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LYNDA SELMANI (¥)

An electro-elastic-visco-plastic contact problem

with adhesion and damage (**)

1 - Introduction

The piezoelectric effect was discovered in 1980 by Jacques and Pierre Curie, it
consists on the apparition of electric charges on the surfaces of some crystals after
their deformation. The reverse effect was outlined in 1981, it consists on the gen-
eration of stress and strain in crystals under the action of electric field on the
boundary. However, there are very few mathematical results concerning contact
problems involving piezoelectric materials and therefore there is a need to extend
the results on models for contact with deformable bodies which include coupling
between mechanical and electrical properties. General models for elastic materials
with piezoelectric effects can be found in [12][13][14][22][23] and more recently in
[1][21]. The adhesive contact between deformable bodies, when a glue is added to
prevent relative motion of the surfaces, has also received recently increased atten-
tion in the mathematical literature. Analysis of models for adhesive contact can be
found in [3][4][6][7]1[16][17][18] and recently in the monograph [20]. The novelty in
all these papers is the introduction of a surface internal variable, the bonding field,
denoted in this paper by a, it describes the pointwise fractional density of adhesion of
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active bonds on the contact surface, and sometimes referred to as the intensity of
adhesion. Following [6][7],the bonding field satisfies the restriction 0 < a < 1, when
a = 1 at a point of the contact surface, the adhesion is complete and all the bonds are
active, when a = 0 all the bonds are inactive, severed, and there is no adhesion, when
0 < a < 1the adhesion is partial and only a fraction a of the bonds is active. The aim
of this paper is the study of a dynamic contact problem coupling an electro-elastic-
visco-plastic material with damage and a frictionless adhesive contact with normal
compliance. We derive a variational formulation and prove the existence and un-
iqueness of the weak solution.

The paper is structured as follows. In section 2 we present notation and some
preliminaries. The model is described in section 3 where the variational formulation
is given. In section 4, we present our main result stated in Theorem 4.1 and its proof
which is based on arguments of evolution equations with monotone operators,
parabolic inequalities, differential equations and fixed point.

2 - Notation and preliminaries

In this short section, we present the notation we shall use and some preliminary
material. For more details, we refer the reader to [2][5][15]. We denote by S? the
space of second order symmetric tensors on RY (d = 2,3),while (.)and | . | represent
the inner product and the Euclidean norm on S¢ and RY, respectively. Let Q C R? be
a bounded domain with a regular boundary /" and let v denote the unit outer normal
on I". We shall use the notation

H=IL*Q)" = {u =) | ui € A(Q)},
H'(@Q)" = {u =) / w € H(Q)},
H={o=(0;) / 5j = 0 € LAQ},

Hy = {6 €H |/ Dive € H},

where ¢ : H? (.Q)d — H and Div : H; — H are the deformation and divergence op-
erators, respectively, defined by

1
eu) = (g;;(w)), &) = E(%ztj +uj;), Dive = (0,5

Here and below, the indices ¢ and j run between 1 to d, the summation convention
over repeated indices is used and the index that follows a comma indicates a partial
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derivative with respect to the corresponding component of the independent variable.
The spaces H, H! (Q)?, H and H; are real Hilbert spaces endowed with the canonical
inner products given by

u,v)y = Ju.vdx Yu,v € H,
Q

(@, 0)1 g0 = Ju.vdm + JVu.Vvdoc Vu,v € H(Q),
Q Q

where

Vv = (Q)ij) Vv e Hl(g)da

(6,0)4 = Ja.rdac Veo,t€H,
Q

(6,0, = (6,0 + Dwe,Divt)y Vo, € Hi.

The associated norms on the spaces H, H l(Q)d, ‘H and H; are denoted by | . |z,
|- [z | - [n and | . |y, respectively. Let Hp = H:()? and let y : HY(Q)! — H be
the trace map. For every element v € H*(2), we also use the notation v to denote
the trace yv of v on I and we denote by v, and v, the normal and the tangential
components of v on the boundary I” given by

(2.1) Vy =0V, U;=0— V.

Similarly, for a regular (say C') tensor field ¢ : @ — S¢ we define its normal and
tangential components by

(2.2) o, = (6v).v, 6.=06Vv—0aV,
and we recall that the following Green’s formula holds:

(2.3) (6,e0)y + (Dive,v)y = Jav.vda Vo e H(Q)"
r

2.4) (D, V) + ([divD, §)pe — JD.v¢da Vé e HY(Q).
r

Finally, for any real Hilbert space X, we use the classical notation for the spaces
LP(0,T; X) and W5P(0, T; X), where 1 < p < + oo and k > 1. We denote by C(0, T; X)
and C1(0, T;X) the space of continuous and continuously differentiable functions
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from [0, T'] to X, respectively, with the norms

| f o= max | () [x,
(0,7

f = f f
| cr0,r.%) tgﬁ% | F() |x +tf§&¥] | () |x,

respectively. Moreover, we use the dot above to indicate the derivative with respect
to the time variable and, for a real number », we use , to represent its positive part,
that is »; = max{0, r}. Moreover, if X; and X, are real Hilbert spaces then X; x X»
denotes the product Hilbert space endowed with the canonical inner product

(5 )x, %%, -

3 - Mechanical and variational formulations

We describe the model for the process, we present its variational formulation.
The physical setting is the following. An electro-elastic-visco-plastic body occupies a
bounded domain Q c R? (d = 2,3) with outer Lipschitz surface I". The body is
submitted to the action of body forces of density f, and volume electric charges of
density qo. It is also submitted to mechanical and electrie constraint on the boundary.
We consider a partition of I” into three disjoint measurable parts 'y, I's and I3, on
one hand, and on two measurable parts ", and Iy, on the other hand, such that meas
(I'1) > 0,meas (I'y) > 0and I's C I'y. Let T > 0 and let [0, 7] be the time interval of
interest. The body is clamped on I'; x (0,7), so the displacement field vanishes
there. A surface tractions of density f2 act on "2 x (0, T') and a body force of density
fo acts in Q x (0,7). We also assume that the electrical potential vanishes on
I’y x (0,7) and a surface electric charge of density g is prescribed on Iy x (0,7).
The body is in adhesive contact with an obstacle, or foundation, over the contact
surface I'3. Moreover, the process is dynamic, and thus the inertial terms are in-
cluded in the equation of motion. We denote by u the displacement field, by & the
stress tensor field and by &(u) the linearized strain tensor. We use an electro-elastic-
visco-plastic constitutive law given by

t
(3.1) o = As@) + Fe), p) + JQ(G(S)—As(u(S)L e(u(s))ds — " E(p),
0

(3.2) D = &:(u) + BE(y),

where A and F are nonlinear operators describing the purely viscous and the elastic
properties of the material, respectively, we also consider that the elasticity function
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F depends on the internal state variable f describing the damage of the material
caused by elastic deformations, G is a nonlinear constitutive function describing the
visco-plastic behaviour of the material. E(p) = —Vg is the electric field, & = (e;.)
represents the third order piezoelectric tensor, £* is its transposite and B denotes
the electric permittivity tensor. When G = 0, the electro-elastic-visco-plastic (3.1)-
(3.2) reduces to an electro-viscoelastic constitutive law given by (3.2) and

o = A@) + F(e), p) — EE(p).

We use dots for derivatives with respect to the time variable ¢ and the inclusion used
for the evolution of the damage field is

B~k O+ 0pi(B) 2 Sew). p),
where K denotes the set of admissible damage functions defined by
K={¢cH@Q)/0<E<T a.e. in Q},

k is a positive coefficient, dpx denotes the subdifferential of the indicator function ¢
and S is a given constitutive function which describes the sources of the damage in
the system . When f = 1 the material is undamaged, when f = 0 the material is
completely damaged, and for 0 < f < 1 there is partial damage. General models of
mechanical damage, which were derived from thermodynamical considerations and
the principle of virtual work, can be found in [8] and [9] and references therein. The
models describe the evolution of the material damage which results from the excess
tension or compression in the body as a result of applied forces and tractions.
Mathematical analysis of one-dimensional damage models can be found in [10].

To simplify the notation, we do not indicate explicitely the dependence of various
functions on the variablesx € QU I"and t € [0, T']. Then, the classical formulation of
the mechanical problem of electro-elastic-visco-plastic material, frictionless, ad-
hesive contact may be stated as follows.

ProBLEM P. Find a displacement field u : Q x [0,T] — RY a stress field
6:Qx1[0,T] — 8% an electric potential field ¢ : Q x [0,T] — R, an electric dis-

placement field D : Q x [0,T] — R?, a damage field f: Q x [0,7T] = R and a
bonding field a : I's x [0, T] — R such that

t
o = Ae) + F(ew), p) + JQ(G(S)—Ae(u(S)), e(u(s)))ds
0

(3.3) LEVe inQx(0,T),
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(3.4) D = &) —BVy in Qx(0,T),

(3.5) B—k A B+ 0px(p) s Sem),p) inQx(0,T),
(3.6) pit =Dive +fy  inQx(0,T),

(3.7) divD =qy  in Qx (0,T),

(3.8) u =0 on I''x(0,7),

(3.9) ov=Ff on Iyx(0,T),

(3.10) -0, =p,(w,) —y,dR,(m,) on Isx(0,T),
(3.11) —6; =p(@R ;) on  I'3x(0,7T),

(8.12) a = —(al, (R ()’ +7, | R (@) )~ &), on  I3x(0,7),

(3.13) g—f =0 on I'x(0,T)
(3.14) 9p=0 on Iyx(0,T),
(3.15) Dyv=gqgs on I,x(0,7),
(3.16) u(0) = uo,u(0) = vy, 0) = B, in Q,
(8.17) a0)=ay on Ts.

First, (3.3) and (3.4) represent the electro-elastic-visco-plastic constitutive law
with damage, the evolution of the damage field is governed by the inclusion of
parabolic type given by the relation (3.5), where S is the mechanical source of the
damage growth, assumed to be rather general function of the strains and damage
itself, dpx is the subdifferential of the indicator function of the admissible damage
functions set K. Equations (3.6) and (3.7) represent the equation of motion for the
stress field and the equilibrium equation for the electric-displacement field while
(3.8) and (3.9) are the displacement and traction boundary condition, respectively.
Condition (3.10) represents the normal compliance condition with adhesion where y,
is a given adhesion coefficient and p, is a given positive function which will be de-
scribed below. In this condition the interpenetrability between the body and the
foundation is allowed, that is %, can be positive on I"3. The contribution of the ad-
hesive to the normal traction is represented by the term y,6¢>R ,(u,), the adhesive
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traction is tensile and is proportional, with proportionality coefficient y,, to the
square of the intensity of adhesion and to the normal displacement, but as long as it
does not exceed the bond length L. The maximal tensile traction is y, L . R, is the
truncation operator defined by

L ifs<-—L,
R(s)=<¢ —s if —L<s<0,
0 ifs>0.

Here L > 0 is the characteristic length of the bond, beyond which it does not offer
any additional traction. The introduction of the operator R,, together with the op-
erator R, defined below, is motivated by mathematical arguments but it is not re-
strictive for physical point of view, since no restriction on the size of the parameter L
is made in what follows. Condition (3.11) represents the adhesive contact condition
on the tangential plane, in which p, is a given function and R; is the truncation op-

erator given by
v if lv| <L,
R.v) = L|Z—| if lv|>L.

This condition shows that the shear on the contact surface depends on the bonding
field and on the tangential displacement, but as long as it does not exceed the bond
length L. The frictional tangential traction is assumed to be much smaller than the
adhesive one and, therefore, omitted.

Next, the equation (3.12) represents the ordinary differential equation which
describes the evolution of the bonding field and it was already used in [3], see also
[19][20] for more details. Here, besides y,, two new adhesion coefficients are in-
volved, y, and ¢,. Notice that in this model once debonding occurs bonding cannot be
reestablished since, as it follows from (3.12), @ < 0. The relation (3.13) represents a

homogeneous Newmann boundary condition where %
vative of f5. (3.14) and (3.15) represent the electric boundary conditions. (3.16) re-
presents the initial displacement field, the initial velocity field and the initial damage

represents the normal deri-

field. Finally (3.17) represents the initial condition in which q is the given initial
bonding field. To obtain the variational formulation of the problem (3.3)-(3.17), we
introduce for the bonding field the set

Z ={0¢e L>O, T;L3(I'3))/0 < O(t) < 1¥t € [0, T], a.e. on I's},
and for the displacement field we need the closed subspace of H 1) defined by

V:{v EHI(Q)d/vzoonl"l}.
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Since meas (I'1) > 0, Korn’s inequality holds and there exists a constant Cj, > 0, that
depends only on Q and 71, such that

| &) 1> Cr | U | VU EV.
A proof of Korn’s inequality may be found in [15, p. 79]. On the space V we consider
the inner product and the associated norm given by
(3.18) W, v)y = (W), ey, |vlv=[ew)[y Yu,veV.
It follows that | .|y e and |[.|y are equivalent norms on V and therefore

(V,].|v )is areal Hilbert space. Moreover, by the Sobolev trace theorem and (3.18),
there exists a constant Cy > 0, depending only on 2, I'; and I3 such that

(3.19) |0 o< Co LU v YvelV.
We also introduce the spaces
W={¢cHQ) /¢$=00nT,},
W= {D=(D,) / D; € LAQ),divD € L*(Q)},

where div D = (D;;). The spaces W and W are real Hilbert spaces with the inner
products given by

0, D — jw.vwx,
Q

D,E)y = JD.Edac + JdivD.divEdw.
Q Q
The associated norms will be denoted by | . |w and | . |y, respectively. Notice also
that, since meas(I'y) > 0, the following Friedrichs-Poincaré inequality holds:
(3.20) Ve uzCr| ¢ lme VoW,

where Cr > 0 is a constant which depends only on Q and I',. In the study of
the mechanical problem (3.3)-(3.17), we assume that the viscosity function
A:Qx 8% — 8¢ satisfies

(a) There exists a constant Cf‘, Cé“ > 0 such that

| A, e) [<KCA e | +C5t Vee S, ae xe Q.

(3.21) (b) There exists a constant m 4 > 0 such that

(Ale,e1) — A(x, 22)).(61 — &2) > Mg | &1 — &2 |* Ver,e2 € 87, ae. x € Q.

(¢) The mapping x — A(x,¢) is Lebesgue measurable on Q for any ¢ € S¢.
(d) The mapping ¢ — A(x,¢) is continuous on S?, a.e. x € Q.
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The elasticity Operator F : Q x 8% x R — S? satisfies

(a) There exists a constant L > 0 such that
| .7'-(X,817(11)—.7:(x,82,a2) |§ L]_-( ‘ & — & | + | a; — ap | )
(322)] Yoz €84V, € Rae x € Q.

(b) The mapping x — F(x, ¢, a) is Lebesgue measurable on Q2
for any ¢ € S¢ and a € R.
(¢) The mapping x — F(x,0,0) belongs to H.

The visco-plasticity operator G : Q x 8% x S — S? satisfies

(a) There exists a constant Lg > 0 such that
| Gx,01,81) — G(x,02,82) |< Lg( | &1 — &2 | + |61 — 02| )
(3.23) Ver, 6,061,060 € 89, ae. x € Q.
(b) For any ¢,06 € 8%, x — G(x, 0,¢) is Lebesgue measurable on Q.
(¢) The mapping x — G(x, 0,0) belongs to H.

The damage source function S : Q x S? x R — R satisfies

(a) There exists a constant Lg > 0 such that
| SCx,e1,a1) — S(x,82,02) |[< Ls(| &1 —e2 | +[a1 —az |)
(3:24) ¢ Vey,e0 € 8%, Vay,a2 € R a.e. x € Q.
(b) For any e €S? and a € R, x — S(x, ¢, a) is Lebesgue measurable on Q.
(c) The mapping x — S(x, 0,0) belongs to L?(Q).

The electric permittivity tensor B = (b;;) : Q2 x R? — RY satisfies

(@) Bx,E) = (b;;(x)E;))VE = (K;) € RY, ae. x € Q.
(b) bij = bji, bij € LX(Q), 1< 4,j<d.

(¢) There exists a constant mpg > 0 such that
BEE >mp |E 2 VE = (E;) e R?, ae. in Q.

(3.25)

The piezoelectric tensor £ : Q x S¢ — R? satisfies

(3.26) (@) Ex,1)=(e;jr X)T) V= (1;;) € §%, ae x € Q.
) () e =ep; € L*(Q), 1<14,5,k<d.

The normal compliance function p, : I's x R — R, satisfies

(@) There exists a constant L, > 0 such that

(3.27) | py(x,71) — pux,72) [< Ly |11 — 12| Vi, €R, ae. x € 3.

(b) The mapping x — p,(x, ) is measurable on I3, for any r € R.
() pyx,r)=0forall» <0, ae.x €I}.
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The tangential contact function p, : I's x R — R, satisfies
(a) There exists a constant L, > 0 such that
| p(x,dy) — pe(x,dg) [< L | dy —dg | Vdyi,dz € R, ae.x €.

(3.28) (b) There exists M, > 0 such that | p.(x,d) |[< M.Vd € R,a.e. x € I's.
(c) The mapping x — p.(x,d) is measurable on I3, for any d € R.
(d) The mapping x — p.(x,0) € L*(I's).

We suppose that the mass density satisfies

(3.29) p € L>*(Q), there exists p* > 0 such that p(x) > p* a.e. x € Q.

We also suppose that the body forces and surface tractions have the regularity

(3.30) foe L20,T;H), f5e L0, T;L*(I5)"h,
(3.31) qo € C(0, T, LA(Q)), gz € CO,T; LA(I'y)),
(3.32) @t)=0 onlsy Ytel0,T].

Note that we need to impose assumption (3.32) for physical reasons, indeed the
foundation is assumed to be insulator and therefore the electric charges (which are
prescribed on I, D I'3) have to vanish on the potential contact surface. The adhesion
coefficients satisfy

(3.33) P Ve € L>(I'3), 84 € LA(I'3), 7, V.60 > 0 a.e. on .

The initial displacement field satisfies

(3.34) uyeV,vg e H,

the initial bonding field satisfies

(3.35) ap € LA(I'3), 0 < ag <1 a.e. on I,
and the initial damage field satisfies

(3.36) Py € K.

We define the bilinear form a : H'(Q) x H'(Q) — R by

(3.37) & p)=k J VENVpdx.
Q
We will use a modified inner product on H = L2(Q)?, given by
(w,v)g = (pu,v)y Vu,veH,

that is, it weighted with p, and we let || . ||z be the associated norm, i.e.,

1
| vllz=(pv,v)y YveH.
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It follows from assumptions (3.29) that || . | and | . |z are equivalent norms on H,
and also the inclusion mapping of (V,| . |y) into (H, || . ||x) is continuous and dense.
We denote by V' the dual of V. Identifying H with its own dual, we can write the
Gelfand triple

VCcHCYV.

We use the notation (., )y, to represent the duality pairing between V' and V, we
have

W, )y .y =((u,v)y YucHVveV.
Finally, we denote by | . |;» the norm on V. Assumptions (3.30) allow us, for a.e.
t € (0,7), to define f(t) € V' by
(3.38) @), v)yy = Jfo(t).vdac + J fot)vda VuveV.
Q I
We denote by ¢ : [0, T] — W the function defined by
(3.39) q®), Pw = Jqo(t).gfzdac — J q2(t).9da Vo e W, te[0,T].

Q Iy
Next, we denote by j : L*°(I'3) x V x V — R the adhesion functional defined by
(3.40) jla,u,v) = J (v da + J (— yvaZR ) v, + p@)R (1 ).v)da.

I's I's
Keeping in mind (3.27)-(3.28), we observe that the integrals in (3.40) are well defined
and we note that conditions (3.30)-(3.31) imply
(3.41) feL*0,T;V), qe CO,T;W).

Using standard arguments we obtain the variational formulation of the me-
chanical problem (3.3)-(3.17).

ProOBLEM PV. Find a displacement field u:[0,T] —V, a stress field
6:[0,T] —H, an electric potential field ¢:[0,7] — W, a damage field
B:[0,T] — HYQ) and a bonding field a:[0,T] — L™ (I's) such that, for a.e.
te(0,T),

t
(3.42) a()) = Ae@(®) + F(ew®), ) + JQ(G(S)—AS(l't(S)), eu(s))ds + EVe(?),
0
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(3.43) @®), v}y + (0(0) , &)y +j(al®), u®),v) = F@), )y, VU EV,

PO €K,  (BW),E— PA) 2 + Al fd), E — BD)

(3.44) > (S(e®), p®), & — P2y VEEK,
(3.45) (BVo(t), Vo) — (Ee®), VPy = (qit),p)w Ve W,
(3.46) a(t) = — (a@®), B @)Y + 7, | R ®) 7)) — &)
(3.47) u(0) = uo,1(0) = vy, fO) = By, a(0) = ag.

We notice that the variational problem PV is formulated in terms of displacement
field, the stress field, an electric potential field, damage field and bonding field. The
existence of the unique solution of problem PV is stated and proved in the next
section. To this end, we consider the following remark which is used in different
places of the paper.

Remark 3.1. We note that, in the problem P and in the problem PV we do not
need to impose explicitly the restriction 0 < a < 1. Indeed, equation (3.46) guar-
antees that a(x,t) < ag(x) and, therefore, assumption (3.35) shows that a(x,t) < 1 for
t >0, a.e. x € I's. On the other hand, if a(x,ty) = 0 at time ty, then it follows from
(3.46) that a(x,t) = 0 for all t > ty and therefore, alx,t) = 0 for all t > t, a.e. x € I's.
We conclude that 0 < a(x,t) < 1forallt € [0,T), a.e. x € I's.

4 - An existence and uniqueness result

Now, we propose our existence and uniqueness result.

Theorem 4.1. Assume that (3.21)-(3.36) hold. Then there exists a unique
solution {u,e,p,p,a} to problem PV. Moreover, the solution satisfies
ucHY,T;V)NnCY0,T;H),it € L>0,T;V"),

9 € C0O,T;W),
B € W0, T; L*() N L*0, T; H'(Q)),
a € W0, T; L*(I's)) N Z.

The functions u,p, ¢, D,f and a which satisfy (3.4) and (3.42)-(3.47) are called a
weak solution of the contact problem P. We conclude that, under the assumptions
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(3.21)-(3.36), the mechanical problem (3.3)-(3.17) has a unique weak solution sa-
tisfying (4.1)-(4.4). The regularity of the weak solution is given by (4.1)-(4.4) and, in
term of stresses,

(4.5) o € L*(0,T; H),Dive € L*(0,T; V'),
(4.6) D e CO,T;W).

Indeed, it follows from (3.43) and (3.45) that pii(t) = Diva(t) + fy(t), divD = q() a.e.
t € [0, T] and therefore the regularity (4.1) and (4.2) of u and ¢, combined with (3.21)-
(3.31) implies (4.5) and (4.6).

The proof of Theorem 4.1 is carried out in several steps that we prove in what
follows, everywhere in this section we suppose that assumptions of Theorem 4.1
hold, and we consider that C is a generic positive constant which depends on
Q,I'1,Is,pv, P, 7,7, and L and may change from place to place. Let
7 € L*0,T;V') be given, in the first step we consider the following variational
problem.

ProBLEM PV,,. Find a displacement field u, : [0,T] — V' such that
(@, @), )y + (Ae(@, @), e@))y + @), V)y 1y
(4.7 =({®),v)y,y VveV, ae te(0,T),
(4.8) u,(0) = ug, u,(0) = vo.

To solve problem PV,, we apply an abstract existence and uniqueness result
which we recall now, for the convenience of the reader. Let V and H denote real
Hilbert spaces such that V is dense in H and the inclusion map is continuous, H is
identified with its dual and it is identified with a subspace of the dual V' of V, i.e.,
V ¢ H c V', and we say that the inclusions above define a Gelfand triple. The no-
tation | . |y, | . |, and (., )y, represent the norms on V and on V' and the duality

pairing between them, respectively. The following abstract result may be found in
[20, p. 48].

Theorem 4.2. LetV,H be as above, and let A : V — V' be a hemicontinuous
and monotone operator which satisfies
(4.9) Av, )y >o|v 5 +4 YoeV,
(4.10) |Av |, <C(|v |y +1) VveV,

for some constants w > 0,C > 0and /. € R. Then, givenuy € Handf € L*0,T; V"),
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there exists a unique function u which satisfies
u e LX0,T;V)NCO,T;H), i € L*0,T; V),
ult)+Aut) =f(@), a.e. t € (0,7),
u(0) = uy.

We apply it to problem PV,,.

Lemma 4.3. There exists a unique solution to problem PV, and it has the
regqularity expressed in (4.1).
Proof. We define the operator A : V — V' by
(4.11) Au,v)y .y = (Ae),e))y,  Yu,veV.
Using (4.11), (3.21) and (3.18) it follows that
| Au — Av |, < | Aew) — Ae(v) |, Yu,v eV,

and keeping in mind the Krasnoselski theorem (see for instance [11, p. 60]), we
deduce that A : V — V' is a continuous operator. Now, by (4.11), (3.21) and (3.18) we
find

(4.12) (Au —Av,u — V) .y >my|lu—v s YuveV,

i.e., that A : V — V' is a monotone operator. Choosing v = 0y in (4.12) we obtain

(Au;u)v’xv > My | u |%/ - |A0V |V’| u |V

1 2 1 2
Z—MA|U|V—m|AOV|V/ Vu€V7
e - . . M — [ A0y 2,
which implies that A satisfies condition (4.9) with @ = 5 and A = “omi
A

Moreover, by (4.11) and (3.21) we find
| Au |y <| Aeu) (n< C{t |u |y +C5' YueV.

This inequality and (3.18) imply that A satisfies condition (4.10). Finally, we recall
that by (3.30) and (3.34) we have f — € L?(0,T; V') and vy € H. It follows now from
Theorem 4.2 that there exists a unique function v, which satisfies

(4.13) v, € L?0,T;V)NCO,T;H), v, € L0, T; V’),

(4.14) v,t) +Av,(O) + @) =f@), ae. te(0,T),

(4.15) v,(0) = vo.
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Letu, : [0,T] — V be the function defined by
t

(4.16) u,t) = Jv”(s)ds +uy, Vtel0,T].
0

It follows from (4.11) and (4.13)-(4.16) that u,, is a solution of the variational problem
PV, and it satisfies the regularity expressed in (4.1). This concludes the existence
part of Lemma 4.3. The uniqueness of the solution follows from the uniqueness of the
solution to problem (4.14)-(4.15), guaranteed by Theorem 4.2. O

In the second step, let § € L0, T; V'), we use the displacement field u, obtained
in Lemma 4.3 and we consider the following variational problem.

PROBLEM QV,,. Find the electric potential field ¢, : [0, T]1 — W such that
BV, (1), V)u — (Eeuy(®), V)
(4.17) =W, Pw YVoeW,te(0,7),
we have the following result.
Lemma 4.4. QV, has a unique solution ¢, which satisfies the regularity (4.2).
Proof. It follows that from assumption (3.25) on the permittivity tensor that
the bilinear form b(.,.) : W x W — R defined by
(4.18) b(p,$) = (BVy,Vdy Vo, W,

is continuous, symmetric and coercive on W. Thus, keeping in mind assumption
(3.26) on the piezoelectric tensor &, the regularity u, e C'(0,T;W) and
q € C(0,T;W) in (3.41), we obtain that the function g, : [0,7] — W given by

(qi](t)7 ¢)W = ((I(t% ¢)W + (gg(ul?(t))7 V¢)H v¢ € Wat € (Oa T)y

satisfies g, € C(0,T; W). We apply the Lax-Milgram theorem to deduce that there
exists an unique element ga,,(t) € W such that

(4.19) b, ), 9) = (4,0, Pw VW,

We conclude that p,@) is a solution of QV,, . Let ¢1,% € [0, 71, it follows from (4.17)
that

[ 0,(t) — 9,(2) lw < CC (b)) — w2 Iy + | altr) — q(t) ),

the previous inequality, the regularity of u, and ¢ imply that ¢, € C0,T;W). O
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In the third step, we let 0 € L?(0, T'; L3(Q)) be given and consider the following
variational problem for the damage field.

PROBLEM PVy. Find a damage field f, : [0,T] — H'(Q) such that
Bot) € K, (By®), & = B2 + al By(®), & — By(®)

(4.20) >0, =By VEEK ae te(0,T),
(4.21) By(O) = fo.

Lemma 4.5. Problem PV, has a unique solution S, such that
(4.22) By € H0,T; L*(Q)) N L*0, T; H(Q)).

Proof. We use (3.36), (3.37) and a classical existence and uniqueness result on
parabolic inequalities (see for instance [20, p. 47]). d

In the fourth step, we use the displacement field u, obtained in Lemma 4.3 and
consider the following initial-value problem.

PRrROBLEM PV,. Find the adhesion field a, : [0,T] — L2(I'3) such that for a.e.
te(0,T)
(4.23) ay(t) = — (ayOG R up @)Y + 7, | Reuye@®) F) =)
(4.24) a,(0) = ay .

We have the following result.

Lemma 4.6. There exists a unique solution a, € W=(0,T;L*(I's)) N Z to
problem PV,.

Proof. For the simplicity we suppress the dependence of various functions on
I's, and note that the equalities and inequalities below are valid a.e. on '3 . Consider
the mapping F), : [0, 7] x L*(I's) — L*(I'3) defined by

F;y(t; (1) = _(a(Vy(R v(unv(t)))z + Yt | R‘L’(uﬂf(t)) |2 ) - 8a)+7

for all ¢ € [0, 7] and a € L2(I's). It follows from the properties of the truncation op-
erator I, and R, that I, is Lipschitz continuous with respect to the second variable,
uniformly in time. Moreover, for all a € L*(I's), the mapping ¢ — F)(t, a) belongs to
L>(0, T; L?(I'3)). Thus using a version of Cauchy-Lipschitz theorem (see, e.g., [20,
p. 48]) we deduce that there exists a unique funetion a,, € W1>°(0, 7'; LA(I'3)) solution
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to the problem PV,. Also, the arguments used in Remark 3.1 show that 0 < a,(t) <1
for all t € [0, T, a.e. on I's. Therefore, from the definition of the set Z, we find that
ay € Z, which concludes the proof of the lemma. O

We use the displacement field u, obtained in Lemma 4.3, the electric potential
field ¢, obtained in Lemma 4.4 and the damage field f, obtained in Lemma 4.5 to
construct the following Cauchy problem for the stress field.

PROBLEM PV,,4. Find a stress field 6,9 : [0, T] — H such that
a () = F (e, (D), By®) + E Vo, @)

t
(4.25) +JQ(0' 20(8), e, (s)ds, a.e. t € (0,7).
0

In the study of problem PV,,, we have the following result.

Lemma 4.7. There exists a unique solution of problem PV, and it satisfies
oy € W20, T, H). Moreover, if 6;, w;, p; and B; vepresent the solutions of problem
PV,,.0, PV,, QV,. and PVy, respectively, for (n;,0;) € L*0,T; V') x L*(0, T; L*(Q)),
1 =1,2, then there exists C > 0 such that

| 61(t) — a2(t) [5,< CC| us(t) — us(®) [
t
(4.26) +J | u1(s) — ua(s) \%, ds+ | p1(t) — Po(t) |i2(9>), tel0,T.
0

Proof. Let 4,9 : L*(0, T, H) — L*(0, T, H) be the operator given by
¢
(4.27) Ayp o @) = F (e, @), By®) + E'Ve, () + Jg(a (s), e(u,(s))ds,
0

foralle € L?(0, T, H)andt € [0, T]. For 61,62 € L?(0, T, H) we use (4.27) and (3.23) to
obtain

¢
| Aypo1(t) — Apo2) |1< LgJ | 61(8) — 62(s) |1 ds.
0

It follows from this inequality that for p large enough, a power of the operator 4, is a
contraction on the Banach space L?(0, T;H) and, therefore, there exists a unique
element s,y € L0, T; H) such that Aypo, = 6,9. Moreover, o, is the unique solution
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of problem PV, and, using (4.25), the regularity of u,, the regularity of ¢, , the
regularity of f, and the properties of the operators F, £ and G, it follows that
oy € WH2(0, T, H). Consider now (3, 01), (11, 02) € L*(0,T; V') x L*(0, T; L*(Q)) and
for i = 1,2, denote u,, = u;,...,p, = ¢;,06,0, = o; and fy = ;. We have

t
ai(t) = Fei®), i) + EVor(t) + Jg«n(s), sui(s)ds,
0

and, using the properties (3.22), (3.23) and (3.26) of F, G and &, we find

| 61(0) — 02(t) [3,< CClus®) — uz®) 5 + | 1) — Bo®) 720
t t

(428) 4] ¢ — p®) iy +J | 61(s) — a2(s) [5, ds + J | ui(s) — us(s) [ ds).

0 0
We use (4.17), (3.25) and (3.26) to find
(4.29) | 01® — po®) [f< C | ur(t) — ua®) 5 .
We substitute (4.29) in (4.28) and use Gronwall argument we deduce (4.26), which
concludes the proof of Lemma 4.7. O

Finally as a consequence of these results and using the properties of the op-
erator G, the operator F, the operator &, the functional j and the function S, for
t €[0,T], we consider the operator A:L*(0,T;V' x L*(Q)) — L?(0,T; V' x L3(Q))
which maps every element (y,0) € L2(0,T;V ' x L3(Q)) to the element A(y,0)
€ L*0,T; V' x L*(Q)) defined by

(4.30) Ay, 0)) = (A", 0)8), £, O)B) € V' x LX),
defined by the equalities
(A, 0)E), 0)yryy = (F ey (®)), Bo(t)), e + €V, (1), 60

t

@) +( [0, dsow) it .u,0.0) Yo eV,
0

(4.32) A, 0)(t) = Se(u, (1)), By()).

Here, for every (y,0) € L*(0,T; V' x L*(Q)) u,, 9, By, @y and o,y represent the dis-
placement field, the electric potential field, the damage field, the bonding field and
the stress field obtained in Lemmas 4.3, 4.4, 4.5, 4.6 and 4.7 respectively. We have the
following result.
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Lemma 4.8. The operator A has a wunique fixed point (*,0") €
€ L2(0,T; V' x LA(Q)) such that AGy*,0°) = (y*,0").

Proof. Let (5,0) € L?(0,T;V x L*(Q)). Let now  (y;,01), (2,02)
e L2(0,T:; V' x L2(Q)). We use the notation U, =u;,ll, =0, = Vi, 0y, = Pi>
6,0, = 6i, Pp, = B; and a, =a; for i =1,2. Using (3.22), (3.23), (3.26), (3.27),
(3.28), (3.40), (4.31), the definition of R,, R, and the Remark 3.1, we have

| Ay, 00)O) — A 12,02)) [
<| Fley(t), f1 (1) — Flea®)), fo@®) |2,
+ [ £V, () — E V@) 3,

t
+ j | Glo1(s), eur(8))) — Gloa(s), eluux(s)) [, ds
0

+C | pyuap®) — pougp®) [Fery,
+C | ZOR(ury(®) — EOR, iy @) Bor,
+C | plar @R @1,(t) — Pelaz )R @1, 0)) By,
<O us®) — uz®) Fr + | Jr®) = Bo® By + | 010 — 02®) [y

t

(4.33) +aa®) - as(® gy, +J | 01(5) — ao(s) [, ds).
0

We use (4.26) and (4.29) to obtain
| Al(’llael)(t) - Al(”2762)(t) |%//

t
<C(Jm® - u®) f + j | u1(s) — ua(s) [ ds+ | r®) — Bo®) P
0

t

(434) +J | /))1(8) - ﬁQ(S) |%2(_Q) d8+ | (ll(t) - a2(t) |i2(1"3)) .
0

Recall that above u,, and u,, denote the normal and the tangential component of the
function u,, respectively. By a similar argument, from (4.32) and (3.24) it follows that

| Ay, 00)@) — A2 12,02)(E) [32(0

(4.35) < O(|ur(t) —us(®) [ + | p1®) — fo(t) ‘%2(9))-
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Therefore,
| AG1,00@) = A@z,02)@) [, ;200 < CCLun @) — uz®) [§;
¢
+J | u1(s) — ua(s) [ ds+ | ax(®) — a2(®) |72,
0
¢
(436) + | ﬁl(t) - ﬂz(t) ‘%2(9) +J | ﬂl(s) - ﬂZ(S) |%2(Q) dS)
0

Moreover, from (4.7) we obtain
(01 — 02,01 — U2)yr,y + (A1) — Ae(V2), (U1 — V2))y.
+ gy — 2,01 — V2)yr .y =0, ace. t € (0,7).

We integrate this equality with respect to time, we use the initial conditions
v1(0) = v2(0) = vy and condition (3.21) to find

t t
mAJ | v1(s) — v2(s) |5 ds < — J(ih(S) = 15(5), U1(5) — v2(8))y s,
0 0

2
for all t € [0, T']. Then, using the inequality 2ab < ;— + m4b* we obtain
A

¢ ¢
(4.37) J | v1(8) — v2(s) 5 ds < CJ | 71(s) — 5(8) |%, ds.
0 0

On the other hand, from the Cauchy problem (4.23)-(4.24) we can write

t

ailt) = a9 — j(axs)(yv(Rv(uiv(s)))Z o | Ruain(s) ) — 0), ds,
0

and then
| a1(®) — a2®) |2y

t
<C j | a1 (8)R(wr,(8)) — a2(8)RyUan(S)Y |12y ds
0

+C | | a1(s) | Re(uie(s)) |* —az(s) | Re(uec(9)) [*|racry) ds.

S
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Using the definition of R, and R, and writing a; = a; — az + a2, we get

| ar(®) — a2®) |2y

t t

(4.38) < C(J | a1(8) — ax(s) |oaqry ds + J [ a(8) — ) |z ).
0 0

Next, we apply Gronwall’s inequality to deduce
¢
| a1(t) — a2(®) |2, < CJ | u1(s) — uz(s) |20, ds,
0
and from the relation (3.19) we obtain

t
(4.39) | a1 (t) — az®) 75, < CJ | uy(s) — us(s) [ ds.
0

From (4.20) we deduce that
By — Pou By — Bz + al By — Pa, b1 — Bo)
<O~ 00,y ~ Pz et (0.7).

Integrating the previous inequality with respect to time, using the initial conditions
$1(0) = f,(0) = B, and inequality a( f; — s, f; — ) > 0 to find

t

1
5 | 1) — fo(®) ‘iZ(_Q) < J(Ql(s) — 0a(3), B1(8) — ()12 ds,

0

which implies that
¢ t
| B1(0) = Bo®) Py < J 0,(9) — 0,(5) [ ds + j | B,6) = B,(8) [2oo .
0 0
This inequality combined with Gronwall’s inequality lead to

t
(4.40) | By@® = Bo®) [F2i) < CJ | 01(s) — O(5) [720) ds.
0
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We substitute (4.39) in (4.36) to obtain
¢

| A0 000 — A1 00 20y < (| 1a(®) — wstt) +j | ur(s) — us(s) 2 ds
0

t t
+ 1 By®) — Bo®) 22 + J | B1(6) = Bolo) ey ds) < € j | v1(5) — va(s) % ds
0 0

t
1RO =50 B+ [ 15,6 = 1:6) o d)
0

It follows now from the previous inequality, the estimates (4.37) and (4.40) that

| A(”lvgl)(t) - A(”Z;QZ)(t) |%//><L2(.Q)
t

< cj |11, 0(8) — U1y, 0)5) 2 5.
0

Reiterating this inequality m times leads to

| Am(’hael) - Am("2702) |%Z(O,T;V/><L2(Q))

CWL TWL
<
- m!

2
| (’Il; 01) - (”2; 02) |L2(0,T;V/><L2(Q)) .

Thus, for m sufficiently large, A™ is a contraction on the Banach space
L0, T; V' x L3(Q)), and so A has a unique fixed point. O

Now, we have all the ingredients to prove Theorem 4.1.

PRrOOF EXISTENCE. Let (*,0%) € C(0,T;V x L?(Q)) be the fixed point of A
defined by (4.30)-(4.32) and let u, ¢, §, a and o, be the solution of the problems PV,,
QV,, PVy, PV, and PV, fory = y*and 0 = 0", ie.u =u,,p = Py B =By a=ay
and let 6 = Ae() + 6. Equalities A, 0") = g and A2(p*,0") = 0" combined
with (4.31)-(4.32) show that (3.42)-(3.46) are satisfied. Next (3.47) and the regularity
(4.1)-(4.4) follow from Lemmas 4.3, 4.4, 4.5 and 4.6, which concludes the existence
part of the theorem.

Uniqueness. The uniqueness of the solution is a consequence of the uniqueness
of the fixed point of the operator A defined by (4.30)-(4.32) and the unique solvability
of the problems PV,, QV,, PV,, PVy and PV,,,. O
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Abstract

We consider a dynamic frictionless contact problem for an electro-elastic-visco-plastic
body with damage. The contact is modelled with normal compliance. The adhesion of the
contact surfaces is taken into account and modelled by a surface variable, the bonding field.
We derive variational formulation for the model which is formulated as a system involving
the displacement field, the electric potential field, the damage field and the adhesion field. We
prove the existence of a unique weak solution to the problem. The proofis based on arguments
of evolution equations with monotone operators, parabolic inequalities, differential equa-
tions and fixed point.



