propose convenient
convection-diffusion systems for the Knudsen compressor. Section 7 is devoted to
numerical analysis of fundamental problems, such as Poiseuille flow and thermal
transpiration, that play important roles also in the convection-diffusion systems
introduced in Sec. 6.
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2 - Boltzmann equation

In this section, we summarize the Boltzmann equation and related equations,
following [1, 2] basically. In this introductory section, we restrict ourselves to a
simple monatomic gas and assume that there is no external force. However, in the
later sections, more general cases, such as a gas mixture, will also be considered.
Supplementary explanations will be given when necessary.

2.1 - Notation

To begin with, we summarize the notation used here. The ¢ is the time variable, X
(or X;) the position vector in physical space, & (or &;) the molecular velocity vector,
f(t,X, &) the velocity distribution function of the gas molecules, p(t, X) the macro-
scopic mass density, v(t, X) [or v;(t, X)] the flow velocity, T'(¢,X) the temperature,
pij(t,X) the stress tensor, and q(¢,X) [or ¢;(t, X)] the heat-flow vector. We further
introduce the following dimensionless variables.

t=t/to, x=X/L, ¢ =&/@RT)"?,
" f=@RT*pyf, b =p/po.

b =v/@RT)?, — T=T/T,, p = p/po;

Pij = P/ o, @ = q/po@RTp)"?,

where tj is the reference time, L the reference length, p, the reference density, T
the reference temperature, py = Ep,To the reference pressure, and R the gas con-
stant per unit mass (R = kp/m with m the mass of a molecule and k5 the Boltzmann
constant). The «x;, {;, ¥;, and ¢; are also used for x, ¢, 0, and q.

2.2 - Macroscopic quantities

The macroscopic quantities p, v, T, p, p;j, and q are expressed as appropriate
integrals of the velocity distribution function f. We summarize the expression in the
dimensionless form.

p=|iac o= /p) |
T - @3 |G- orfa b=l

pi=2 [ @ - 000G - .

i =[0G - vrfac

where the domain of integration with respect to ¢ is its whole space.
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When the state of the gas is close to the equilibrium state at rest with density p,
(or pressure pg) and temperature Ty, the velocity distribution function f can be

expressed as
8 f = py@aRTo) ™ exp(— & /2RTy)(1 + ), or
f=E1+¢), E=n*Pexp(-0),

where |¢| is a small quantity. Correspondingly, the dimensionless macroscopic
quantities can be written as

1 1
(4) R R R
p=1+P, Dij = i + Py, 9=,

where ¢;; is the Kronecker delta, and ||, |u| (or |u;)), ||, | P|, | P;], and |@| (or |Q;|) are
small quantities. If |¢| and these small quantities are so small that their products may
be neglected, Eq. (2) can be linearized and gives

w= JgﬁEdC, u= JCqudC,
(5) rzgj(g]?_g)wdc, P-w+r,
Py =2 (B, Q- eemac - Ju.

2.3 - Boltzmann equation

The Boltzmann equation, written in terms of the dimensionless variables, is

of . of 2 ...
™) IG5 = | - iobdd.
(8) Sh = L/@RTo)"*ty,  Kn=ly/L.

Here, J(f, f) expresses the effect of molecular collision, and the symbols there are as
follows: f7, f*, f, and f. stand for f(t, x, ) with ¢ = ¢, £, ¢, and {,, respectively, ¢, is
the variable of integration corresponding to ¢, and ¢’ and ¢, are defined by

{=(+WV-e)e, (=(-V-ee,

9
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where e is a unit vector; B is a nonnegative function of |V| and |V - e| depending on the
molecular model (in general, B also depends on U, /kgTy, where U, is the char-
acteristic size of the intermolecular potential [1]); dQ is the solid-angle element
around e, and the domain of integration in Eq. (7) is all directions of e and the whole
space of {,.. In Eq. (8), [y is the mean free path of the gas molecules in the equilibrium
state at rest at density p, and temperature T, and Sh and Kn are the dimensionless
parameters called the Strouhal number and the Knudsen number, respectively. For
hard-sphere molecules, B = |V-e|/4v/27 and Iy = (V2rd2,py/m) " with m and d,,
being the mass and the diameter of a molecule.

When |¢| [Eq. 3)] is small and the linearization (5) is valid, the Boltzmann
equation (6) can be linearized and gives the following linearized Boltzmann equation.

o 9 2
ot ox /nKn

(1) £@) = jE*@' 14— 6 P BAQUL,.

(10) Sh

+¢-

L(¢),

where E. is E in Eq. (3) with { = ¢,, and ¢/, ¢, ete. stand for ¢ with { = ¢, ¢, ete.
The model collision term, called the BGK model, is often used in place of (7). The
model is given by

(12) J(f. )y =pf =),
. ) G — o)
(13) fe —WGXP(—%)’

where fe is the dimensionless form of the local equilibrium distribution, and p, ©, and
T are given by Eq. (2). In this model, ly = 2/\/7)@RTo)"*(Ap,) !, where A, is a
constant (A.p, is the corresponding collision frequency). For this model, the line-
arized collision term corresponding to Eq. (10) is

(14) L) =0+2-u+ G -3/2—¢,

where w, u, and 7 are given by Eq. (5).

2.4 - Boundary condition

As the initial condition for the Boltzmann equation (6) [or (10)], we need to specify
f (or ¢) at the initial time.

Letwv,, (orv,,;) and T, be the velocity and temperature of the boundary, and v,, (or
Vi) and T, be the corresponding dimensionless quantities, i.e.,

(15) Dy = U,/ (QRT()'?, Ty = Tyw/Th.



7 FLUID MODELS AND SIMULATIONS OF INTERNAL RAREFIED GAS FLOWS 7

The conventional boundary condition for Eq. (6) on the solid boundary is the
Maxwell type condition, the dimensionless form of which is written as

(162) f&) = A —a)fG -2 - b)-nlny)

/A)w (Cj—f)wj)z .
racppew (<) @os0n>0

. 2y/m A ;
W) -z | €-bomf

(€=0u) n <0

where n is the unit normal vector to the boundary, pointing to the gas, a (0 < a < 1)is
the accommodation coefficient, and the independent variables ¢ and x in f are not
shown explicitly. The case a = 1 is called the diffuse reflection, and a = 0 the spec-
ular reflection. The condition for the linearized Boltzmann equation (10) corre-
sponding to Eqs. (16a) and (16b) is

(17a) () = (1 — )¢ — 20 — uw)- nln;) + 4 n)uy- n))
+a [O'w + 28wy + (éjz - 3/2)Tw] )
(€ —uy)n>0,

(17b) Ow = Vil n — (1/2)1,
_ovm j (€ — ) n HEHEL,

(C_uw)'n <0

where v,, = u,, and Tw =1+ 7,. Note that 0,,-n =0 in Eqgs. (16a) and (16b) [or
u,-n = 0in Egs. (17a) and (17b)] for steady problems.

3 - Asymptotic Theory for Small Knudsen Numbers

In practical applications, slightly rarefied gas flows (gas flows with small
Knudsen numbers) are often analyzed by the use of the Navier—Stokes equations
and the slip boundary conditions. However, much attention is not paid to the va-
lidity of the use of this system. Furthermore, it is rather surprising that the for-
mulas of the slip conditions derived by means of the elementary kinetic theory very
long time ago are still in use. The systematic derivation of the fluid-dynamic de-
scription of slightly rarefied gas flows has been one of the important subjects in
rarefied gas dynamics, and such treatment has been established for steady flows
by Sone by means of a systematic asymptotic analysis of the Boltzmann equation
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(asymptotic theory) [3, 4, 5, 6, 7, 8, 9, 1, 2]. This theory, which is of theoretical
importance, also provides a convenient tool to compute slightly rarefied gas flows
in view of the fact that direct numerical computations or simulations based on the
Boltzmann and other kinetic equations become increasingly difficult as the
Knudsen number becomes small.

According to the asymptotic theory, the overall behavior of the gas is described
by a system of fluid-dynamic type equations and their appropriate boundary con-
ditions, and the solution of this system undergoes a correction in a thin layer, with a
few mean-free-path thick, adjacent to the boundary (the Knudsen layer). The explicit
form of the fluid-dynamic type systems depends on the physical situation under
consideration. In the present paper, we omit the course of the asymptotic analysis
and give only part of the results because of the limited space. More specifically, we
summarize the fluid-dynamic type systems that are sufficient to obtain the overall
behavior, omitting the formulas of the local Knudsen-layer corrections. For the
details, the reader is referred to [1, 2, 8].

Let us consider a gas around solid boundaries with arbitrary but smooth shape.
Weinvestigate the steady behavior of the gas when the Knudsen number Kn, defined
by Kn = ly/L, is small, where [, is the reference mean free path of the gas molecules,
and L is the reference length of the system. Let Ma be the Mach number and Re the
Reynolds number, defined respectively by Ma = U /ay and Re = uyUL/p,, where U,
ao, Py, and 1, are, respectively, the reference values of the flow speed, sound speed,
density, and viscosity [ay = (BRTy/ 3)1/ 2 with Ty being the reference temperature].
Then, the three parameters are not independent, but are related as

(18) Ma « KnRe.

3.1 - The case of small Re

The case where the Reynolds number is small, i.e., Re <« Kn <« 1, [thus, Ma is
much smaller than Kn from Eq. (18)] is studied in [3, 4, 6]. Since Ma is a measure of
deviation of the system from the reference equilibrium state at rest (with density p,
and temperature 7)), the density p, flow velocity v, temperature T, and pressure p
are expressed as p = py(1+w), v = (2RT0)1/2u, T =Ty1+ 1), and p = py(1 + P)
with small deviations w, u (or u;), 7, and P, where py = RpyTo is the reference
pressure [see Egs. (1) and (4)]. These deviations are expanded in power series of the
Knudsen number, i.e.,

(19) h = h(()) + h(l)e + h(2)82 + -y (h =w, u, t, or P),

(20) ¢ = (v/n/2)Kn.
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3.1.1 - Fluid-dynamic equations

The k) in Eq. (19) are governed by the following Stokes system of equations:

OP ()
21 =0
( ) (9901 ’
(222) Qi =0,
(9961'
OP (1) P
22 =
(22b) ox; n 890]2 ’
82T(m)
22 — =
(22¢) 0n? ;
(22d) W(m) = P (m) — T(m)»

m=0,1, 2, ..),
where «; is the system of dimensionless coordinates [Eq. (1)], and y; is a constant
depending on the molecular model:
(23) 7y = 1.270042,
for hard-sphere molecules, and
(24) n=1
for the BGK model [Eq. (6) with Eq. (12) or Eq. (10) with Eq. (14)]. The y, is related

to the viscosity y, corresponding to pressure py and temperature 7 as

(25) 1o = (V)21 p0@RTo) 1.

3.1.2 - Slip boundary conditions

Letv,, = QRTy)?*u, and T,, = To(1 + 7,,) be the velocity and temperature of the
boundary, respectively, where u,, and t,, are small deviations, and let n (or n;) and ¢
(or t;) be the unit normal vector (pointing to the gas) and a unit tangential vector of
the boundary, respectively (u,, - n = 0 for steady problems). Then, the boundary
conditions for Eqs. (22a)—(22d) on the boundary, which have been obtained up to the
second order (m = 2), are given by

(26) ug) = Uy, T0) = Tuw,
(27a) uinti = koSiyoynit; + KiGioytis
(27b) UM = O,
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(27¢) Ty = —d1Gioyn,

ISij)
ox,

(28a) i)t = kOSii(l)nitj + a1 ninyt; + azksij(o)nitj

G _
+ askiiSjroyati + 04 ﬁ(_)njti + askGigyti + asrciGjoli,
)

oS 0G; _

(28b) Uiy = b1 azio) nnny + b (ﬁj’)nmj + ZKGi(O)ni),

OS;; 0G; _
(28¢) Q) = —lei(l)ni —dy #ﬁo)nmjm —ds 892;0) nin; — dskGioni,
where

. - 0 Wi(m) a'Z/’lj(m)

(29a) Siom =~ ot ).

(9T(m)
29b Giom) = — ,
(29b) im) o,
(29¢) K= (1 + 162)/27 I = Klfifj + K628;S;.

Here, 1 and kg are the principal curvatures of the boundary in the dimensionless x;
space, taken in such a manner that x4 (f = 1, 2) is negative when the corresponding
center of curvature lies in the gas; ¢; and s; are the direction cosines of the principal
directions corresponding to rx; and xg, respectively. Note that all the terms in the
right-hand sides in Eqgs. (27a)—(28c) are to be evaluated on the boundary.

The coefficients kg, K3, d, ... in Eqgs. (272)—(28¢), which are called the slip coef-
ficients, are the constants, the values of which depend on the molecular model and
the reflection law on the boundary. For the BGK model under the diffuse reflection
condition [Eqs. (17a) and (17b) with a = 1], they are given by

ko = —1.01619, K; = —0.38316, d; = 1.30272,

a; = 0.76632,  as = 0.50000, ag = —0.26632,
(30) ay = 027922, a5 = 0.26693, ag = —0.76644,

by =0.11684,  be = 0.26693, dg =0,

dy =0.11169, d5 = 1.82181.

For hard-sphere molecules and the diffuse reflection condition, the first-order slip
coefficients and some of the second-order ones are obtained, that is,

ko = —1.2540, K; = —0.6463, d; = 2.4001,

(31)
ag =0.0330, by =0.1068, by = 0.4776.

The numerical values given in Eqgs. (30) and (31), the origins of which are some
different papers, are taken from [1, 2, 8].
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3.1.3 - Recipe for the solution

Although the system, in particular, the second-order boundary condition, ap-
pears to be complicated, its application is straightforward. The recipe would be
obvious, but we give it just to make sure.

(i) From Eq. (21), P is a constant, which is determined by an intrinsic condition
of each problem.

(ii) Solve Egs. (22a)—(22¢) (m = 0) under the no-slip condition (26) to obtain u ),
Py, and 7(g) and compute o) from Eq. (22d) (m = 0). (The additive constantin Py) is
determined by the intrinsic condition. The situation is the same for P and P, in the
steps below.)

(iif) Compute the right-hand sides of Eqs. (27a)—(27c¢) using the result in step (ii).
Under the resultant boundary conditions (27a)—(27¢), solve Eqs. (22a)—(22¢) (m = 1)
to obtain u), P, and 7¢). Then compute wq) from Eq. (22d) (m = 1).

(iv) Compute the right-hand sides of Eqgs. (28a)—(28¢) using the result in steps (ii)
and (iii). Under the resultant boundary conditions (28a)—(28c), solve Eqs. (22a)—
(22¢) (m = 2) to obtain u ), P3), and 7). Then compute wg) from Eq. (22d) (m = 2).

3.14 - Remarks

Equations (22a), (22b), and (22c) are, respectively, the continuity equation, the
Stokes equation of motion, and the energy equation [Eq. (22d) is the linearized
equation of state; cf. Eq. (5)]. Their boundary conditions are the no-slip conditions in
the leading order [Eq. (26)] and the conventional slip conditions in the first order
[Eqgs. (27a)—(27¢)]. The latter consist of the velocity slip proportional to the shear
(the ko-term), that proportional to the temperature gradient along the boundary (the
K;-term), and the temperature jump proportional to the temperature gradient
normal to the boundary (the d;-term), where the shear and the temperature gradient
are those of the leading-order solution. If the temperature of the boundary (z,,) is not
uniform, a slip flow is caused from the colder part to the hotter because of the K;-
term [note that —Gjt; = (Ot /0x)t; is the gradient of 7,, along the boundary be-
cause of the second condition of Eq. (26)]. This slip flow is called the thermal creep,
which is a typical effect of gas rarefaction [10, 11, 12, 13, 14]. This and related flows
will play important roles in later sections. The second-order boundary conditions
(282)—(28¢c) consist of various terms. The terms containing « and x;; indicate the
effect of boundary curvature and disappear for planar boundaries. The term con-
taining a4 in Eq. (28a) can cause a slip flow of O(Kn?) when the temperature gradient
normal to the boundary is not uniform along it (even when the temperature of the
boundary is uniform). This slip flow is called the thermal stress slip flow [4, 15, 16, 17].
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The reader is referred to [1, 2, 8] for the physical mechanism of it as well as that of the
thermal creep.

The fluid-dynamic system, Eqgs. (21)—(22d) and (26)—(28c), gives the correct
overall behavior of the gas up to O(Kn?). But, when the local values of the physical
quantities on (or near) the boundary is required, one needs to introduce the
Knudsen-layer corrections to the overall solutions of O(Kn) and of O(Kn?). We also
refer to [1, 2, 8] for the recipe to obtain the Knudsen-layer corrections.

It should be mentioned that a rigorous mathematical proof of the passage from
the Boltzmann to the Stokes equations in the continuum limit was given by Golse and
Levermore [18].

3.2 - The case of Re ~1

Next, we consider the case where the Reynolds number is finite, i.e., Re = O(1)
[thus, Ma = O(Kn) from Eq. (18)] [4, 5, 6]. Since the measure of deviation Ma from
the reference equilibrium state is of the order of Kn, it is natural to assume that the
deviations w, u, 7, and P [cf. Eqgs. (1) and (4)] are of the order of Kn or &. (In the case of
Re <« Kn « 1 considered in Sec. 3.1, these deviations were much smaller than Kn.
In the case of Re = O(1), the w, 7, and P can also be of the order of unity. We will
comment on this case later.) That is, we put

(32) p=pd+ed), v=@CRT)  cu,
T=Ty1+e?), p=pol+eP),

where o, , 7, and P are of O(1). The latter quantities are expanded in ¢ [Eq. (20)] as
(33) h=ho+hye+---, (h=a,a, i, orP).

3.2.1 - Fluid-dynamic type equations

The fluid-dynamic type equations for I~z(m) in the leading and the first order are as
follows.

dP
34 =0
( ) 8901- ’
(350) Yo _y,
aﬁCi
= 8121‘(0) . 1 8P(1) 1 8277’/2’(0)
(35b) Uj(0) I =2 0n, 23’1 890]2 )
- dtg 1 P
(35(3) uJ(O) ax] —ZVZ ax? ?

(85d) aw = Py — T,
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(36a) 8;2;;1) = —Uj() 8(;;(;) )
(36Db) Uj(0) 53;;1) + (@)%j0) + Uj1)) 82220)
= _%a% P - é(l’ﬂz —473) a;;?)}
(36¢) Tjo) % + (@) thj0) + 1)) 8;—9;@ - g@ﬂm 85;(;)
=5 (e ) 4 s (0 + 335
(36d) o) = Pa) — 0y — d0)T0),

where s, ..., 75 as well as y; that has already appeared in Eq. (22b) are the constants
the values of which depend on the molecular model. For hard-sphere molecules,

(37) 7o = 1.922284, 73 = 1.947906,
74 = 0.635021, 75 = 0.961142,

and for the BGK model,

(38) 2=73=7n=7=1

The y, is related to the thermal conductivity 4y as

(39) Jo = 5V /4)ysRpo@RTo) 1.

3.2.2 - Slip boundary conditions

In accordance with the situation considered here, we assume the velocity v,, and
temperature T, of the boundary to be of the form v, = (2RT0)1/ 2¢it,, and
T, = Ty + &7,) with u,, and %, being of O(1). Then, the boundary condition for
Eqgs. (352)—(35d) and that for Eqs. (36a)—(36d) are, respectively, given by

(40) ug) = Uy, T0) = Tw,
- i) on i(0) 07
ot = —k (—“ J ) 4 — K 2Oy,
Uiyl 0 o Bz, n;t; o, U
) "
. - 7(0)
wiyn; = 0, Ty =d ;.
(1)1 68} 1 axi i

These conditions are essentially the same as Eq. (26) and Eqs. (27a)—(27c).
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3.2.3 - Remarks

Equations (35a)—(35b) are the Navier—Stokes equations for an “incompressible”
fluid (the meaning of the quotation marks will be explained in the next paragraph).
Now, let us consider the compressible Navier—Stokes equations for a gas and insert
the expansions (32) and (33), which are equivalent to Mach number expansions
because of the relation Kn = O(Ma). Then, we obtain the trivial equation (34),
Eqgs. (35a)—(35c) as the (non-trivial) leading-order equations, and, as the next-order
ones, the equations almost the same as Eqgs. (36a)—(36¢), namely, the latter equa-
tions with y; = 0. This difference is attributed to the thermal stress that is not in-
cluded in Newton’s law of stress. But, if we introduce a modified pressure 13(*2) by
PE) = P@) + @ /3)}/3(82%(0) / 890]2), the effect of the thermal stress is absorbed in the
pressure. Therefore, it turns out that @), 71), and @q) are not affected by the
thermal stress [note that the boundary conditions (40) and (41) do not include 13@)].
In other words, the effect of gas rarefaction essentially comes in only through the
slip boundary conditions (41), whereas the effect of compressibility appears in
Eqgs. (36a)-(36¢). The u), 1), and @) undergo the Knudsen-layer corrections in
the vicinity of the boundary. See [1, 2, 8] for the details.

The true incompressible Navier—Stokes equations are derived from the com-
pressible Navier-Stokes equations by introducing the condition of incompressibility,
which reads ;(9p/0x;) = 0 for steady flows. The continuity and momentum equa-
tions derived in such a manner are of the same form as Eqs. (35a) and (35b) [with
Eq. (34)], respectively. However, the energy equation is not exactly the same as
Eq. (35¢). More specifically, it is of the same form as Eq. (35¢) with y, replaced by
(5/3)y,. This is due to the fact that, the work done by the pressure comes in this
equation for an ideal gas, whereas it becomes of higher order in the true in-
compressible fluid. In this sense, Eqs. (35a)—(35c¢) are not exactly the incompressible
Navier—Stokes equations. See [2] for more details.

The slip boundary condition is often combined with the incompressible Navier—
Stokes equations when Re = O(1). But this combination is inconsistent, as is seen
from Eqgs. (34)—(36d) and boundary conditions (40) and (41). That is, the effect of gas
rarefaction and that of compressibility go together.

The mathematical study of the passage from the Boltzmann to the “in-
compressible” Navier—Stokes equations in the continuum limit had been an im-
portant subjects in kinetic theory [19, 20, 21, 22, 23]. A crucial point is the para-
meter setting Ma = O(Kn) [or the setting in Eq. (32)], which was understood by
Sone already in 1971 [4] and rediscovered by mathematicians much later. The
complete proof of the passage was given by Golse and Saint-Raymond rather
recently [23].
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3.3 - The case of Re ~ 1 with finite temperature variations

Let us consider the case where the temperature variation of the system is not
small and the boundary is at rest (the gas is at rest with a uniform pressure at infinity
when an infinite domain is considered). We use the dimensionless density p, flow
velocity &, temperature 7', and pressure p defined in Eq. (1). In this situation, one
can seek the overall solution consistently in the following form [7, 1, 2, 8]: with

¢ = (y/7/2)Kn,

(42a) H=Hgy+Haupe+---, H=p T, orp),
(42b) U= 13(1)8 + -

Note that the series of the velocity o starts from the first order. Since & = O(e) or
O(Kn), Re = 0(1) also in this case. The leading-order fluid-dynamic type equations
are for (), Ty, D1, D)) With Py and pey being constant (see Ref. [7]). Their mo-
mentum equation contains the non-Newtonian stress terms (the thermal stress
terms) explicitly. The no-jump condition for T(o) and the thermal-creep slip condition
for vy, proportional to the temperature gradient along the boundary, are the ap-
propriate boundary conditions for the equations. This fluid-dynamic type system
shows that the following two types of flow [of O(Kn)] are induced by the effect of the
temperature: (i) the thermal creep flow [see Sec. 3.1.4; note that the temperature
gradient is not small in the present case] and (ii) the nonlinear thermal stress flow.
The latter, which was first pointed out by Kogan et al. [24, 25], is induced in the gas
when the space between isothermal surfaces vary along them [7].

Next we consider the continuum limit, the limit where Kn (or ¢) tends to zero.
Then, we have & — 0, p — const, and T — T(O), that is, the flows (i) and (ii) vanish in
this limit. However, T\ is determined together with &), which is of O(1), by the
fluid-dynamie type system irrespective of . This means that, although the flow itself
vanishes in the continuum limit, it still has a finite effect on the temperature field in
this limit. In other words, the behavior of the gas in the continuum limit is affected by
the flow that does not exist in the limit. This effect was pointed out in [7] and termed
the ghost effect afterward. Now let us consider the same problem using the (com-
pressible) Navier—Stokes equations and the no-slip condition that are commonly
accepted as the correct system for the continuum limit. Then, we have © = 0 and
D = const again, but T'is determined by the steady heat-conduction equation without
any effect from the velocity of O(e). That is, the Navier—Stokes system cannot de-
scribe the ghost effect and therefore does not give the correct temperature field in
the continuum limit. This fact reveals an essential defect contained in the classical
fluid dynamies (for a gas). The ghost effect and the invalidity of the classical fluid
dynamics in the continuum limit are discussed in detail in subsequent papers by Sone
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[7, 26, 27, 28]. Afterward, the effect has been viewed more comprehensively as a
consequence of the singular nature of the continuum limit, and new types of ghost
effect, such as the surprising effect of infinitesimal curvature of the boundary, have
been pointed out and clarified [29, 30, 31, 32]. The reader is referred to [2] for the
detailed description of the ghost effect.

3.4 - The case of Ma ~ 1

The case of high-speed flows where the Mach number is of the order of unity, i.e.,
Ma = 0Q1) [thus, Re = OXn™) > 1 from Eq. (18)], is studied by Sone et al. [9]. In
this case, the leading-order (Kn'-order) flow field is described by the (compressible)
Euler equations plus the compressible and viscous boundary-layer equations with
the no-slip boundary condition. The next order in the flow field is of O(v/Kn), instead
of O(Kn). The physical quantities of this order are governed by the perturbed Euler
equations and the equations of boundary-layer type with the slip boundary condition
composed of the velocity slip due to the shear of the flow and the temperature jump
due to the temperature gradient normal to the boundary. (The solution of this
perturbed system undergoes the Knudsen-layer correction.) Except for the slip
boundary condition (and the Knudsen-layer correction), the non Navier—Stokes
effect does not appear up to this order.

4 - Flows at intermediate Knudsen numbers: numerical approaches

As we have seen in Sec. 3 (see Secs. 3.1.4 and 3.3), the fact that gas flows are
induced by temperature fields without the help of external forces is one of the typical
effects of gas rarefaction. In this and the following sections, we investigate such
flows for general Knudsen numbers (i.e., in the transition regime), with special in-
terest in internal flows.

The most fundamental flow in this category would be the thermal transpiration,
the flow induced through a long pipe (or channel) with a uniform temperature gra-
dient along the pipe wall. This flow is often discussed together with the Poiseuille
flow, the flow caused through a long pipe by a uniform pressure gradient imposed
along the pipe axis. Since these flows are particularly important in microscale ap-
plications, we leave them for the later sections (in particular, Sec. 7) and consider
other types of flow in the present section.

As mentioned in Secs. 3.1.4 and 3.3, three types of flow, i.e., the thermal creep
flow, the thermal stress slip flow, and the nonlinear thermal stress flow, are induced
by the temperature field when the Knudsen number is small. This fact was clarified
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by the asymptotic theory described in Sec. 3. However, it should be noted that the
theory is based on the assumption that the local Knudsen number, the local mean
free path divided by the local length scale of variation of physical quantities, is
uniformly small. This means that the radius of curvature of the boundary should be
much larger than the mean free path, and the boundary condition specified on the
boundary should be smooth enough. If this condition is not fulfilled, there is a pos-
sibility that flows other than the above three types are caused by the temperature
field even when the Knudsen number is small. We will give two such examples here:
the flow induced by a heated (or cooled) sharp edge (thermal edge flow) and the flow
induced by a discontinuous wall temperature.

Since analytical approaches are not available for such flows (even for small
Knudsen numbers), we must rely on numerical approaches, as in the case of general
flows in the transition regime. In regard to the two examples, we briefly mention two
typical numerical methods for the transition regime, the direct simulation Monte
Carlo (DSMC) method and a finite-difference method.

4.1 - Thermal edge flow: DSMC method

We first give a brief outline of the DSMC method and then come back to the
thermal edge flow.

4.1.1 - Brief outline of DSMC

The DSMC method, which was first proposed by G. A. Bird [33], is a stochastic
and particle method. It was originally introduced on the basis of physical intuition.
Although the limitations of available computer capacity restricted actual computa-
tions to rather rough ones, the method was widely used in applications because of its
simplicity and adaptability. Nowadays, however, its relation to the Boltzmann
equation is clarified mathematically [34, 2], and the progress of computers enables us
to apply it to the numerical analysis of fundamental and delicate problems that re-
quire great accuracy. This method has been developed and improved by many sci-
entists and engineers including Bird himself (e.g., [35, 36, 37, 38]). As the result,
there exist many variations of the method. However, none of them alters the basic
framework of Bird’s method. In this section, we give a brief outline of the compu-
tational procedure of this method. The reader is referred to [39, 40] for mathematical
arguments.

Unlike in Secs. 2 and 3, we use, in this subsection, dimensional variables and
assume that the gas molecules are subject to an external force F(X, &, t) per unit
mass [correspondingly, a term Fr’la(ﬁj H /9¢; should be added to the left-hand side
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of the dimensionless Boltzmann equation (6), where FL = F;/Fy, Fis the magnitude
of the reference force per unit mass, and Fr = 2RT/LF) is the Froude number].

Let us consider the initial and boundary value problem of the Boltzmann equation
in a finite domain. We assume that the interaction between gas molecules is ex-
pressed by a spherically symmetric intermolecular force with a finite influence range
of radius d,, (for hard-sphere molecules, d,, is the diameter of a molecule). The
outline of the process of computation is as follows.

(i) We divide the gas region under consideration into S small regions, which are
usually called cells. Let the volume of the lth cellbe Vi, ( =1, 2, ..., S).

(if) We allot N, particles to the ith cell, where N; is chosen to be proportional to
the volume of the cell V(;) and to the density /’E(l))) at a representative point in the cell at
the initial time, that is,

(43) Ngy = pQ)Vay/Com,

where m is the mass of a gas molecule, and Cj is a constant that is common to all the
cells. The positions of the particles are distributed randomly in the cell, whereas
their velocities are distributed according to the initial velocity distribution.

(iii) We assume that all the particles in the gas region are numbered from 1 to N

N
(N =3 Ny and denote by X @ and & the position and the velocity of the nth
=1

particle, respectively. For a small time step 4¢, we change the position and the
velocity of each particle from X™ and &™ to X™ + &4t and & + F™ At, where
F™ = FX™ &7 t)with t being the time of the present stage. The particles that go
out from the gas region in this change are removed, but new particles are cast in the
region from the boundary according to the boundary condition there. Here, re-
counting the number of the particles in each cell, we take the new number as N,
anew. The particles should be renumbered in this stage because their total number
may have changed.

(iv) The collision process of the particles in each cell is computed independently
from other cells. Let us consider the [th cell (with volume V(). To a pair of the
particles with velocities &% and ¥, we assign the following probability Pg)"’” for their
collision:

(44) P3P = (Codt/ Vi) J B(|(&® — &0y . e], |¢® — &) dQe)

alle

=nd2,Co|é® — &9\ 4t/ V.

Here, B = BOB, with By = 4/nd?,/RT,, is the dimensional counterpart of B in

m

Eq. (7) [By is related to the mean free path [y as I, = (8RT0/n)1/2(m/poBo)
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= (\/Qnd,znpo /m)*l; note that this relation, which is of the same form as for hard-
sphere molecules, is more general]. We first choose M, pairs randomly from the
Ny(Ng — 1)/2 pairs in the cell, where M is a number such that

(45) M(l) < N(l)(N(l) — 1)/2,
(46) Mgy — [No(Ng — 1)/2] max P3P > 1.

Then, for each of M pairs, we determine whether it collides or not according to the
elevated probability P%g for their collision, i.e.,

(47) Pii) = INoW) — 1/2M PG

The determination of the collision pairs by the above two steps instead of the single
step by the use of Eq. (44) is a time-saving procedure, which is efficient and legiti-
mated when Pgik) is small. For the pair that was judged to collide, we select a unit
vector e assuming that the probability for e lying in the solid-angle element dQ(e) is

(48) (rd?)He® — DTIB((ER — D) -el, [P — D)) dQee),

and replace the velocities of the pair (&7, &®) by (D + [P — &) -ele,
5(’“) — [(5<k) - £(7>) -e]e). The velocities of the pair that does not collide are left
unchanged. With the new velocities &, we construct the velocity distribution
function f at the [th cell at time ¢ + At as

(49) f=mCo/Vq) Y o6& —&),

JjeVo

where J(&) is the (three-dimensional) delta function, and j € V{;) indicates that the
sum is taken for all j corresponding to the particles contained in the /th cell. Using
Eq. (49) in the definitions of the macroscopic variables [i.e., the dimensional
counterparts of Eq. (2)], we obtain their expressions at the lth cell, e.g.,

(50) pP = MC()N(D/V(Z),
(51) V= (1/N(l)) Z 50)7
JEV
(52) T =(1/3RNg) Y & —v)- (& —v).
JeVo

We carry out the above procedure for all the cells.

(v) With the new positions in process (iii) and new velocities in process (iv) of the
particles, we go back to process (iii).
We repeat the processes (iii) — (v) until the necessary time is reached.
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The method described above is shown to be mathematically consistent with the
Boltzmann equation as well as physically natural. That is, the velocity distribution
function thus obtained converges to the solution of the corresponding initial and
boundary value problem of the Boltzmann equation in the limit as Ny — oo and
D) — oo (D is the linear dimension of the ith cell; thus V{;) ~ D(3l) for the cell with a
regular shape) for each cell and as At — 0 [with the condition |é(7)|maxdt < 0Dy in
each cell] in the following sense: any moments of f of the form (49) in each cell become
arbitrarily close to the corresponding moments of the solution of the Boltzmann
equation (weak convergence) (see Appendix B of [2] for the details).

This method is basically a time-dependent one. Therefore, when we deal with a
steady problem, we pursue the time evolution starting from an appropriately chosen
initial condition and regard the steady state obtained after a long time as the solu-
tion. However, in the actual computation, where the available number of particles
and that of cells are restricted by computer capacity, the true steady state is never
reached even after a long time, that is, the macroscopic variables as well as the ve-
locity distribution function always show large temporal fluctuations. Therefore, the
steady state is judged to have been established if the averages of the macroscopic
variables over a certain time interval (consisting of a large number of time steps) are
independent of the choice of the interval. We usually compute the average of the
fluctuating steady solution over a great number of time steps and regard the result
as the desired steady solution. Although we can obtain a smooth and seemingly
reasonable solution by means of the time averaging, the averaging process has not
been validated so far. For a time-dependent problem, for which the time averaging
cannot be used, the accurate numerical solution is still very difficult to obtain by this
method.

4.1.2 - Thermal edge flow

Since the DSMC method is quite simple as a solution method for the Boltzmann
equation, it has widely been used in technological applications. Here, we rather give
an example of a new type of basic flow discovered by using DSMC method, that is, a
flow induced around the edges of a uniformly heated or cooled plate (thermal edge
flow) [41, 42].

Let us consider the geometry shown in Fiig. 1 (a), that is, a rarefied gas is confined
in a square container kept at a uniform temperature 7T, and a flat plate (with length
L and without thickness) kept at another uniform temperature 7 is set in the middle
of the container. The gas is subject to no external force. We assume that the gas
molecules are reflected according to the diffuse reflection condition on the plate as
well as on the wall of the container and that the problem is two dimensional. In this
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Fig. 1. Flow induced around the edge of a uniformly heated plate [42] (by courtesy of Prof.
Y. Sone). (a) a uniformly heated (or cooled) plate in a square container, and (b)—(c) the
induced gas flow and the isothermal lines in the first quadrant for 7, /Ty = 5. (b) Kn = 0.02,
(¢c) Kn = 0.05, (d) Kn = 0.1. The arrow indicates the flow velocity vector (vi, vs)/ (ZRTO)I/ 2 at
its starting point, and its length corresponding to 0.05 is shown in the figure.

situation, a steady flow is induced in the gas. An example of the flow, obtained by the
DSMC method for hard-sphere molecules in [42], is shown in Fig. 1. To be more
specific, the flow velocity field and isothermal lines in the first quadrant for
Ty/Ty = 5 is shown for relatively small Knudsen numbers in Figs. 1 (b)—(d), where
Kn = ¢y/L is the Knudsen number, and ¢, is the mean free path of the gas molecules
in the equilibrium state at rest with temperature 7 and density p, (the mean density
over the gas region).

In this problem, the thermal creep (cf. Sec. 3.1.4) is not expected because the
temperature of each boundary is uniform. On the other hand, since the space between
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isothermal lines vary along them, the nonlinear thermal stress flow (cf. Sec. 3.3) can
be induced. However, it can be shown by a numerical computation that the vortical
flow caused by the nonlinear thermal stress flow is opposite to that of the flow in
Fig. 1. This means that the flow field is dominated by another type of flow that causes
the circulating flow of Fiig. 1. As is seen from the fact that the flow is locally intense at
the edge, this flow is caused by the effect of the edge. Although the temperature of the
plate is uniform, the abrupt temperature variation near the edge produces a steep
temperature gradient in the gas along the plate there. Because of this temperature
gradient, the same mechanism as the thermal creep flow works, and a flow is induced.
According to a rough estimate based on the temperature field obtained from the
Laplace equation, the flow speed [normalized by (2R To)'/?]is of the order of Kn'/? for
small Kn [42]. Therefore, the flow, though localized at the edge, has a stronger effect
than the thermal creep and nonlinear thermal stress flows of O(Kn). The flow is
strongest at around Kn = 0.1 and decays relatively fast as Kn increases. It vanishes
in the free-molecular limit [43, 1, 2]. Sone and Yoshimoto performed a simple but
interesting experiment that demonstrates the flow by means of the rotation of a tiny
windmill placed near the edge of a heated plate in a low-pressure chamber [42]. It
should be mentioned that, quite recently, new types of thermal pump and gas se-
parator exploiting this flow were proposed (see Sec. 5).

4.2 - Flow induced by a discontinuous wall temperature: finite-difference method

In this subsection, we discuss another type of flow, the flow induced by a dis-
continuous wall temperature. We start with short remark on the finite-difference
method.

4.2.1 - Remark on finite-difference method

In contrast to the DSMC method, some deterministic solution methods have
also been proposed for the Boltzmann equation. Concerning the finite-difference
method, some accurate computations were carried out by Ohwada for spatially one-
dimensional problems [44, 45]. The method can, in principle, be extended to more
general cases. However, if we require the same degrees of accuracy, such extension
is still not practical. Therefore, the use of the model Boltzmann equations, such as
the BGK model [Eq. (6) with Eq. (12)], is a powerful tool for accurate computations
of two- and three-dimensional problems. In the BGK model, the computation of the
complicated gain term of the original Boltzmann equation is reduced to simple
computations of the macroscopic quantities in the local Maxwellian. Furthermore,
in the spatially two-dimensional case where the velocity distribution function is,
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Fig. 2. Rarefied gas in a two-dimensional square container with a discontinuous wall
temperature.

say, of the form f (t, x1, 2, {;), one can eliminate the (3 variable by integrating
Eq. (6) with Eq. (12) and that multiplied by Cg with respect to {3 over its whole
range. As the result, one obtains two coupled integro-differential equations of the
form similar to Eq. (6) with Eq. (12) for the following marginal velocity distribu-
tion functions:

(53) i= Jf(i, v, (AL, = Jaéf(i, 21, w2, ()AL,

Similarly, in the spatially one-dimensional case where f = f(i, x1, ¢;), one can
eliminate {, and {3 variables [46]. In the case of cylindrical and spherical symmetry,
similar reduction can be done. Exploiting these properties of the BGK model, we
can devise more sophisticated finite-difference schemes than in the case of the
original Boltzmann equation. The following is one of such examples.

4.2.2 - Flow caused by a discontinuous wall temperature

Let us consider a gas confined in a two-dimensional square container
-L/2 <X; <L/2, —L/2 < X5 < L/2, where Xj is the rectangular coordinate sys-
tem (Fig. 2). (The dimensional variables are used in Sec. 4.2.2.) The left and right
halves of the wall of the container are kept at different uniform temperatures 7 and
Ts, respectively, so that the temperatures of the top and bottom walls are dis-
continuous at their respective middle points (X7 = 0, Xo = 4+ L /2). External forces
are assumed to be absent. In this situation, a steady gas flow is induced in the
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Fig. 3. Flow induced in the lower half of the container for 7%/T; = 2. (a) Kn = 0.2, (b)
Kn = 0.02. The arrow indicates the two-dimensional flow velocity vector (vy, vs)/ (2RT1)1/ 2 at
its starting point. The scale of (2 + v2)"/2/(2RT})"/* = 0.02 is shown in the figure. The symbol
e indicates the point of discontinuity of the temperature of the bottom wall, and o indicates
the point with the maximum flow speed.

container by the effect of the discontinuities of the wall temperature. The flow was
analyzed in [47] numerically by an accurate finite-difference method on the basis of
the BGK model [Eq. (6) with Eq. (12)] and the diffuse reflection boundary condition
[Egs. (16a) and (16b) with a = 1], and the features of the flow were clarified for a
wide range of the Knudsen number.

Some examples of the flow field are shown in Fig. 3, where Kn=[y/L is the
Knudsen number and [, is the mean free path of the gas molecules in the
equilibrium state at rest whose temperature is 77 and density is the average
density of the gas in the container. Since the flow is symmetric with respect to
X;-axis, the lower half of the container (X2 < 0) is shown in the figure. A flow is
induced from the colder to the hotter part along the bottom wall near the point
of discontinuity, and it causes an overall circulating flow. The maximum flow
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Fig. 4. Maximum flow speed |v|,,, in the gas versus the Knudsen number for 75/ = 2.

speed in the container versus the Knudsen number is shown in Fig. 4. The
maximum speed tends to approach a finite value as the Knudsen number goes
to zero. However, the detailed computation shows that the region with ap-
preciable flow tends to shrink to the point of discontinuity of the wall tem-
perature as the Knudsen number becomes small. Therefore, the overall flow
in the container vanishes nonuniformly in the continuum limit (i.e., for any
small Knudsen number, there is a small region where there is a gas flow with
a finite speed).

The difficulty in the finite-difference analysis of the present problem comes from
the fact that the discontinuity of the wall temperature causes the discontinuity of the
velocity distribution function in the gas. Let us consider the velocity distribution
function of the gas molecules leaving the bottom wall (Xo = —L/2). At the point of
discontinuity of the wall temperature, the limit from the left is prescribed by the
boundary condition with temperature 77, whereas the limit from the right is pre-
scribed by that with temperature T. Therefore, these two limits, in general, do not
coincide for any fixed molecular velocity (&;, &) (& > 0). This discontinuity propa-
gates in the gas in the direction of (¢;, &), i.e., along the characteristic of the (steady)
Boltzmann equation (£;9f/0X1 + £0f /0Xe = - - ). Therefore, at a point (X7, Xz) in
the gas, the velocity distribution function is generally discontinuous in the direction
&1/E = Xq1/(Xe + L/2) in the & & plane. It is easily shown that the discontinuity
attenuates over the distance of the order of the molecular free path in its propagation
because of the effect of molecular collisions [48]. The discontinuity point of the
boundary temperature is also a singular point for the macroscopic variables in the
sense that their limiting values at the point are different depending on the direction
of approach. The finite-difference scheme used here, which is essentially the same as
that developed in [49], is a combination of a standard finite-difference method and a
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characteristic method, capable of describing the discontinuity in the velocity dis-
tribution function. Its original version was proposed in [50, 51] and had been de-
veloped in subsequent papers [52, 53, 54, 55, 56].

5 - Knudsen compressor and its variants

In the present section, we discuss the potential applications of the thermally-
induced flows, such as the thermal transpiration (or thermal creep) and the thermal-
edge flow, of a rarefied gas. Here introduced is the applications to compressors and
gas separators. We shall begin with a thought experiment on a simple compressor
making use of the thermal transpiration.

Consider a straight pipe with a gradient of temperature along its surface. If the
pipe is a capillary tube or the gas pressure is low enough, the thermal transpiration
from one end to the other takes place because the Knudsen number in the system is
no longer small. Thus, if the pipe connects two reservoirs as depicted in Fig. 5, the
pressure of the gas in one of the reservoirs becomes lower than in the other. The
achieved difference of pressure is determined by the competition between the gas
transport by the thermal transpiration and the backward flow caused by the induced
pressure difference (the Poiseuille flow). In this way, even a simple straight pipe
works as a compressor (or pump) if a gradient of temperature is given along its
surface. It is a basic idea of thermally-driven compressors to be discussed below.

Since the driving mechanism of the above straight pipe pump is the tempera-
ture gradient, the better performance can be achieved by increasing the magni-
tude of temperature gradient or by lengthening the pipe with keeping the mag-
nitude of temperature gradient. However, both requires the large difference of
temperatures between the extreme ends of the pipe, and the straightforward
application of the above idea is practically difficult. The necessity of avoiding the

lower higher
pressure pressure

backward flow (Poiseuille)

()oo(=)2

Thermal transp|rat|on Thermal transp|rat|on

coldhot cold

Fig. 5. Sketch of a primitive thermally-driven compressor and its basic concept. The shade
of the pipe represents the imposed temperature distribution.

hot
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heater

Fig. 6. Schematic of the original Knudsen compressor [57].

limitless increase of temperature for a real application leads to the idea of a pump
of cascade structure.

As early as 1910, Knudsen made up a simple but cleverly designed device, which
we now call the Knudsen compressor [57]. His original device is a cascade of units
composed of a narrow and a wide glass tube with a heater at each junction of
neighboring units (Fig. 6). The heater arrangement and the natural cooling make a
temperature variation along the pipe shell. With this device, he actually demon-
strated a compression ratio of ten at a low absolute pressure levels. However, little
attention has been turned to his device for along time, and it is just in the last decade
that the device becomes a target of intensive studies in the modern kinetic theory in
the connection to the development of micromechanical engineering. We should refer
to [58, 59] as a trigger for the revival (or may be said “as rediscovery”) of the Knudsen
compressor in the middle of 90s in the community of rarefied gas dynamics.

5.1 - One-way flow in a channel with a periodic temperature distribution

Sone, Waniguchi and Aoki [59] studied the behavior of a rarefied gas in a two-
dimensional channel with a periodic temperature distribution. The configuration is
shown in Fig. 7. Assuming the behavior to be periodie, they demonstrated the oc-

T,
T
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d
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Fig. 7. Channel configuration and distribution of surface temperature 7,,.
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Fig. 8. Induced one-way flow and temperature field in the channel of Fig. 7 (L/D = 2,
b/D=1/2,d/D =1/2,T1/Ty = 3, Kn = 0.5; a hard-sphere gas). The arrows indicate the flow
velocity v at their starting points; the scale of 0.1 of |v|/(2R To)"/? is shown at the right bottom
of the figure. The solid curves indicate the isothermal lines 7/Ty =1.3, 1.4,..., 2.5. The
Knudsen number is defined by Kn = /¢,,/D with ¢,, being the mean free path in the
equilibrium state at rest with the density p,, averaged over the channel. The field is
symmetric with respect to X2 = 0 and only the lower half part is shown.

currence of one-way flow in the channel by the DSMC computations for a hard-
sphere gas under the assumption of diffuse reflection of molecules on the channel
surface. Figure 8 shows an example of the induced flow and temperature field in the
gas. The induced mass flux through the channel is shown by closed circles in Fiig. 9 as
a function of the Knudsen number. They also demonstrated the pumping effect of the
channel by performing the DSMC computations for the systems of up to 10 units

[M/ p,, (2RT,)*]x10°
o
(o]
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0 0.5 1 1.5 2 5
Kn

Fig. 9. Mass flux M through the channel for the same parameters as in Fig. 8 except the
Knudsen number. Closed circles indicate the mass-flow rate MD through the two-dimen-
sional channel with unit width in X3 direction [59]; open circles the mass-flow rate Mn(D/ 2)?
through the channel of circular cross-section [60].
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Fig. 10. Pumping effect of the channel with the same parameters as Fig. 8 except the
Knudsen number. Here, Pp; is the average of the local pressure in the central part of the

D/10 D/10
channel: Pp5 = (56/D) f p(X1,X2)dX; in (a) and Pps = 2(10/D)2 f pXy,r)rdr in (b);
-D/10 0

Kny,(X;) is the semi-local Knudsen number at X; defined on the basis of the mean free path
at the average density over the interval (X7,X; + L). A is the number of units in the
cascade system.

with closed ends for various Knudsen numbers. Figure 10(a) shows an example of the
pumping effect. They further presented a diagram from which one can estimate the
compression ratio by a given (much larger) number of cascade units.

The case of the channel of cylindrical pipe with the corresponding configuration
was studied in [60], results of which are shown in Fig. 9 by open circles and in Fig.
10(b). As is seen from Fig. 9, the induced flow under the periodic condition is weaker.
Nevertheless, the pumping effect is found to be stronger [compare Fig. 10(b) with
10(a)]. This is due to the lower conductance of the cylindrical channel against the
pressure difference because of the larger fraction of surface to volume.

In the configuration of the channel, the change of width is essential. In fact, it was
demonstrated in [59, 60] by the DSMC computations that in the case of a simple
straight channel with a periodic temperature distribution, a circulating flow is in-
duced in each part of the unit and there is no mass flux through the channel. No mass
flux in the case of the straight pipe is also verified experimentally [61, 62]. Golse [1]
gave a rigorous mathematical proof of this fact in the linear regime where the var-
iation of the imposed temperature is small. In summary, a mere periodic tempera-
ture is not enough to induce a one-way flow; a coupling of the periodic temperature
with the width variation is essential.

5.2 - Variants of the Knudsen compressor

5.2.1 - The first category

As remarked at the end of Sec. 5.1, the essential feature of the Knudsen com-
pressor is the combination of a periodic temperature distribution and the change of
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Fig. 11. Variants of the Knudsen compressor in the first category: (a) channel with
shelves, (b) curvature compressor, (¢) accommodation pump.

geometry in the unit device. Each unit is composed of two channels of different width
with a gradient of temperature opposite to each other. In each part a flow of thermal
transpiration is induced, but the direction is opposite. The induced flows in different
parts cancel out each other, but the cancellation is not complete and the one-way flow
occurs. The incomplete cancellation is due to the difference of channel width between
the parts. Since the flow conductance depends on the width of channel, the in-
complete cancellation may be reinterpreted as a consequence of the conductance
change in the unit. In Fig. 10, the pressure changes in such a way to support the
above interpretation: the pressure changes steeper at narrow parts of the channel.
In the meantime, the flow conductance depends also on factors other than the width,
such as the geometry of the cross-section, curvature, surface material of the channel.
The reinterpretation suggests alternative ways to make compressors similar to the
original Knudsen compressor. We shall call the compressors devised in this way the
variants of the Knudsen compressor in the first category in this manusecript.

The compressor of a straight channel with shelves experimentally studied in
[62, 63] would be considered as an (immediate) outcome of the above reinter-
pretation. In this compressor, in place of alternative arrangement of narrow and
wide part, used is a channel of uniform width equipped with shelves periodically
[Fig. 11(a)]; the part with shelves plays the same role as the narrow part in the
original Knudsen compressor in an enhanced manner.! The prototype com-
pressor fabricated and tested in the USC group may be considered as the same
type (e.g., [64]).

! The gradient of temperature is imposed to shelves too. Thus, the part with shelves is not
only of lower conductance (against the backward flow by a pressure difference) but also
equipped with more driving parts of the thermal transpiration.
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Fig. 12. Curvature compressor of two-dimensional channel and induced flow: (a)
configuration of unit. (b) flow induced in the unit in the case of the ring-shape arrangement
of two units (T1/7Ty = 3, L/R. = n, R, /w = 1; a hard-sphere gas). In (b), the arrows indicate
the flow velocity v at their starting points; the scale of 0.012RTo)*/? of |v| is shown at the left
bottom of the figure. Kn is the Knudsen number defined by Kn = ¢,,/w with ¢,, being the
mean free path in the equilibrium state at rest with the density p,, averaged over the ring.

Recently proposed idea of the compressor using the effect of curvature of
channel [65, 66] (the curvature compressor, for short) also arose from the above
reinterpretation. It is a compressor consisting of alternatively arranged straight
and curved channels with a periodic temperature distribution [Fig. 11(b)]. Figure
12(a) shows the configuration of the unit studied in [65]. The unit consists of a
straight and a semi-circular two-dimensional channel of a uniform width w, where
the temperature of the channel surface T, is kept at T at the positions B and B’
and at T1( > Ty) at the positions A, A/, C, and C’ and changes linearly with the
distance from A (A’) to B (B) and from B (B’) to C (C’). Figure 12(b) shows an
example of the induced flow in the ring-shape arrangement of two units where the
positions A and A’ of one unit are respectively connected to C and C’ of the other
unit. The ring-shape arrangement corresponds to the periodic arrangement in the
case of the original Knudsen compressor. Thus, the induced flow implies the
pumping effect of the unit. In fact, the pumping effect of the snaky arrangement of
units like Fig. 11(b) was demonstrated in [65]. As is clear from Figs. 8 and 12(b),
the induced flow in the ring channel is much weaker, and so is the pumping effect
by a single unit compared to the original Knudsen compressor. Nevertheless, the
curvature compressor is attractive because of its dramatically simple structure.
This feature would allow us to make a huge cascade, which compensates for the
low performance of a single unit.
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The so-called accommodation pump [67] may also be regarded as a variant in the
first category. It is a compressor consisting of a channel with alternatively arranged
rough and smooth surfaces [Fig. 11(c)]. Here, the change of the surface roughness
causes the change of conductance.? The name of the accommodation pump comes
from the fact that the surface roughness is represented by the accommodation
coefficient appearing in the kinetic boundary condition. Rather recently, Hudson
and Bartel [68] investigated the capability of the accommodation pumps numerically
by the DSMC method.

5.2.2 - The second category

The driving force of the original Knudsen compressor and its variants in the
first category is the thermal transpiration. Recently a compressor using the
thermal-edge flow (Sec. 4.1.2) as a driving force has been proposed by Sugimoto
and Sone [69], which we shall call the thermal-edge compressor following the
reference. It may be considered as a variant of the Knudsen compressor in the
sense that the driving force is a thermal gas-kinetic effect. However, the dif-
ference of the driving force should be reminded; thus we separate it from the
first category.

The unit device of the thermal-edge compressor is a channel equipped with ar-
rays of heated and unheated plates [Fig. 13(a)]. In the compressor, the arrays in the
unit are arranged close to each other so that the strong temperature gradient is
established in the gas near the inside edges. Then, the thermal-edge flow induced
near there is superior to that near the outside edges, forming a one-way flow in the
direction from the unheated to the heated arrays of plates. Fig. 13(b) shows an ex-
ample of the temperature field in the gas and induced flow obtained by the DSMC
computation for a hard-sphere gas.

In the original Knudsen compressor, one has to maintain the gradient of tem-
perature along the channel wall, which accompanies a heat flow there. It means that a
part of the supplied energy is consumed outside of the system. The advantage of the
thermal-edge compressor is the absence of the energy loss of this kind, because the
heated part is separated from the outside. Thus the energy efficiency is considerably
improved.

2 Qualitatively speaking, the rough tubing would have the same effect as the shelf part of
the channel with shelves, i.e., the lower conductance against the back flow by a pressure
difference and the enhanced thermal transpiration.
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Fig. 13. Thermal-edge compressor of two-dimensional channel (by courtesy of Prof. H.
Sugimoto). (a) Configuration of the unit device. (b) Temperature field and induced flow in the
upper half of the unit in the case of its periodic arrangement obtained by the DSMC
computation (T}, /T. = 3, Kn = 1; hard-sphere gas). In (b), T, and T}, are the temperature of
the unheated and heated plates and Kn is the Knudsen number defined by Kn = ¢,, /D), with
Lay being the mean free path in the equilibrium state at rest with the average density p,, over
the unit. Specific values of geometric parameters are obvious from the figure. The arrows in
the right figure in (b) indicate the flow velocity v at their starting points; the scale of
0.05(2RT,)"* is shown at the top of the figure. The field is symmetric with respect to Xz = 0
and only the upper half part is shown in (b).

5.3 - New feasibility as a gas separator

We have introduced, so far, the Knudsen compressor and its variants, together
with numerical data showing their features. Originally, they were designed and
studied aiming at their capability as a compressor (or a pump, a flow controller).
Recently a new feasibility of the use for the gas separation has been reported in
[70, 71], which we shall describe below.

Consider two different species of gas, say gas A and gas B, at the same
pressure and temperature. The Knudsen number in the system of gas A is
different from that in the system of gas B, because the viscosity (or the mean
free path of a molecule determined from it) depends on gas species even at the
same temperature and pressure. On the other hand, as is expected from Fig. 9,
the compression ratio of the Knudsen compressor depends on the Knudsen
number. Therefore, even in the same condition, the achieved compression ratio
differs from species to species, which suggests a feasibility of the compressor as
a separator of gas mixtures. It should be noted, however, that the interaction
between different species is not taken into account in the above preliminary
consideration. The interaction diminishes the difference of flow velocities be-
tween species; the feasibility raised above is not obvious and should be examined
carefully.
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Fig. 14. Pumping and separation effect in the Knudsen compressor of two-dimensional
channel with the configuration in Fig. 7 on the basis of the fluid system with transport
coefficients based on the McCormack kinetic model for a binary mixture of hard-sphere
gases, gas A and gas B (b/L =1/2,d/D =1, T, /Ty = 1.3, Kn = 1). Two species gases of the
same amount are put inside, and the ratio of molecular mass is m®/m4 =2 and that of
diameter df /d4 = 1. Here, p(X;) and y4(X;) denote respectively the pressure of the total
mixture and concentration of species A averaged over the cross-section at Xi; p, is the
pressure defined by p. = naykTy with n,, being the average molecular number density of
total mixture; Kn is the reference Knudsen number defined on the basis of the mean free path
in a pure gas A with number density 7., in the equilibrium state at rest with temperature T'.

The feasibility of the original Knudsen compressor, including the compressor
with shelves, was investigated in [70] on the basis of the fluid-dynamic system de-
rived from the Boltzmann system for binary gas mixtures. The derivation of the
former is the issue of Sec. 6; here we merely mention (i) that it is derived from the
Boltzmann system by an asymptotic analysis of the so-called narrow channel ap-
proximation [D,d < b, L in Fig 7(a)]; (i) that it is a spatially one-dimensional con-
vection-diffusion equation for the partial pressures of individual species averaged
over the cross-section of the channel; (iii) that it covers the entire range of the
Knudsen number.

Figure 14 shows an example of the numerical results based on the fluid system
for the cascade of units with the configuration in Fig. 7(a) (b/L =1/2, d/D =1,
Ty/Ty = 1.3). In the simulation, both ends of the cascade are closed, and two
species, gas A and gas B (the diameter of a molecule is common but the mass is
different, i.e., m® /m# = 2), of the same amount are put. Thus the deviation of the
concentration x4 of species A from 0.5 is the measure of separation effect. As is
seen from the figure, the use of the compressor as a gas separator is promising.
The saw-tooth distribution in the one-hundred unit system can be understood from
the distribution in the one unit system.

In the meantime, the modeling at the level of the kinetic equation turned out to
have a decisive impact on the proper estimate of the separation effect. In fact, the
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Fig. 15. Model dependence of the pumping and separation effects: the performance of the
50-unit system with closed ends for the Ne—Ar mixture of the same amount (Kn = 1). (a)
Configuration of the unit and wall temperature T),. (b) Distribution of the pressure p and
concentration yNe averaged in respective units (Dy; /D =5, N = 5, T, /Ty = 1.3). In (b), yNe is
indicated by solid lines and p/p. by dashed lines; HS, LJ, IPL, and M represent the results
for the hard-sphere, Lenard-Jones (12-6) potential, inverse-power law potential, and Maxwell
molecular model, respectively. See the caption of Fig. 14 for the definition of the reference
Knudsen number Kn and pressure p..
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Fig. 16. Pumping and separation effects by the 10-unit system of the thermal-edge
compressor with the configuration in Fig. 13 (T,/T. = 3, Kn = 0.5; a binary mixture of hard
sphere gases of the same amount; ratios of molecular mass and diameter: m? /m4 = 10 and
ds /dA =1): (a) pressure p of the total mixture, (b) concentration y4 of species A. See the
caption of Fig. 14 for the definition of Kn and n,,. The field is symmetric with respect to
X = 0 and only the upper half part is shown.
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fluid system with transport coefficients based on the Maxwell molecular model gives
pessimistic results in the corresponding situation. The contradicting results between
the hard-sphere and Maxwell models required further studies on the dependence of
estimate on the choice of molecular model. Figure 15 shows partial results of those
studies, which includes the hard-sphere, Maxwell, inverse power law, and more
realistic Lenard-Jones (12-6) potential molecular models based on the McCormack
kinetic model Boltzmann equation. It is clear from the figure that the modeling by
use of the celebrated Maxwell molecules is decisively unfavorable for describing the
separation effect. It makes a marked contrast to its capability for the description of
pumping effect.

The feasibility in the case of the thermal-edge compressor was also investigated
[71]. In this reference, the DSMC computations are carried out mainly for hard
sphere gases, and the results are promising as shown in Fig. 16. On the other hand,
the decisive defect of the modeling by the use of the Maxwell molecular model was
also observed as in [70].

6 - Fluid-dynamic systems for the Knudsen compressors

In Sec. 5, we have introduced the Knudsen compressors with numerical results
obtained mainly by the DSMC method. The DSMC method is a stochastic and
most commonly used numerical method for simulating rarefied gas flows; ad-
vantageous is its simplicity and highly flexibility to complicated geometries,
chemical reactions, etc. However, there is a drawback: it actually suffers from a
large stochastic noise because of the limited number of simulation particles in a
single shot of simulation. Some averaging process, i.e., the time average in a single
shot or the ensemble average of independent shots, is inevitable to secure the
sample size enough to take out the necessary information buried in the noise with
reasonable accuracy. In view of this nature, there are two factors that make the
DSMC simulation expensive in the study of the Knudsen compressors. The first is
that, as is clear from the figures in Sec. 5, the thermally induced flows in the
Knudsen compressors are of small Mach number. It makes the required level of
noise reduction severer than the case of transonic or supersonic flows. The second
is the cascade structure of the compressors: the required number of simulation
particles increases in proportion to the number of units in a cascade. Since the
statistical noise decays with the rate of v/N with N being the sample size, there is
no hope to perform the DSMC computations for large cascades. In facts, it took
several months by the use of a MPI parallel computing system in order to obtain
some of the data in Fig. 10.
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The diagram in [59, 60, 65] for the estimate of the pumping effect in a large
number cascade from the data of a small number cascade for various Knudsen
numbers is one of the ways to bypass the difficulty addressed above. Another way
is, of course, taking an alternative method. For instance, for small Knudsen
numbers, the fluid dynamic system can be derived from the Boltzmann system,
and the use of the former for numerical simulations should drastically reduce the
computational cost with higher accuracy. The approach in [73] is the one in this
direction.

Usually the fluid dynamic description makes sense only in the regime of small
Knudsen number. However, under an additional assumption on the configuration of
the compressors, it is possible to derive such a fluid dynamic system from the
Boltzmann that can describe gas flows for the entire range of the Knudsen number.
To be more specific, the additional assumption is that the physical quantities vary
moderately along the channel and the ratio of the channel width to its length is small
enough. The so-called narrow channel approximation under this assumption enables
us to derive that system. In the present section, we shall give the outline of its
construction.

The construction to be presented is based on the method by Aoki and Degond
[74], in which a simplified BGK-type linear kinetic equation is used for the sake of
mathematical rigor in the course of discussions. Here, we shall consider the case of
binary gas mixtures in the original Knudsen compressor of two-dimensional
channel depicted in Fig. 7(a). We shall show the derivation from the Boltzmann
equation with the diffuse reflection boundary-condition on the channel walls,
following [70]. It is the simplest setting of the problem, except for treating a gas
mixture not a single-species gas, with retaining all the essence of rarefied gas
flows. The reader is refer to [75] for additional aspects such as more general
boundary conditions, channels with an arbitrary cross-section, and to [66] for the
case of curvature compressor.

There are two main steps in the construction of the fluid dynamie system. In the
first step, we consider a gas in an infinitely long straight channel whose surface
temperature varies slowly in space along the channel in the scale of the channel
width. In the situation, we introduce the so-called diffusion scaling and derive a fluid
dynamic equation of convection-diffusion type in that channel. Each unit of the
compressor is composed of two straight channels of different uniform width. In the
second step, assuming these channels to be long enough, we derive the connection
condition at the junction for the fluid dynamic equations in the respective channels.
The fluid dynamie system for the Knudsen compressor is then constructed by the
connection of the convection-diffusion equations in neighboring subunit channels at
junctions by the use of that condition.
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6.1 - The first step
6.1.1 - Problem and formulation

Consider a binary mixture of two-species gases, say species A and species B,
in a straight two-dimensional channel of uniform width oriented to the direction
of X1, where X,’s are the Cartesian space coordinates (Fig. 17). The channel walls
are separated by a distance D and are located at Xy = + D/2. The temperatures
of the walls may vary along the channel, i.e., in the direction of Xj, but are
constant both in time ¢ and in coordinate X3. They are supposed to take a common
value at the same location in X; and will be denoted by 7T (X7). There is no
external force. We will investigate the behavior of the mixture in the channel by
assuming that

1. The behavior of the mixture can be described by the Boltzmann equation for
binary gas mixtures.

2. The gas molecules are reflected diffusely on the surface of the walls.

3. The characteristic length of the variation of the wall temperature, L, is much
larger than the separation distance D.

The first assumption implies that the mean free path of a molecule /¢ is compar-
able to the separation distance D, i.e., £ ~ D. The third implies that the state of
the mixture would change in the scale of L, not of D, in the direction of X;. And,
since ¢ ~ D < L, the molecules undergo innumerable collisions with both other
molecules and the walls when traveling in that direction until its surroundings
change appreciably.

Let us denote by &= (&1, &, &) the molecular velocity and by f*(t, X, &) the
velocity distribution function of molecules of a-species gas (¢ = A,B). In the

Fig. 17. Two-dimensional straight channel with wall temperature variation.
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sequel, the Greek letters a and f will be symbolically used to denote the gas
species, i.e., {a,f} = {A, B}. The Boltzmann equation and the boundary condition
are written as

af(l
ot

ms m D
(54b) faﬂzi<fa(§);m)M<i;m), & s0, X2::|:E,

af{l
0X;

8f(1

(54a) X,

:JB“(fB,fa)—‘y—JAa(fA,fa),

+& +&

where m* is the mass of a molecule of species a, k the Boltzmann constant, g2+ a
constant (in &) depending on the arguments defined by

o1 (F(: ) = + 2(na)/? j sfOde (=1,2),

&i=z20
with d3¢ = d&;déedés and M the normalized Maxwellian given by

3/2
MEa) = (2)" exp(~aleP).

T

In Eq. (54b), the argument & of f* is explicitly shown in order to indicate the
variable of integration in the definition of 9., while the other arguments ¢, X; and
X, are suppressed for conciseness. We shall follow this convention in the sequel.
J"s in Eq. (54a) are the collision integrals defined by

le- Vi
Vi

5.0 = [ s —ﬁg)Bﬂ“< , V|>dQ(e)d3~f*,

fi=f@&), ¢=9@&), fi=fC) g=90,

Iu/),a _ ’u/)’a

e Ve, & &= F

=&+ = (e-V)e,

me
e 2memf

M _m7 Vzé*_év

where e is a unit vector, dQ(e) the solid angle element in the direction of e and
¢, = dé,1déE,dE 5. B is a nonnegative function of its arguments whose func-
tional form is determined by the molecular interaction between species f and a. It
has the symmetry property of BB4 = BAE because of the law of action and reaction.
The integration in the definition of J** is carried out over the all directions of e and
over the whole space of &,. The initial- and boundary-value problem for the binary
gas mixture in the channel is formulated by Eq. (54) supplemented by an initial
condition.
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6.1.2 - Scaling and dimensionless description

We are concerned with the solution which varies in the scale of L in the X;-di-
rection. Since the Mach number Ma of the flow thermally induced by the kinetic
effect is of O(¢/L), it is natural to take the quantity L?/cD with ¢ being the sound
speed as the time scale of variation because of the relation

characteristic length L (L2 ) O( L? )

Hme seate representative flow speed c¢Ma ct cD

Thus we introduce the following dimensionless variables:
s=t/t,, @ =Xi/L, @ =Xs/D,  {=¢&/@kT,/m*?
FO=f i @T m PR, Ty = T/ T,

where 7, is the reference molecular number density, 7. the reference temperature,
p. the reference pressure defined by p. = n.kT, and

L2
b= oM /.o MAN/20
@kT, /mM'2D,
The references n, and T, are to be chosen in a certain proper manner. In the above,
the reference length scale is different in the X;- and Xs-directions. The length scale
D, in the Xy-direction is a constant of O(D), i.e., the ratio a. = D/D, is of O(1). This
choice of reference length is simply for the convenience of the later discussions on

the connection of channels of different widths. For the time being, if prefer, one may
put D, = Dora, = 1. Further, we introduce the following dimensionless quantities:®

e=D,/L, w*=m"/mt,  KP=pBF/B2 K, =1t,/D,,
where

1 [T
-~ n BAA Y A

fa __ ﬁ . m/} . m" fa |e ) V| 3 3
(56) B = 5 JM<6*’2kT*>M<é’2kT*>B ( Vi LV |dQee)d &, d>E.

(55) ¢,

Here /., is the reference mean free path of a molecule and K, is the corresponding
reference Knudsen number.

3 The integral in the right-hand side of Eq. (56) does not remain finite in general. In the
case, in place of B*’s defined by Eq. (56), one should use as B’”s those constants that are
chosen properly and satisfy the symmetry property BAE = BPA, See the Appendix A of [70]
for specific examples.
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With the dimensionless quantities introduced above, the original Boltzmann
system is recast as

(57a) FOf + 100 f* + (o0 f* = — Z K gha(fh fo),

/fAB

(57b) f“=o2i<f“<c>;7;“>M<z;W), 650, m—t

w

where

(552) J/‘“(f,g)zj(f,ig’ —ﬁg)bﬁ"(|e| ‘|" |V|)d9< @,

(58b) L=, ¢d=90), f=fC), g=9Q,
/ ’uﬂa
(58¢) C—C+A @ Vie. ¢ =¢-
20 9if 5 BF
ohe — — ¢ — o _
(580) i V=e-k b/f—Bfa.

Here again, the system (57) must be supplemented by a dimensionless initial con-
dition.

It should be noted that ¢ is a small parameter by the third assumption in See. 6.1.1
and that it arises in the first two terms of the left-hand side of the scaled Boltzmann
equation (57a). We shall seek the moderately varying solution of the system (57) in a
power series of &.

Before proceeding, we introduce here the notation and definition of the macro-
scopic quantities. The average molecular number density, mass density, pressure,
temperature, and flow velocity of species a are respectively denoted by 7.7, m*n.,p*,
p.p%, T, 7%, and (2T, /mA)l/ Zp%; the average molecular number density, mass den-
sity, pressure, temperature, and barycentric flow velocity of the mixture are by n.#,
mAn.p, pup, T, T, and kT, /m™)/?6. The quantities with " are defined as follows:

(592) = J fedde Pt =amtat, At = Jgi frddc (=1,2),
2 . o

(B9b)  p* = T §J|:—ua\2mafad3c,

(59¢) n=a* +ab, p=p+p°,

B9 po = pret + P8, p=al =3 (pa 2 et — 13|2).
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The concentration (or the molar fraction) y* of species a is written as y* = 2% /#.

6.1.3 - Asymptotic analysis

Now we seek the moderately varying solution f* to the system (57) in a power
series of ¢

T R
Corresponding to the expansion of f “ we expand the macroscopic quantities as

7/;1/(1 - '}//\L((lo) + 7/;1/211)8 + R} T“ = Tzlo) + Tzll)e + R} etC.

The expressions of the coefficient functions ﬁ‘{o), fz‘(ﬁ), T, Tt ete. in terms of f(‘g), f&,
ete. are obtained by substituting the expansions into Eq. (59) and by equating like
powers of &. We omit these expressions for conciseness.

Substituting the expansion of f* into the system (57) and equating like powers of &
lead to the following series of problems for f(‘(‘», f(‘i), el

O
R 1 N
(60a) Z:Za%'zfg(l)) = f Z Kﬂ(lJﬂ(l(.ﬂg)yﬁ%))7
* p=AB
ra Za ma ma (0
(60b) Joy = o2+ <f(0)(C);Tw) M(C;Tw>7 (S0, @ =+ 5
0@
. . 1 P P
612) G0 fio + L0l = D KPP fa) + 7 Foyofo))
*p=A B
P _ b0 ooy, et < _ %
(Glb) ﬁl) 02+ (f&l)(é‘x Tw> ]‘4<C7 Tw ), Cz >O, X2 + 5
0(?)
B fy + 010, 3 + (20, £
(62a) 1 o mp a o mp a ST
= > KPP 08) + 7 (fyu i) + I fi))
* p=A B
2 . ) ma ] ,ﬁ,l/a - .
(62b) ﬁz) = 02+ (ﬁZ)(C)v T_W> M(Cv T_w> ) CZ §Oa Yo = i? )

and so on. This series of problems can be solved from the lowest order.
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The leading order solution: the solution of the problem (60), in which s and a;
occur as parameters, is the following bi-Maxwellian independent of xo:

(63) i =nly(s,00) M(&;

mt o A (sa) . ( B (¢ )
Tole))”  @Tw(@)/me)*? T'o(1)
The proof is a straightforward extension of that in [76] to gas mixtures and is omitted

here. From Eq. (63), the coefficient functions %?O), fo;‘o), ete. at O(e%) are independent of
¥o; in particular, the following relations hold:

'}(50> =0 =0, Tflo) = T(O) = Tw(ﬁﬁ)'
The first relation is due to the present scaling taking into account the situation de-

scribed in the first paragraph of Sec. 6.1.2. The second relation yields the following
expressions for pf and p):

Py = oy ws Py = o)

It should be noted that f%)’s in the expression (63) remain undetermined at the
present stage.

The first order solution : the problem (61) is linear in f(‘{), and the solution can be
expressed as

“ R me
(64) i =M (c;T—

w

) (88 + @ $50:, InPig) + @ $pdy, In Ty + @ &0, 70))

where ¢, and ¢; (J =P, T, y) are functions of s, 1, y, ¢ with y =xs/a, and

c=1{(// Tw: ¢. is the solution of the problem

a ]‘ a a a (/]
(65a) 20,9, e Z K" L{;W(X(O)%axfo)‘?e),
Bp=AB
a a AN, )20 1
(65b) ¢, = 02+(@, (€)M (c; m™); %), 2SS0, y= ié,

and is even with respect to ¢i, while ¢}’s (J/ = P, T, y) are the solutions of the in-
dependent three problems

a 1 a a a a a
(662) e0,8) =5 > KLY @) rod) 15, T =P.T.p),
p=AB
1
(66b) 8 =0, @S0 y=:g,
with

A B ~ 2 5
Iy =cy, I,=ca, I;=-c, It=)pa (m“|c| —§>,
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and are odd with respect to ¢;. Here,

LI(f,g) = J(f*’ +9 —f. — OM(e.; /" (IeC(|7| |C|)dQ(e)d3c*,
fl=r), g =9c), f.=f(le), g =9(),
~ ~Ba
d=c+= ¢ =c, ﬂ

| e-C]
C=c.—c, bf“(e C> ( \/EC>,
e 1) =7 e vrId

and K is the local Knudsen number defined by

K. KTy

K(s,x1,0,) = — = — .
as ) (S, 21) Gy Poy(S, %1)

It should be noted that s and x; occur as parameters through ;{E%), T\, and K in the
above problems. Further, the solution ¢; of the problem (65) is independent of both y
and c;, which can be proved by the use of the non-positivity of the linearized collision
operator (see [77] and Appendix A.12 in [2]). On the other hand, ¢p, ¢7 and qﬁi are,
respectively, the solutions for the three elemental flow problems: the flow caused by
the pressure gradient (Poiseuille flow), the flow by the temperature gradient
(thermal transpiration) and the flow by the concentration gradient.

In summary, f(l) can be expressed, in terms of the solutions of elemental problems

gbe’ ¢P7 ¢T and X’ as
2q 0

/\a “ m
14 = oM (C ru

w

) ( Z(K’ZE%)’ TW) + a*¢P Y,¢; K X(AO>7 8451 lnp(o)
(68)
+ 0. ¢y, € K, 1), )0, In Ty + @ 82y, € K, 100y, Tw) O, xé%)),

and the corresponding coefficient functions of the macroscopic quantities at the first
order of ¢ are obtained as follows:

(69 ity = oy | ¢iMes it )de = ol

(70) Ay 0y = @ ooy \) T (O, In oy + 10, In T + 1200, 1),
(71) ub = Jclgbf}(c)M(c;ma)dgc J =P,T,p,

(72) Wy = Wy = Ty = 0.

The second order and the conservation law of the number of particles: we can
proceed in the same way as the previous orders. However, our purpose is to derive
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the equation describing the behavior of the gas at the leading order, say the quan-
tities n( which are left undetermined at the previous stages. Then, it is enough to
consider the conservation law of the number of particles in the system (62). The
specific procedure is the following.

We first integrate Eq. (62a) with respect to ¢ in its whole space and with respect
to a from —a./2 to a./2 to have

0/* (93%&)) + 8x1 '}?L‘(‘O)'[A)‘f(l)dﬁﬁg + [JCZ](;Z) :| Ca = O
2

N}: %'\43

The last term on the left-hand side vanishes because of the boundary condition
(62b). Consequently, substituting Eq. (70) into the second term and using the re-
lation between y and x2, we obtain

(73a) Ashily) + 0 T* = 0,
(73b) T =a, (./\/[%8T1 11’1]5(0) + M%aﬁ In Tw + M? 901%3))) p((j) 7
\ Tw
where
1
2
(73c) M;(Ka)fﬁ)), Ty) = J ’I/Lf}dy =P, T,p.

Dol

The physical meaning of 7 is the particle flux N¢ of species a through the channel
nondimensionalized by the factor of n.De@kT. /mA)l/ %, Since p) = n(O)T and
)((0) = ”(0) /Ty = "(o> / ("(0) + n(())) Eq. (73) is a closed set of equations for n«)) and

”<0>

6.2 - The second step: connection problem

Now we consider a binary gas mixture in the channel composed of two elemental
channels, say element I and element II, of different uniform widths connected at
X; = 0 with sharing the center line (Fig. 18). The width Dp of element I is smaller
than that of element I, Dy;. The temperature Ty, of the channel walls is kept constant
in time and depends only on Xj, i.e., Tw(X7). At the junction (X; = 0), the tem-
perature Ty, is continuous, but its gradient may be discontinuous in general. We
assume that in each element the behavior of the gas mixture can be described by the
Boltzmann equation and the velocity distribution function is continuous at the
junction. We also assume the diffuse reflection boundary condition on the walls.
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X

2

________ B
D, |
Fig. 18. Connection of two channels with different width.

By the use of the same reference quantities as in Sec. 6.1, we have the di-
mensionless description of the problem in the following form: for x; <0

1 ~
(T4a) EOF® + £(10, F* + (50, F* = 5 > KMJE F,
* p=AB
m* m* a
(74b) F* = 0. (FUQ); o) MG =), (SO, @y = +-2,
Ty Ty 2

and at the junction (x; = 0)

m* me a a
()  F'=qy (F“«:); Tw> M(c; Tw>’ G>0, 5 < el < S

by Fs,0y = 0_,@9,0) = s,y = 0,2, 0), |xz|<%,

where J = I for x; < 0 and J = II for x; > 0 in Eq. (74b) and
a1 = Dy1/D,, an = Du/D..

Here, we denote the dimensionless distribution function by #* in order to avoid the
confusion with the solution f* of the problem in Sec. 6.1.
As is readily seen, f(‘é) solves the problem (74) and (75) with ¢ being zero if

(76) Mgy(s, 01 = 0-) = fz‘go)(s,acl =0,).

That is, as far as the order of &° is concerned, one can construct the solution of the
present problem by the solution of the problem in Sec. 6.1 with the continuity con-
dition (76). However, if one proceeds further, the same is not true any more; for
instance, f(‘i) does not satisfy the diffuse reﬂectionA condition at the junction [see
Eq. (75a)]. We have to introduce the correction g“ to f* and represent the solution F*
in the form

(77) F* =f 4 ¢°.

Here the correction function ¢* is supposed to change rapidly in «;, ie.,
0y, 9" = O(g") /¢, and to be appreciable only in the vicinity of the junction. As in
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Sec. 6.1.3, we expand ¢ in a power series of ¢. Since f(‘g) solves the problem at the
zero-th order, this expansion starts from the first order:

9" = ghe + gl + -+

Substituting Eq. (77) with the expansions of /¢ and g* into Egs. (74) and (75) and
equating like powers of ¢ lead to a series of boundary-value problems for gf;), gy, - - -
With the stretched coordinate z defined by z = x1 /¢, the boundary-value problem for
9(1) can be described as follows: for zs0

(78a) (10:90) + (20090 = E KP"[J /}a(ﬂ{)})i7 gty + 7"} 1>7f(0)i)]
/)’ AB
e e ay
a a R R < =+ =
(78b) g(l) 024 (g(l)(C)y TW > M (C7 TW ) ) éQ >07 L2 + P ’

at the junction (z = 0)

(79a) g(D =01- (9(1)(4‘) Jrf(l)Jr(C), S )M(C ) f(1)+a >0, < el <

2 2

A a
(79b) ggl)(sa = 0—; L2, C) +fg)7 = g?l)(sﬂz = 0+ax27C) +.f((i)+7 ‘902' < ?Ia

and at a far distance from the junction (|z| — o0)

(80) 94 — 0,

where J = I for z < 0 and J = II for z > 0 in Eq. (78b) and f<0) . and f(l) ., represent
their values at x; = 0.. In Eq. (78a), f(o> , isforz > 0 and fw) for z < 0. It should be
noted that in Eq. (78b), as well as in Eq. (79a), T denotes the dimensionless tem-
perature at the junction (x; = 0).

Now, we consider the necessary condition for the solution to exist. The condition
is no other than the conservation law of the number of particles; it provides, together
with the continuity condition (76), the connection condition at the junction for the set
of fluid-dynamic equations (73). The specific procedure is the following.

We first integrate Eq. (78) with respect to £ in its whole space and with respect to
xg from —ay/2 to a1/2 for z < 0 and from —ay/2 to agr/2 for z > 0 to have

ar/2
0, J Jclggﬁ)dggdxz =0, 2<0,
—ar/2
ap/2
0. J Jilg;ﬁ)dggdxz =0, 2>0,

—an/2
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where the property of the collision terms and the diffuse reflection condition (78b)
have been taken into account. The resulting equations, with the aid of the condition
(80), lead to

ap/2

(81a) J ng 98,2 = 0_, a2, O)d*Cdas = 0,
—ay /2
ar /2

(81b) J ng 98,2 = 04, 22, O)d*Cdacs = 0.
—ag/2

In the meantime, from condition (79), g(y) must satisfy

(2) | Jatder = 0w 0+ e~ o
ar/2 < |wz| < an/2
and
(11/2
(83) j ja 0y (52 = 0_, 2, 8) + 7, 1%y
—0/1/2
a1/2
- J ja g (5,2 = O, 2, £) + 7% 1%L,
—a1/2

Combining the conditions (81)—(83) all together, we have

ar/2 arn /2
J Jclfg;),d%dxz: j Jclﬁ>+d35dxz,
—ay/2 —ayy/2

which is finally reduced to
(84) arJ (s, o1 =0-) = anJ*(s,x1 = 04).

In summary, the set of Eqs. (76) and (84) is the connection condition at the
junction for the fluid-dynamic set of equations (73).

6.3 - Fluid dynamic system for the Knudsen compressor

In deriving the connection condition in Sec. 6.2, the two channels are assumed
to share the center line. However, this restriction can be readily removed, resulting
in no influence on the condition. It is due to the facts that fzg‘o) and J7* do not depend



[49] FLUID MODELS AND SIMULATIONS OF INTERNAL RAREFIED GAS FLOWS 49

D Dl[
1
(a) elemental unit
n
0 L L L+L, 2L 2L+L, 3L 3L+1L, L X

(b) a series of elemental units (N =4)

Fig. 19. Schematic of the Knudsen compressor.

on x2. Here, we summarize the fluid-dynamic system for the Knudsen compressor
with the configuration in Fig. 19. The reader is referred to [70] for the system of
more general configuration shown in Fig. 15(a).

Considered is the Knudsen compressor composed of A elemental units of
length L arranged in the X;j-direction as depicted in Fig. 19. The elemental unit is
composed of two subunits, subunit I of length L1 and width D; and subunit IT of
length Li; and width Dy, where L = Ly + Ly and Dy < Dy;. They do not ne-
cessarily share the center line. The temperature Ty, of the wall is constant in time
and depends only on X;. The temperature Ty(X;) varies smoothly in each subunit,
is continuous at junctions and is periodic with period L, i.e., Tw(X;) = Tw(X; + L)
[0<X; <WV —-DL]

If individual elemental channels are long enough, i.e., D;/L; <1 and
Dr1/L1r < 1, the behavior of the mixture in the Knudsen compressor can be de-
scribed by the set of fluid-dynamic equations (73) for the individual elemental
channels with the connection conditions (76) and (84). The whole system is the fol-
lowing:

In the subunit I: forj < x; <j+ L1/L) G=0,1,...,.N —1)
(85a) O] + 00, J1 =0,
Tt = ar (Mp(Kr 1, T, In

(85b) ) ) ) -
+ MG, 78, T, In Ty + MUK 1, )02 i T
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In the subunit I1: for j + (L1/L) <x; <j+1 (G=0,1,...,.N —1)
(86a) Osify + 0n I11 = 0,

Jh = an (M%(KH,}(‘?}, T4)0y, In pry
(86b)
+ M4, iy, ), In T+ MK, 2, )0y iy T

At junctions: at @y = (Ly/L), j, (Li/L)+j(G=1,...,.N = 1)
(87) ni =ny, aJi=oanJy-

Here #f, xf, p1, and @; denote gy, xi,(=g /i) Do(= iy Ty), and
(= ﬁf’a) +ﬁ2%)) in subunit I, and the counterparts with subscript II those in
subunit II. K; and Ky are the local Knudsen numbers in the subunits I and II
defined by

K; = T—‘YK*, Ky = AK*

arpr anpit
J1 denotes the dimensionless particle flux of species a through the subunit I non-
dimensionalized by %..Dy ¢ CkT,/ mA)l/ 2; J* the counterparts through the subunit I1
nondimensionalized by n.Dry e kT, / mA)l/ 2,

With initial conditions for 7{ and 7{; and with proper boundary conditions at the
both ends of the compressor (at #; = 0 and ), we can pursue the time evolution of
the behavior of the mixture by the use of (85)—(87). The simplest reasonable condi-
tions at the extreme ends of the compressor would be the following:

1. Open end (or the end connected to a reservoir huge enough): the molecular
number densities of respective species are given.
2. Closed end: there are no particle fluxes of respective species.

6.4 - Summary and some other possibilities

In summary, the problem is reduced to solving the system (85)—(87), i.e., the set of
convection-diffusion equations and their connection conditions, supplemented by a
macroscopic initial condition and boundary conditions at the extreme ends. However,
in order to complete the system, we have to prepare the transport coefficients M9
(/ =P, T, y) beforehand. It can be done numerically by solving the elementary flow
problems (the flows caused by the gradient of pressure, temperature, and con-
centration in an infinitely long straight channel) for the linearized Boltzmann system
(66). It is the issue of the next section. The reduction of the original kinetic problem to
the elementary linear problems is the primary advantage of the present approach.
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Essentially, there is no difficulty in solving the fluid-dynamic system (85)—(87)
itself. The results in Figs. 14 and 15 are obtained by solving time-independent
problems of that system (or the counterpart for more general configuration in the
case of Fig. 15) with the closed end condition, where the references are chosen as
D, = Di(=D)and T, = Ty. The transport coefficients prepared on the basis of the
MecCormack model have been used there.

Incidentally, motivated by the periodic structure of the compressor (both in
geometry and in temperature distribution), Aoki and Degond [74] proposed a further
simplified fluid-dynamic system by the use of the homogenization method, which
describes the change of the gas state in much larger scale than the unit length L (the
change in the scale of L is treated as the rapid variation in the homogenization
procedure). For the specific procedure in the case of the full Boltzmann equation (not
the simplified BGK model in [74]), the reader is referred to [75]. Recently, Charrier
and Dubroca [76] derived a fluid-dynamic system describing gas flows in porous
media by the use of homogenization method directly from the kinetic description
(without passing through the intermediate fluid description as in [74, 75]).
Corresponding approach to the Knudsen compressors may be considered.

7 - Numerical analysis of elementary flow problems with the view of preparing
transport coefficients

In the course of analysis in Sec. 6.1.3, there occurred three elementary flow pro-
blems (66), i.e., the problems of the pressure-driven, temperature-driven, and con-
centration-driven flows in a straight channel. The solutions of the problems are in-
cluded as the transport coefficients M7 (J =P, T, x; a = A, B) in the final fluid-dy-
namic system (85)—(87) summarized in Sec. 6.3. The physical meaning of those coef-
ficients is the (dimensionless) particle flux of species a in the respective problems. In
order to make use of the fluid-dynamic system (85)—(87), one has to prepare a nu-
merical table of the fluxes beforehand by solving the problems (66) for various values of
the Knudsen number, concentration, and temperature [K, }(f}», and TW in (66a)]. Then,
during the numerical solution process of the system (85)—(87), one draws the desired
data from those tables typically by interpolation, since the Knudsen number and
concentration are the local quantities varying with position and time in the system.
The tables are desired to cover the entire range of the Knudsen number (0 < K < o)
and concentration (0 < Xf%) < 1) and a wide range of the temperature T',. We shall call
those tables that meet these requirement the complete flux tables or the flux database.
In the present section, we shall introduce the works on three elementally flow pro-
blems performed in our group, in view of the preparation of the complete flux tables.
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7.1 - Solutions of the linearized Boltzmann equation

7.1.1 - The state of the art

Nowadays, the solutions of the problems (66) on the basis of the linearized
Boltzmann equation are available [78] for a wide range of the Knudsen number. The
first numerical solution of the linearized Boltzmann equation for hard-sphere gases
was reported by Sone, Ohwada, and Aoki [79] in the study of the temperature-jump
problem. The method developed in this reference, which they call the numerical
kernel method, has been applied to many fundamental flow problems for single-
species rarefied gases [81, 82, 83, 84, 17, 85, 53, 55, 86, 87, 88], including the Poiseuille
flow and thermal transpiration [80]. The extension of the method to the case of gas
mixtures was initiated in [89] and later applied to various Knudsen-layer problems
for mixtures [90, 91, 92, 93]. The work reported in [78] has been done as the con-
tinuation of the project in Kyoto aiming at providing standard solutions of the
Boltzmann equation for fundamental rarefied gas flows. We shall give below a brief
outline of the analysis.

With the aid of the spherical symmetry of the collision integral, we first see the
solution ¢ of the problem (66) to be sought in the form:

iy, ¢) = (c1/c, Wiy, ca,¢,), ¢, = (¢ + D

and w9 is the solution of a boundary-value problem, which is symbolically
written as

A _ AA BA A TA
(883) 02(9?/ l//i]g - l VA —ZBC BC BB we]]g - é )
Ty K C v+ C Yy 7y
(88b) w5 =0, forcs0, y= ﬁ:%,

with

5
a a a a ~ a2
(88¢) Tp =Xy, L1 = Cpx() (m le|” — §>7 I{; = Cp, Z;I? = —Cp,

where * are functions of |e|(= ,/c3 + 0/2,) depending on T and ){ﬁ)), while C# are
those linear integral operators depending on Ty and ;{f}» that work on 1//}:

(89) Py, ca,c,) = j/cﬁ%cz, ¢y 6, e WY, Go, B )dEndlE,.

In the actual computation, we truncate the infinite regions of c; and ¢,
(—o00 < €2 < 20,0 < ¢, < 00) at Vi*|ca| = Co and vitc, = C, with C; and C, being
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finite positive constants sufficiently large.* Then, we arrange grid points in the finite
region of (y,cz,c,) and denote them by (4@, cY, c), where i=—N,,...,N,,
Jj=-Nz2,...,N3,k=0,...,N, with N,,, N, and N, being certain positive constants
and with 4@ = 0 and ¢ = 0. The solution is obtained iteratively by the use of the
following finite-difference scheme:

(n) \(n) (n—1)
90) ¥ [%w“‘] Ui CAdyA +CBAV/B] Y[
2 - 1 - 9
&JWB K ;k‘//];;cm CABWA + CBBWB i 7B i

where we suppressed the subscript J for the simplicity of notatlon t//‘;(,f) denotes the
value of y* at the n-th step of iteration at the grid pomt of (¥, cJ c(k)) and hj;, with
h =", I% denotes the value of / at the point (c§ ,c(pk)). In the above scheme, the
derivative terms 0,y" are approximated typically by second-order upwind scheme.
The essential part of the numerical kernel method is the way of approximation of the
second term on the right-hand side. The method is conceptually simple. We in-
troduce a set of basis functions Bj, (¢z, ¢,) such that the sum

Z Z Blm(CZ7 Cﬂ)l//a(?/a A(Zl)v A;m))

l=— NQ’WL 0

yields a quadratic interpolation of the discrete data {y*(y, é(zl), c(m))} in every two

intervals of grid points with respect to both ¢ and ¢,.” Hence, we regard the sum as
the approximation of the function y*(y, ¢z, ¢,) and substitute it to (89) to have the
expression of the second term on the right-hand side of (90):

(n—1) g AA (n—1)
CAA A + CBA B] Ny Al [ jklm Cjklm] [WA‘|
l//B

=2 >

CAByA  CBByB ik =N m=0 C’ﬁcgn Cflfm im
where
Cyﬂlglm = JICﬂa(Cg), C;k y 02, C/))Blm(CZ, C/))dCchp
Note that Cjﬁk“lm is independent of y* and can be computed beforehand. Once CJ/Z‘ZM i

* Typically Cs and C, are chosen to be 4.5 ~ 6.
5 As will be demonstrated later in Fig. 21, y* is discontinuous at c; = 0 on the wall

<y =4 %) The interpolation in terms of the basis functions is made properly by taking into

account the discontinuity. Incidentally, the quadratic interpolation is not obligatory. One may
consider basis functions that yield, for instance, a linear or cubic interpolation, if it is
preferable.
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Fig. 20. Particle fluxes of respective species in a binary mixture of hard-sphere gases in
thecaseome/m =2,4,and 10,dB/d* =1, andxo =0.5. Here, M4 (J =P, T, y;a=A, B)
is a function of K defined by M% = M4(K, x4 o =0 5 Ty =1). The results for the hnearlzed
Boltzmann equation at eighteen points of K obtained in [78] are shown by circles
(mB/m* = 2) and triangles (mP/m? = 10). The open symbols o and A indicate the results
for species A, while the closed symbols e and A those for species B. The solid and dashed lines
respectively indicate the results of species A and B for the McCormack model Boltzmann
equation for hard-sphere gases. In the case of hard sphere gases, M5 (K, )(f?)), Ty) is recovered

by the formula M5 (K, x4, Ty) = M (K Tw,)(f}))).

prepared, we can compute the collision integral by a simple multiplication (and sum)
of matrices in the iterative process, which can be performed efficiently particularly
on vector computer systems.

The particle fluxes thus obtained are shown in Fig. 20 with open and closed
symbols. Figure 21 shows the velocity distribution function 1//? of the concentration-
driven flow problem for three representative Knudsen numbers. The reader is re-
ferred to [78, 94] for more detailed descriptions and data.

7.1.2 - Prospect for the complete flux tables

By the method explained in Sec. 7.1.1, one can obtain the solutions for a wide
range of the Knudsen number. There is, however, a practical upper and lower
limits of the Knudsen number if the method is applied to in a straightforward
way. The difficulty in the regime of small Knudsen number comes from the
following facts:

(i) the slow convergence of the solution.

(ii) the velocity distribution function close to the local Maxwellian. Substitution
of the nearly Maxwellian in the collision integrals results in the output of
small data, which is magnified by the factor of K~!. This means that the
small deviation from the Maxwellian should be well-captured in order to
retain the accuracy of computation.
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Fig. 21. Velocity distribution function wa (le], 1) for the concentration-driven flow at

three points in the gas in the case of mP/m* =2, d®/d* =1, x§ = 0.5, and Tw =1 (hard
sphere gases). (a) K =10.53, (b) K =1.053, and (¢) K =0.1053. The position in the y
coordinate is shown at the top right corner in each figure. Note the discontinuity at co =0
on the wall y = 0.5.

These features are not peculiar to the present problems, but generally appear in
solving the kinetiec equation. On the other hand, the difficulty in the regime of large
Knudsen number is rather specific to the present problems. As is seen from Fig. 21,
the velocity distribution function l//? becomes steep for large Knudsen numbers. This
feature is common to the three problems irrespective of the component species (i.e.,
tow$ with J/ =P, T, y and a = A, B), and is enhanced as the Knudsen number in-
creases. For the preparation of flux tables that cover the regime of large Knudsen
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number, special attention should be paid to the arrangement of grid points in nu-
merical computations, since the Knudsen number can be indefinitely large.

The difficulty in the regime of small Knudsen number can be overcome by the use
of the asymptotic theory established by Sone [3, 1, 2]. In the course of the analysis,
one has to solve, numerically, the half-space problems of the linearized Boltzmann
equation, but the solutions of the problems are now available [89, 90, 91]. On the other
hand, up to this moment, the difficulty in the regime of large Knudsen number has
not yet been well-handled. Recently, however, there was a progress on the flux es-
timate of the thermal transpiration for single-species hard-sphere gases by Chen,
Chen, Liu, and Sone [95]. It had been known for the BGK model equation that the
flux grows with the rate of In Kas K — o0 [96, 97, 98]. They proved the same growing
rate of In K for the linearized Boltzmann equation. Thanks to the constructive way of
the analysis, the dominant term is explicitly given, so that it should be possible nu-
merically to obtain accurate flux data for very large Knudsen numbers from that
explicit term.

In summary, it would be realized in the near future, though still difficult (or too
tough due to high computational costs) at present, to provide the flux tables that
cover the entire range of the Knudsen number on the basis of the linearized
Boltzmann equation.

7.2 - Solutions of the model Boltzmann equation and flux-database construction

At present, the complete flux tables on the basis of the linearized Boltzmann
equation are not available. However, there are the counterparts on the basis of the
model equations, which have been made use of in the studies of the Knudsen com-
pressors.

The complete flux tables were first provided by Sone and Itakura [99] in the
study of the Poiseuille flow and thermal transpiration for single-species gases, not
only for the two-dimensional channel but also for the circular pipe, on the basis of
the BGK equation and diffuse reflection boundary condition. The numerical si-
mulation of the Knudsen compressor in [75] has been carried out by the use of
their tables. The software package developed (from these tables) by Sone,
Itakura, and Handa is available from our web-site.® Quite recently we also pre-
pared the corresponding complete flux tables [100] on the basis of the ellipsoidal
statistical model (ES-BGK model [103, 104]) equation. In the case of gas mixtures,
the complete flux tables on the basis of the McCormack model equation [101, 102]

6 http://www.users.kudpe.kyoto-u.ac.jp/"a51424/Sone/database-e.html
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have been prepared in [70, 94] for the three elementary flows in two-dimensional
channels.”

The model Boltzmann equations are those equations that have a simplified col-
lision integral in place of that of the original Boltzmann equation. This feature gives
rise to a lot of benefits in various aspects, which we shall explain in rather abstract
way in Sec. 7.2.1. It should be noted, however, that it is not clear a priori whether or
not the solution of the model equation is close to that of the original Boltzmann
equation. The ability of individual model equations should always be assessed nu-
merically. Our solutions of the Boltzmann equation have been serving as the stan-
dard for this purpose.

7.2.1 - Numerical advantages of the model equations

For the problems we are now concerned with, the linearized version of the model
Boltzmann equations, such as the BGK, ES-BGK, and polynomial type models (see
[105] and the references therein), is to be used under the diffuse reflection boundary
condition.® For the sake of the specific description, we shall explain the advantages
coming from the simplified collision integrals in the case of the McCormack model
equation. For the BGK and ES-BGK type cases, the situation is much simpler and
the reader would find the corresponding descriptions in the literature (e.g.,
Appendix A.6 of [2]).

The collision operator L/;“ of the McCormack model equation reads

(91a) Ly Giod 108" = M™ = Cpud',
with
(91b) M™ = Cy0*

aof S
X0 109 o
WP e )b

+2mc; [CﬁaX?O)“? + X?O)Xf())(“f — UV + (

a ~ q 3 " ~Ba .
+ X0 (m el - 5) <C/)’a0 +';%ﬁ -0 )Xff())v(ﬂla))

" Fortran subroutine program that promptly provides the flux data for arbitrary values of
the Knudsen number and concentration (and for a wide range of temperature) is contained in
the online version of [94] as an additional supplementary material.

8 The McCormack model was originally proposed as a model of the linearized Boltzmann
equation. Recently, however, Kosuge pointed out that it can be derived by linearization from
his polynomial model [105] for gas mixtures.
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e Lees: ) («c Py, Hp
+me| ¢ic _§|c| ij (( pa — X(O) /}a) + Xy /}a 7;>
a .B
4A(l ~ 0 5 a 5X0X0 a
+5m Cl( |c| ) ((C/}a X(O)V;;?)Q + 7(0) g,?Qﬁ + é (mz—a( )(uf ) (2) ,
o a (. a 3 .9
where o, u, 0", Pij, and Q¢ are the following moments of ¢":
O ng“M (c;m%)d>c, Low = Jcigb“M (e; %) d>c,

0 2 O 3 (4 ~q
Koy = gJ (m lef? — é)gb M(e; m%)d3c,

Py = 2" Jcic.i¢aM (e; ),
° ~ar 2 5 a ~ aN I3
Q¢ = | i | -5 ¢"M(c; m*)dc.

The v(“ (t=1,...,6) and Cy, are constants with respect to ¢, depending on Ty and
molecular model their specific forms are omitted here for the sake of brevity (see,
e.g., Appendix A.2 of [70]).

The collision integral (91) is simple, compared to the original one, in the sense
that the dependence of M?* on the molecular velocity ¢ is explicitly given,
especially in terms of up to the third-order polynomials. This feature drastically
reduces the computational cost of the collision integral. Actually, however, fur-
ther drastic reductions can be made by additional simple arguments, which will
be described below.

Chu’s method

In spatially one dimensional problems,'® two components of the molecular
velocity can be eliminated from the McCormack model equation. It is due to the
facts that M” is a given function of ¢ depending on the low-order moments of ¢’s
and that Cg, in front of ¢” in (91a) is independent of ¢. Such a reduction was first
introduced by Chu [46] in the case of the BGK model equation in the study of the
formation of shock wave. The way of reduction is simple: the mere integration of

¥ The moments w?, uf, 0%, P, and @ are, respectively, the perturbation parts of the
molecular number den51ty, flow velocity, temperature, stress tensor, and heat-flow vector of
species a.

10 A similar reduction can be made for two dimensional problems.
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(66a) multiplied by

1
C1
C3

mecs
e E"(c1)E(c3),
7’7’&“6163

me1(c3 + ¢3)

me3(c} + ¢3)

with respect to ¢; and ¢z yields simultaneous integro-differential equations for the
marginal velocity distribution function @“(y, c2) defined by

o 1
o ¢
@ e
oo oo a2
a 45:11 e a oa o ded
D (y,c2) = o |~ J J e " E%(c1)E%(c3)derdes,
@ o mécics
@4 mtei(c] +c3)
L mtes(c? + c3)

where £%c) = (m*/ n)/? exp ( — m“c?). It is readily understood, though complicated

at a glance, by observing that all the moments w*, u{, ¢°, Pf, and Qf occurring in the

collision integrals can be expressed by the moments of @*:

o = | PiEcz)dcs, Lotz = | c2PiE(ca)dcez,

Loui = | PE (ca)dez, Lous = | P& (ca)des,

[ 1
[ 11

a@ 2 ~a 3 a ca 2 . Y
iy = gj (e — ) € (ea)dez + §J<¢4 + PHE (e2)dez,

Py =2 J BLEN(eo)dcs,
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P‘ll2 = 2m* JCZ(P;ga(Cz)ng,
P(llg =2 J @gga(@)d(,’z,
P, = 21" ch D4E (cp)dc,
5y = 2 st (eordes
P§3 =2 J (pgga(CQ)dCz,
a ~ a2 5 a o a o
Q= (m - é)cbzg (e2)des + | DEE (cz)des,

. 5
QS :J Co (m“c% — E) PLE (co)dez + ch((Dj + DE)E (co)de,

N 5 a 0 o0
Q5 :J (m“cg — §)<D§5 (c2)dces + J(Dgg (c2)dcz.

By the same procedure, we can formally, in general, transform the boundary con-
dition for ¢* into that for @“. In the case of the diffuse reflection condition, the re-
sulting condition is closed with respect to @*, and the problem is reduced to that for
@". Because of the smaller number of independent variables, solving the problem for
@“ is numerically much less expensive. Actually, in the case of elementary flow
problems (88) that we are concerned with, thanks to the strong symmetry of the
problems, only the two components @§ and &7 are necessary, and the situation is
much simpler than that one would expect from the above description (see [94]).

Transformation into integral equation for macroscopic quantities

The McCormack model equation with the diffuse reflection condition ecan be
transformed into simultaneous integral equations for macroscopic quantities, which
are the low-order moments of ¢*. It is due to the form of the collision terms explained

in the previous paragraph (Chu’s method).

The procedure to obtain the integral equations is simple. We just formally
solve the equation (66a) for ¢” and then substitute the resulting expression into
the definition of the moments «*, u{, 0°, P;-‘j, and Q¢ occurring in the model
collision integrals. Actually, in the case of elementary flow problems (88), due to
the strong symmetry of the problems, many of the moments vanish and what we

finally have is the simultaneous integral equations for u{, P{,, and Qf, which is



[61] FLUID MODELS AND SIMULATIONS OF INTERNAL RAREFIED GAS FLOWS 61

symbolically written as [94]

u{(y) 12 1 “?(3)
Pow | = | ( G(sy ) | PR

Qi) “i/2 Q)
uP(s) )
+M}§(s,y,K) PB(s) >d8+1(‘<y,K).
Q%(s)

Here MY and M$ are 3 x 3 given matrices, while I is a three dimensional given
vector; and all of them depend on T and molecular model, besides the variables in
their argument.

Elimination of the velocity distribution function has a decisive advantage. As we
have pointed it out in See. 7.1.2, the velocity distribution function becomes steeper
and steeper as the Knudsen number increases [compare Figs. 21(a), (b), and (¢)]. By
the use of the integral equations, we can bypass the difficulties in dealing with the
steepness of the velocity distribution function numerically in the regime of large
Knudsen numbers. Furthermore, from the functional form of the integral kernel
matrices M¢ and M$ and the inhomogeneous vector I, we can explicitly obtain the
asymptotic solutions u{, P{,, and @ for large Knudsen numbers, following [96, 97, 98].
Thus, we have the explicit expressions of the asymptotic behavior of the fluxes M for
large Knudsen numbers, which read as follows:

“—71 — _§ _ M -1 2
(922) Mp_zm[ nK-2a » +In(VieC,)] + 0K '(In Ky,
a __ 1 1 _ _ ~a -1 2
(92b) MT—4W[InK+2(1 3y) — In (VieCy)] + 0K ' (InK)?),
1

[~ InK - g(l — )+ In(VieC,)] + 0K ' (InK)),

92¢)  yHME=4——
A B

with Cy = KPCp, + KMChp,
where y is the Euler constant and the =+ in the third equation means + for a = A
and — for a = B. Note that My, M7, and y, M depend on T\ and %, through C,
in the above expressions.

In this way, the difficulties in the regime of large Knudsen numbers, which have
not yet been well-handled in the case of the original Boltzmann equation, are resolved.

7.2.2 - Plan of construction of the complete flux tables

Bearing in mind the advantages of the model equations described in Sec. 7.2.1,
we can make a specific plan of the construction of the complete flux tables. In the
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case of [94, 70], it is as follows:

1. In the regime of small Knudsen number (typically K <0.01), make use of the
results by the asymptotic theory for small Knudsen numbers.

2. In the regime of intermediate Knudsen number (typically 0.01 <K <400),
make use of the direct numerical solutions of the problems for the marginal
distribution functions @3 and @7 by a finite-difference method.

3. In the regime of large Knudsen number (typically 100 <K <10°%), make use of
the direct numerical solutions of the integral equations for macroscopic
quantities.

4. In the regime of much larger Knudsen number (typically K > 10°), make use of
the asymptotic solutions (92).

Except for the fourth regime, we have to carry out numerical computations, and it
can be done only for discrete values of the parameters K, xﬁ)), and T, in the ele-
mentary flow problems.!! We chose the discrete values for numerical computations
in the following way.

As to xﬁ)), whose range is [0, 1], we carried out the computations for the values
corresponding to the Chebyshev abscissa so that the fluxes for any specified value of
)(f})) could be promptly and accurately obtained by the Chebyshev polynomial ap-
proximation [by the polynomials of (up to) order 21, 15 ~ 21, and 8 in the first,
second, and third regimes, respectively]. As to K, we properly subdivided the region
0.01 <K <10° in accordance with the change of fluxes as a function of InK and car-
ried out the computations for the values corresponding to the Chebyshev abscissa
(with respect to In K, not to K itself) in each subdivided region. As to Tw, we con-
structed the flux tables covering the region of 0.5 < Ty < 2 by performing the
computations for five different values. The fluxes for arbitrarily specified value of T
in the region are promptly provided by the spline interpolation.

The complete flux tables thus obtained are shown in Fig. 20 with solid and dashed
lines. The reliability of the use of the McCormack model is also assessable from the
figure. One of the advantages of the McCormack model is its flexibility about the
choice of molecular model, such as the Maxwell, hard-sphere, inverse-power-law
potential, Lenard-Jones models. This feature was fully made use of in the study of
gas separation in [70].

1 Tn the case of the first regime, the dependence on K is expressed by its power series,
and numerically solved are the spatially half-space problems (the so-called Knudsen-layer
problems) that contain )(f})) and Ty, as parameters.
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