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MoNIicA LA BARBIERA (¥)

Integral closure and normality

of some classes of Veronese-type ideals (**)

1 - Introduction

Let R = K[Xj,...,X,]bethe polynomial ring over a field K. The monomial ideals
of R are ideals generated by monomials and they have been intensively studied.
Some problems arise when we would study good properties of monomial ideals, such
that integral closure, normality, and the same properties for some algebras related
to them [1], [10]. The most important of such algebras is the Rees algebra
Rees(I) = @, I't' (1], §1.5, §4.5). An important result says that if 7 is normal, then
Rees(I) is normal ([10], 3.3.18).

In this paper we are interested to study the integral closure and the normality of
special classes of monomial ideals. In [9] the varieties of Veronese-type are studied.
We introduce the monomial ideals of Veronese bi-type in the polynomial ring over a
field in two sets of variables.

The paper is organized as follows. In the section 1 we consider a special class of
ideals of Veronese-type I, 2 that are monomial ideals of degree q generated by the set
{Xf Xy E}Ll ai; =q, 0<a; <2}. We study the integral closure of I,».
These ideals of Veronese-type can arise from the edges and the walks of a graph with
loops. A graph G on vertexset V = {xy,...,u,} hasloopsifit is not requiring x; # «;
for all edges {x;, x;} of G. A graph G with loops is called complete if a pair {x;, x;} is an
edge of G for all x;,2; € V.
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If G is a complete graph with loops, then the edge ideal I(G) is integrally closed
[6]. Now we find a geometric description of the integral closure of 1(G) in the sense of
[10] (§7.3). Moreover we prove that also the generalized ideal I,(G) is integrally
closed because it is an ideal of Veronese-type I, s.

In the second part of this paper, starting from the special class of Veronese-type
ideals I, 2, we introduce a class of Veronese bi-type ideals in the polynomial ring in
two sets of variables R = K[X3,...,X,;Y1,...,Y,,]. They are monomial ideals
generated in the same degree q: Lyo =, =g I.2Js2, where r,s > 1, I, is gen-
erated on degree r in the variables X1, . . ., X,, and J; 5 is generated on degree s in the
variables Y71,...,Y,. We prove that L, is integrally closed. These ideals can be
associated to bipartite graphs with loops, called quasi-bipartite graphs [6]. A graph G
with loops is quasi-bipartite if its vertex set V' can be partitioned into disjoint subsets
V1 and V3, any edge joins a vertex of V; with a vertex of Vy and there exists some
vertex of V with aloop. A quasi-bipartite graph G is strong if all the vertices of V; are
joined to all vertices of V, and for each vertex of V there is a loop.

We prove that the edge ideal of a strong quasi-bipartite graph is not integrally
closed and we give an expression for its integral closure. Moreover we show that the
generalized ideal I,(G) associated to a strong quasi-bipartite graph G is integrally
closed for ¢ > 3 because it is an ideal of Veronese bi-type.

In section 3 we study the normality of these ideals obtaining the same informa-
tions for the generalized ideals associated to complete graphs with loops and to
quasi-bipartite graphs. In [3] it is illustrate a criterion to show that the ideals of
Veronese-type are normal. Now we apply similar technics to those used in [3] and [8]
to prove the normality of L.

2 - Integral closure of Veronese-type ideals />

Let R = K[Xj,...,X,] be the polynomial ring over a field K, I be a monomial
ideal of R.

The integral closure of I is the set of all elements of B which are integral over /.
The integral closure of a monomial ideal is again a monomial ideal. In [10] it is given
the following description for the integral closure of I:

1= (f] f is monomial in R and fi IS [i,for some 7 > 1).
In general I C I. If I =1, I is said to be integrally closed or complete.

If all the powers I* are integrally closed [ is said to be normal.

The Veronese ideal of degree g is the ideal I, of R = K[Xj,...,X,] which is
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generated by all the monomials in the variables Xj,..., X, of degree ¢: I, =
Xy,..., X))

The special class of ideals of Veronese-type of degree q is given by the monomial
ideals I, » generated by the set:

n
{Xf’i1 --~XZZ"|ZCL7'7. =q, 0<a; <2}
=1

We have I,» C I, and I,2 = I, for ¢ = 1,2.

Example 2.1. R = K[X;, Xz, X3]
I35 = (X§X5, X2 X5, X1 X5, X5X5, X1 X2, X, X5, X1X2X3) C Is.

It is known that I, is a normal ideal ([10]). Now we study the combinatoric of the
integral closure of the Veronese ideals /.

Let I be a monomial ideal of R = K[X;,...,X,] generated by the mono-
mials X*, ... X", with X% :Xf”1 .- X", Each X% is associated to a;
= (@i, ...,a;) € N".

We put A = {aq,0az,...,a,} C N" and we define the set
dA = {aj, + aj, + -+ a;,|1 <ji <--- <ja <7}

Example 2.2. Let R = K[X1,Xz], I= (Xng,Xsz)
a=(1,2), =21, A={1,2,2,1}
2A = {(a1 + m), (az + a2), (a1 + a2)} = {(2,4),(4,2),(3,3)}.

Let dA={aj,a3...,ap}, where a; =a; +a,+ +a;, with 1<j <
- <jg < 7. IndAthere are T :(0”24) elements. By definition

T T
conv (dA) = {>_ 4aj| > di=1,4;€ Q. }
=1 =1
is the convex hull of d.A.

In [10] it is given a geometric description of the integral closure of a monomial
ideal using the convex hull of the set A associated to the ideal. Now we generalize this
result to the integral closure of the power of a monomial ideal using the convex hull of
d.A in order to give a geometric description of I,.

Proposition 2.1. Let R= K[X;,...,X,] be the polynomial ring, I be an
ideal of R generated by the monomials X, ..., X*. For all d > 1 we have:

I1 = ({X™"|o € conv (dA)}),
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where "o is the upper right corner of o whose entries are given by:

o if o; € N
r _ . .
(xz'1 - Loy + 1 if o ¢ N

with Lo, the integral part of o; and A = {a,...,a,}.

Proof. SetH = {XW |o € conv (d.A)} and prove that I7=(H). Let X" € H,
o= ZiT:I Jia;, with a; € d A, ZiT:1 Ji=1,7; € O, and T =("""") be the number of
the elements of d.A. As "o" > o with respect to the order on Q", 39 € QY such that
o' =0+a, 3 p>0 such that pd € N" and pi; € N for all i=1,...,7. Then
XP = XPOXP* — XPO(XMYPM .. (X7 is an element of (I9). By definition of in-
tegral closure it follows that X ¢ [d, Hence (H) C I, Conversely, we have
I C (H) (see [10], 7.3.4).

Proposition 2.2. Let R = K[X;,...,X,] be the polynomial ring over a field
K and I, be the Veronese ideal of degree q. Then:

I, = ({X™ "o € conv (gA)}),

where A = {e1,...,e,} and e; is the i-th unit vector of R".
Proof. I,=(Xj,....X,)? and its generators are associated to the set gA,
where A= {e,...,e,} and ¢; is the i-th unit vector of R". I, is a normal

ideal, then E:Iq:(Xl,...,Xﬂ)q. Hence by Proposition 2.1 it follows that
I, = {X™'|o € conv (g A)}).

For ideals of Veronese-type we give the following result.

Theorem 2.1. Let R = K[X;,...,X,] be the polynomial ring over a field K.
The ideal of Veronese-type 1,2 is integrally closed.

Proof. LetX“, ... ,X“ bethe generators of /,» where X = X;Lil - X, with
Z;-‘:laij =q¢0<a;<2anda; € N"fori=1,... 7

By the geometric description of the integral closure of a monomial ideal
given in [10] (7.3.4), one has:

T2 = ({X™|a € conv(ay,...,a)}).

Let f be a generator of I, f=X"" with o« =31, Aa; € conv(ay,...,a,),
Siidi=1, 4;€Qy. It follows that o= (> Aia,,..., > Aia;,) € QL. By
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a;

definition of /2, in each generator X = Xi;1 . an one has that a;; = 0,1,2. If
Ji€Nfori=1,...,rthen}; =1land 4 =0Vj #4 hence X" =X" i=1,...,r
If 2; € Oy \ N'with Y7 ; 4; = 1, then one obtains a monomial X ! with "o > a;,
that is o; > a;, for some j, 1 <j < n, with oo = (a1, ..., %) and a; = (a;, ..., a;,). It
follows that X™' is divided by X% for some i =1,...,r. Therefore I, is gen-
erated by X%, for all 1 <i <rand X'* with "¢" > a;. Hence the minimal sys-

tem of generators of I,2 is X™,...,X*. It is proved that I 5 = I ».

As an application we observe that the ideals of Veronese-type can be associated to
graphs with loops.

A graph G consists of a finite set V = {1, ..., a, } of vertices and a collection E(G)
of subsets of V, that consists of pairs {x;,x;}, for some x;,x; € V.

A graph G has loops if it is not requiring x; # x; for all edges {w;,;} of G. Then
the edge {x;,x;} is said a loop of G.
A graph G with loops is called complete if each pair {x;,x;} is an edge of G for all
Xi, Xj € V.

Let G be a graph with loops on vertices «1,...,%, and R = K[Xj,...,X,,] be the
polynomial ring over a field K, with one variable X; for each vertex ;.

Definition 2.1. The edge ideal I1(G) associated to a graph G with loops is the
wdeal of R generated by the monomials of degree two, X;X;, on the variables
Xi,..., Xy, such that {x;,x;} € E(G)for1 <i<j<mn:

I(G) = ({ X Xj|{x;,x;} € E(@)}).

Remark 2.1. Let G be a complete graph with loops on vertices x1, . .. ,xy,. The
edge wdeal 1(G) is the ideal of R generated by all the monomials of degree two, X;X;
forall1<i1<j<n

IG)=X2,. .. X2 XX, ..., X1 Xy, ..., X 1 X)) = (Xu,..., X)) = (L),

where 11 is the monomial ideal of R generated by all the variables Xi,...,X,. In
this case I(G) is the Veronese ideal Is.

In [6] it is proved that the edge ideal of a complete graph with loops is normal.
Now we give a geometric description of the integral closure of the edge ideal of a
complete graph with loops as in [10] (7.3.4).

Proposition 2.3. Let G be a complete graph with loops on vertices x4, ..., x,
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and I(G) be the edge ideal. Then
I(G) = {X™ o € conv (2A4)}),

where A = {ey,...,e,} with e; the i-th unit vector of R".

Proof. The result follows by Proposition 2.2 because I(G) = I5.

Definition 2.2. Let G be a graph with loops. A walk of length q is an al-
ternating sequence of vertices and edges

w = {xioalilaxilaliza o 7xiq,17liqaxiq}a

where i, = {x;_,,x; } is the edge joining x; , and x;, or l; is the loop {x;,x;},

Example 2.3. Let G be a graph with loops on vertices x1,x2, x3 and edge set
EG) = {{xy, 21}, {1, 22}, {@2, 23}, {x3, 23} }. A walk of length 3 is

w={x1,l, 21,12, 22,13, %3}

where l; = {x1,21} s the loop on x1, lo = {x1,%2} is the edge joining x; and xz,
ls = {x2, 23} is the edge joining x2 and x.

Remark 2.2.  In a walk w = {w;,, b, %, by, - . -, 05, Uiy, 25, } two vertices co-
mcide only if the edge joining them is a loop. Otherwise the vertices are distinct.
For example, w = {x1,11,%1,l2,%2,13,%1} is not a walk of length 3 in a graph G.

Definition 2.3. Let G be a graph with loops on vertices xi,...,%,. The
generalized graph ideal, denoted by 1,(G), is the ideal of R = K[X;,...,X,] gen-
erated by the monomials Xf 1. X" of degree q such that {x;, ;.1 } is an edge of G
or x; has a loop fori,i+1 € {1,...,n}.

Remark 2.3. The generalized ideal 1,(G) is generated by the monomials of
degree q of R corresponding to the walks of length ¢ — 1 in G:

ail

L&) = {X]" - X, |y a; =q, 0<a; <2}) =I5

J=1
1,(G) is an ideal of Veronese-type. The variables in each generator of 1,(G) have at
most degree 2. In fact, in the monomial Xf 1. X" one has a;, = 21 G has aloop in
xj or a;; = g, = 1if {x;,2;,.1} is an edge of G.
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Example 2.4. Let G be the complete graph with loops on 4 vertices

I T2

T4

I5(G) = (X1* XXXy, X1 2 X" X3, X12X2" Xy, X17 X X357, X12X57 X,
Xi2Xe X%, X2 X3 X2, X Xo? X X, Xo" X532 Xy, X1 X" X2, Xo2 X X2,
X1 XoX5" Xy, X1 X5 X,%, Xo X" Xs%, X1 Xo X3X,7).

Proposition 2.4. Let G be a complete graph with loops on vertices 1, . . ., Tp.
The generalized ideal 1,(G) is integrally closed.

Proof. It follows from Theorem 2.1 because 1,(G) = I 2.

3 - Integral closure of Veronese bi-type ideals L,

Let R = K[Xy,...,X,,; Y1,..., Y] be the polynomial ring over a field K in two
sets of variables. Put a; = (a;,,...,a;) € N*, b; = (b;,,...,b;,) e N", i =1,...,r
and

(a;, b;) = ((lil, ce ,ain,bil, .. '7bim) e N,

Let I be a monomial ideal of R generated by the monomials Xuybh L XYY",
where XY stands for'Xf”1 o X Yf 1. Y,l,’{'"" fori=1,...,r. The integral closure
of I is the following:

I=X"Y"" |2, € conv((ar,by),...,(ar b)),
where conv (a1, b1), ..., (ar, b)) = {>1_; e, b)|Yr_ 1 A =1,2; € Oy} is the
convex hull of (a;, b;), forv=1,..., 7.
In [4] a new monomial ideal of R is defined starting from I:
= ({)_(WXW |oo € conv (ay,...,a,), € conv (by,...,b)}),

with o € Q) and f € Q. B
In general, we have the inclusion I C I ([4], Prop.1).
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We define the special class of ideals of Veronese bi-type of degree q the monomial
ideals of R

Lys= Y LaJes, r5>1,

r+s=q

where I, is the special class of ideals of Veronese-type of degree 7 in the variables
Xi,...,X, and J,2 is the special class ideals of Veronese-type of degree s in the
variables Yi,...,Y,,.

Example 3.1. Let R = K[X3,X»; Y1, Y2l be the polynomial ring.
Ly = IsoJ1 + I1Js2 + Inds = (X2X Y1, XoXo Yo, X1 X2Y1, X1 X2Y0, X1 Y25,
XoV2Y, X\ V1Y2, Xo Y1 V2, X2V2, X2V, Yo, X2Y2, X3Y2, X3Y2, X3V, Vs,

X1 XoY2, X1 X Y2, X1 X2 Y1Y5).

Now we study the integral closure of this class of Veronese bi-type ideals.

Theorem 3.1. Let R=K[Xy,...,Xy;Y1,...,Y,] be the polynomial ring
over a field K. The ideal of Veronese bi-type Lz ts integrally closed.

Proof. Let X“Y™, ... X“Y" be the generators of L2, with
Xa;:xbi _ Xi‘n . 'X;l,,i” Yfﬁ . qufm with Zj”zl i, + Z;’il b1/ =q, 0< a;; <2 and
0<b;,<2fori=1,...,7,and ¢ > 2.

By the geometric description of the integral closure of a monomial ideal

given in [10] (7.3.4), one has:
Loz = ({X™Y""|(2, p) € conv (a1, b1), . . -, (@r, b))},

where conv ((a1,b1), ..., (ar,0,) = {371 Aiai, b)| i1 4i = 1,4 € O}

Let f be a generator of L,z f=X"Y"". (0, =", hai,...,
S Ay, >y Aibiy o, iy Aiby,) € Q™. By definition of Ly in each gen-
erator XY = X,Zil .- XZ "" Y,L.b1 h... Yi * one has that @, b; =0,1,2 such that
Yo+ Y by = q. If ;€ N owith 337, 4; =1 then 2; =1 and 4 =0 Vj # 1,
hence X ™'Y = X"y for 1 <i <r. If J; € O \ N with 3_7_; 4; = 1, then one
obtains amonomial X 'Y " with "% > a; and B > bj,thatiso; > a;, and f; > b;.
It follows that the monomial X"™ Y"" is divided by X“Y” for some i =1,...,7.
Therefore L, » is generated by X%Y% v1<i<rand by X "y ™ with "o > a; and
87 > b;. Then the minimal system of generators of IE is Xuyh, .. XY™,
Hence Ly = Ly».
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For q = 2 the inclusion Ly 2 C L2 is true as equality.

Proposition 3.1. Let R= K[Xy,...,X,; Y1,...,Y,,] be the polynomial ring
over a field K and Lys C R. Then

Loz = Loy,

Proof. Lgs = I1J1. By [4] (Proposition 2) the thesis follows.

For q = 3 it is possible to give the description of the integral closure of L2 in
terms of ideals of mixed products [8].

Proposition 3.2. Let R = K[Xy,...,X,;Y1,...,Y,,] be the polynomial ring
over a field K and L3y C R. Then

Lso=nLJy+ L.

Proof. Lss is integrally closed, then Ly = L3 = I1J2 + IsJ1. So we prove
that ﬁ—i—ﬁ =LJo+13J;. Let f be a generator of ﬁ, with ﬁ =
()_(Wzrﬂ1 | € conv (ay,...,a),p € conv (by,..., b)), where (as,b1),...,(ar,b,) are
the exponent vectors of the generators of I1Js. Let f = XY™ by hypotheses
=311 A, with 37 1 A4; =1 and f=>"7_; u;b;, with Y7 ; w; = 1. It follows: if
JieNthenX'™ =X;,V1<i<mandif ) € O, \ Nthen X =X;---X,. In si-
milar way if % €N, then Y7" = Y;Y, V1 <j<k<m and if i, € Q4 \ N then
Y? =V, Y, or Y = Yi(Y;---Y,) for all 1 <j < m. Therefore I,J5 is gen-
erated by the products of the monomials X ™ and Y " as defined before. It follows
that the minimal system of generators of 11:J2 s {X;)Y;Y[1 <i<n,1<j<k<mi
Hence ﬁ =I1Je. In the same way we obtain that IZZJl is generated by
(X:X;Y,| 1<i<j<n, 1<k<m}. HencelpJ; = IyJ;. It follows the thesis.

In general we give the following description of the integral closure of L, 2.

Proposition 3.3. Let R= K[Xy,...,X,; Y1,..., Y] be the polynomial ring
over a field K and L,» C R with ¢ > 3. Then

L_%Z: Z I’I’,Q‘]S,27 r,s > 1.

r+s=q
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Proof. Lg2isintegrally closed, then m =Lg2=>, =g I, 2J 2. So we prove
that in general I,5Jss = I.2Jss for 7,s>1. Let H=TJ,a= XY |ae
conv(ay,...,a,),p € conv(by,...,b,)), where (ay,by),...,(a,b,) are the exponent
vectors of the generators of I, 2Js0. Let f = X Y™ be a generator of H, by hy-
potheses o = >7 ; Aia;, with Y7 ; ;=1 and f =37 4 ;b;, with >0 p; =1. It
follows: if /; € N then X' = X% V¥ 1 <4 <7 and if 4; € O, \ N one obtains a
monomial X '*' with "«7 > @,. In similar way if #; € N, then YFP =yivi<j<r
and if 1, € Q4 \ N one obtains a monomial Y7 with 57 > b;. Therefore H is
generated by the products of the monomials X ™ and Y" as defined before. Hence
the minimal system of generators of H is {)_(“be" 1<i<r} It follows
H=73", . Ir2Js2 Hence the thesis.

This class of ideals of Veronese bi-type in two sets of variables is associated to
bipartite graphs with loops.

A graph G with loops is quasi-bipartite [6] if its vertex set V can be partitioned
into disjoint subsets Vi = {x1,...,2,} and Vo = {y1,...,¥m}, and any edge joins a
vertex of V; with a vertex of V, and there exists some vertex of V with a loop.

A graph G with loops is a strong quasi-bipartite if all the vertices of V; are joined
to all the vertices of Vy and for each vertex of V there is a loop.

Let G be a graph with loops on vertices x1,...,%,;¥%1, - -, Ym.
Let R = K[Xq,...,X,; Y1,...,Y,] be a polynomial ring over a field K, with one
variable X; for each vertex x; and Y; for y;, i = 1,...,n,7 =1,...,m.

Definition 3.1. The edge ideal I1(G) associated to a quasi-bipartite graph G
18 the ideal of R generated by the monomials of degree two corresponding to the
edges and loops of G.

Remark 3.1. Let G be a strong quasi-bipartite graph and I(G) the edge ideal.
In general 1(G) is not integrally closed.
For example we consider the bipartite graph on 4 vertices:

€1 )

O yl y2

I(G) = (X1 Y1, X1 Y2, Xo V1, Xo Vo, X12, X2, Y12, Yo?) € K[X1, Xz, Y1, Yal
(@) = (X12, X%, X1 Xz, X1 Y1, X1 Ve, Xo V1, Xo Vo, V1 Y2, V1%, Vo), [21.
(@) # I(G). We observe that I(G) = I% + I1J1 + J3, where [1J; = Lgs.
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The structure of the integral closure of I(G) is given in the following result.

Theorem 3.2. LetR = K[Xy,...,Xy;Y1,..., Y] be the polynomial ring over
a field K and G be a strong quasi-bipartite graph G. Then:

IG) =L+ I1J, + J%.

Proof. Let X“Y™, ..., X“Y" be the generators of I(G), where X%“Y" is a
monomial of degree 2 of type X7, Y7 or X;Y;.

By the geometric description of the integral closure of a monomial ideal given
in [10] (7.3.4), one has:

IG) = (XY |(a, p) € conv ((a1,D1), . .., (@, D))}),

where conv ((a1,b1), ..., (ar,b,)) = {>°7_; (i, b)| D i1 i = 1,4 € Q).

Let f be a generator of I(G), f = X ™Y (w, ) = (X0_y Aittiy, - - ., S0y Aitti,
Z;ﬁzl ;“ibh s Zgzl ;hibi,,z) € ‘Q,Trm, with a; = (ail, e aiﬂ) eN"and bi = (bil b 7bim)
€ N™ for i = 1,...,r. By definition of I(G) in each generator X%Y" one has that
@i bij =0,1,2. Then ZZ:I /liaik = ;“ih + -4 ;”ijm + Zﬂ.ik, 1< ijl < ijz << ?:_7'm <r
and i ¢ {7;]‘1,’6-_7'2, cee ,7:_7'7”}, and Z;:I 2ibi, = )Lill +---+ j'izn +24,1 <4, <f, <<
i, < rand is¢ {1y, iy, 0050, )

Henceif 4; € N'with ), 4; = 1 one obtains X My = X“izbf, V1 < ¢ < 7, thatis
XMy" =x2, X"y =y2orX™'Y" = X;Y;,fori=1,...,nandj=1,...,m

1 To0 v T
Instead if /;, = 5 with }°; 4; = 1, one obtains the monomials X *' Y m equal to X; X;

for all 1 <17 <j <m. In the same way if 4, :1 with ). 4; = 1, one obtains the
monomials X ' Y™”" equal to Y;Yforalll1 <i<j<m.

Otherwise if 4; € Q, \ N one obtains a monomial XY "" with "o > a; and
B > bj,thatiso; > a; and f; > b;,. It follows that the monomial X 7y s divided
by X% Y for some i=1,...,r. Therefore the minimal system of generators of I(G)
is {X2,X;X},Y Y,-Yl,Xin} for all 1<i<mn, 1<k<n, i#k and 1<j<m,
1<l<m,j# I Hence I(G) = I3 + I1J; + J3.

Remark 3.2. By definition Lap = I1J4, it follows that Lz C I(G).

Proposition 3.4. Let R = K[Xy,...,X,;Y1,...,Y,.] be the polynomial ring
over a field K and I(G) be the edge ideal of a strong quasi-bipartite graph. Then
I1(G) C I(G).

Proof. Let I(G)= ({X2 X;Y; Y2| 1<i<m, 1<j<m}) and = be the
number of the generators of I(G). For each generator X% Yb of I(G) we consider
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(a;, b)) € N"" with (a;,, ..., a;) € N, (b, ..., b;,) € N". More precisely there are
m exponent vectors a; equaltoe; = (0,..., 1 ,...,0)fori=1,... ,nandnequal to

2e¢; for i = 1,...,n, where ¢; is the i-th unit vector of R Analogously there are n
exponent vectors b; equal to ¢; = (0, ... ,\1/, ...,0)forj=1,...,m and m equal to
2ejforj=1,...,m. j

By definition I(G) = (X 'Y " |0 € conv (a4, . .., a.), f € conv (by, . .., b,)) and let
f=X""Y" be a generator of I(G).

By hypotheses o = }_i_ Aia;, € conv(ay,...,a.), with Y 1 A4 =1, 1 <j < m.
Hence o= (Z;:I /liaiﬁ ceey Z;:l /“Liain). Then Zfﬂ )Liaik = ﬂijl + -+ }‘ijm + Z)Lik,
1< i_h < ij2 << ijm <7 and ’Lk¢ {ijlvijzv s 7ijm}' It follows: if i@ € N with
S%Ai=1 we obtain X™' =X; or X' =X? V1<i<n or X =1 and if
LieQ \NX™ =X;--.X,.

In the same way ff = Y"1, s;b;;, with Y77 x; = 1, then: if y; € N, Y7 =¥ or
YP =v2vi<j<morY”? =1landify; € O \N, Y7 =Y;--.7,.

Therefore 1(G) is generated by all the products of the monomials X ™' and ¥ "
before defined. Hence I(G) = R. It follows the thesis.

Definition 3.2. Let G be a quasi-bipartite graph on t vertices. A walk of
length q in G is an alternating sequence w = {v;, b, vy, li,, ..., v, b, v, }, where
v;; s a vertex of G and l;; = {'vijmvij} is the edge joining v;,_, and v or a loop if
Vi, = Vi 1< <1 SS’Lq <t

Example 3.2. Let G be a strong quasi-bipartite graph on wvertices
{21, 225 Y1,Y2}. A walk of length 2 is

w = {xlallax17l27yl}

where l; = {x1,%1} is the loop on x1 and lo = {x1,y1} 1s the edge joining x; and y;.
(A walk w in G can not have the edges {x;,x;}, with i # j and {ys,y:} with s #t,
because G s bipartite).

Definition 3.3. Let G be a quast-bipartite graph. The generalized ideal I1,(G)
associated to G is the ideal of R generated by the monomials of degree q corre-
sponding to the walks of length q — 1.

Remark 3.3. Let G be a strong quasi-bipartite graph. The generalized ideal
1,(G) is generated by all the monomials of degree q > 3 corresponding to the walks
of length q — 1 and the variables in each generator of 1,(G) have at most degree 2
(see Remark 2.3).
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Therefore I,(G) = Lgo =, =g I,2J2 for g > 3.

Example 3.3. Let R = K[X1,X»; Y1, Y2l be a polynomial ring over a field K
and G be the strong quasi-bipartite graph on vertices xi, X2, Y1, Ya:

T T2

U1 Y2

I3(G) = 1Js + IsJ1 = (XlYle,X2Y1Y2,X1Y12,X2Y12,X1Y22,X2Y22,X1X2Y1,
X, X Ya, X2Y1, X2V5, X2Y1, X2Y2).

L(G) = I32J1 + 132 + Loy = (X2Xo Y1, X2Xo Yo, X1 X2Y1, X1 X2Yo, X1 Y2V,
XoY2Ys, X, Y\ Y2, Xp Y1 V2, X2Y2, X2V, Yy, X2Y2, X2Y2, X2Y2, X2V, Yo,
X1X2Y12,X1X2Y22,X1X2Y1Y2).

Proposition 3.5. Let R= K[Xy,...,X,;Y1,...,Y,,] be the polynomial ring
over a field K and G be a strong quasi-bipartite graph G. The generalized ideal
1,(G) 1s integrally closed for q > 3.

Proof. It follows from Theorem 3.1 because 1,(G) = > I,2J 2 for g > 3.

r+s=q

Remark 3.4. Let G be a strong quasi-bipartite graph G. I:(G) = I(G) is not
mtegrally closed (Theorem 3.2).

4 - Normality of Veronese by-type ideals

We study the normality of these classes of ideals of Veronese-type and Veronese
bi-type using similar technics to those introduced in [8].

Theorem 4.1. Let R = K[X;,...,X,] be the polynomial ring over a field K.
The ideal of Veronese-type 1,2 is normal.

Proof. Wemust prove that Ié’_z is integrally closed for all p > 1. We proceed by
induction on p, for all p > 1. If p = 1, I, » is integrally closed by Theorem 2.1.

If p > 1 we assume that [ 51.2 is integrally closed for £ < p. The integral closure of
15,2 is a monomial ideal given by ([10], 7.3.3):

]{z = ({f € R| f monomial and f™ € I;',’g for some m > 1}).
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Assume M = I{;:/If]’z #(0). If p € Assp(M)\ {m}, where m = (X3,...,X,) and
X1 ¢ p for instance, then (If;’z)(, C (15_172)” By induction hypothesis we obtain
M|, = (0) which is impossible. Hence Welave Assp(M) = {m}.

Let f be a monomial such that f € I}, and f ¢ I}, ,. We observe that by the de-
scription of If]”z it follows that any monomial in Ig,z has degree at least qp. We have
fe @ C If]’; = If]’;l by induction hypothesis on p, so we can write:

f :fi .. .fp—luv
where fi,...,fp—1 are monomials of degree q in I;2 and u is a monomial with
deg (u) > q. We can write, after permutation of variables, u = Xfl . -Xf’i, b; > 1 for
all 4, [supp (w)| < p — 1.

If X; ¢ supp (f;) for some i, then there is X; € supp (f;) \ supp (u). So we can
write:

f=hfia ()J;_;Xl> fir o Sy XTI XD - XUXG,

We have the following cases by the same technic used in [10] (7.4.5).
I) The number of f;’s not containing Xj is greater or equal than by, then we write

_ b b,y .
f=a2paXy - XX - X,

where z; are monomials in I,» \ ml,2, the variables Xo,...,X;, Xj ... , Xj, are
distinet and 2 + b; <.
II) The number r of f; that don’t contain X is less than by, then we write

_ b1 —r b2 by .
f=rzpaX) X XX X

where z; are monomials in I, 2 \ mdy2 with X; € supp (z;) for all 7 and X, ..., X},
Xj,,...,X; are distinct variables.

To complete the proof we apply the same considerations to the variables
Xs,...,X; in order to obtain

f =Yy .ypingl .. )(Z”}(71 .. .ijs’

where y; are monomials in I, \ ml,2, a; > 1 for all 4, the variables X; ,...,X;,
Xj,,..., X, are distinct and X; ..., X; €supp(y;) foralli=1,...,p—1.

We observe that 2r + s < ¢ — 1 otherwise f € 122 (because for 2r + s > q¢ — 1 the
monomial & = X} --- X{"Xj, --- X is a multiple of a monomial that generates /,»,
that is & € I,» and it follows f € If]"z).

Now we substitute X;, =... =X; =1 in f and we denote g the monomial ob-
tained after this computation

9=y Y X X,
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where y; is obtained by y; substituting X; =...=X; =1. Then deg (¥}
= deg (y;) — (degXle W)+ -+ degX W) =q— dl,where degX (y;)is the degree of
the variable X; in the monomials ¥;. We obtain deg (q) > Yg—d)+s

=(@-g-Y",; ' d;) + s. By the structure of I, > we observe that the degree of
each variable X; in its generators has degree 1 or 2, then it follows
di =k;+2(r —k;) =2r — k; with 1 <k; <7. Then deg(g) = Z?;ll (@ —2r+k;)+
s=({p—-1)(qg—2r+ prl ki) +s. On the other hand, since f ¢ I‘q'z, then
deg (f) > pq. It follows deg(g) > p(> " Yqg—d) =plqg—2r+ P k). Hence
P-D@-2r + X0 k) +s>plg—2r+30 k) = s—q+2r— 3"k >0
=s+2r>q+ Zf:ll k; for 1 < k; < r, that is an absurd because 2r +s < q — 1. It
follows that f € I} ,. Hence If;? =17,

Theorem 4.2. LetR = K[Xy,...,X,;Y1,..., Y] bethe polynomial ring over
a field K. The ideal of Veronese bi-type Lq 2 is normal.

Proof. Weuseinductionon g, forall ¢ > 2. For ¢ = 2: Ly s = I1J; is normal [8].

For g > 2: we assume that L, is normal for ¢ < q. We must prove that Lfl’_z is
integrally closed for all p>1 If p =1, L, is integrally closed by Theorem 3.1.

Ifp>1weset M = L, 2 /L 2 and suppose M # (0). Then we take an associated
prime ideal p of M. Since M —R /qu, an associated prime ideal of M is an associated
of R /Lf;,z, this implies that p is a face ideal (since every associated prime is a face
ideal see [10] 5.1.3)). We suppose that p # m where m is the maximal ideal m = R ..
If a variable X; ¢ o then (Lp 2)p C (Lq 12)y- We have

(LPZ/L 2)p = (Lpz)@/(L 2)p C @Lg1s" Do/ Ll 1 5), = (0),

because Lf;fl’z is integrally closed by induction hypothesis on ¢ [5]. This is a con-
tradiction, because M # (0) and g is in the support of M. Hence the only associated
prime of M is the maximal ideal m. Then there exists a monomial f € L—g,Z \ Lf]’,2 such
that (Lp f) =

The support of f contains one of the variables Y;: if f = X{"--- X, then from
fe qu2 it follows f* € Lp !, for some 7 > 1 and this is impossible by the structure of
the generators of L. Let Y1 € supp (f) such that degy, (f) > dngi( f)foralls > 1.
Then we can write Y1 f = hw - - - wp, where w . . . w, are monomials of Ly and & is a
monomial of R such that Y7 ¢ supp (k) because f ¢ L’;ﬁz. We have the following cases
by the same technic used in [10] (7.5.8).

I) We assume that Y; divides % for some j # 1. Let d = degy, (f). As Yf“ divides
Y: f then Yf”l divides w; - - - @,. Assume that Y; € supp (w;) fori=1,...,d +1and
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note that Y; € supp (w;) for alli = 1,...,d + 1; in fact if Y; ¢ supp (w;) the equality
Yif=w1 - (@Y/Y1) w41 0p(Y1h/Y)),
implies that f € LZZ. So de“ divides f that contradicts the choice of Y;.

IT) Assume that 2 = X7" - -- X7 and X; divides % for some fixed j.
Suppose that there exists a monomial w; of the form

wp = X, - X )X1Y, - Y)

withl <43 <... <%, <m,1<js <...<jy <mandY; € supp (o). If Y1 ¢ supp ()
and X; € supp (w;), then we can write

Yif=w1 01X - X XD, - Yo - - 0,(Y1h /X)),

it follows f € sz),z’ that is a contradiction again.

Then there exists a monomial w, of the form
Wq = (Xal o 'Xsk)(Ytl t Ytr)
with 1<s1<...<sp<m, 1<t <... <t <m and X;¢supp(wy). {Xy,..., X}

Z{Y,,...,Y; }andlet Yy ¢{Y,,,...,Y; }.
From the equality

Yif = hoyoy [ [ oi = Cih/X)V01/ YD X o,/ V) [ @i
i#lq i#lq

it follows f € L5,2~ This is contradiction as in the case I).
We conclude that there is not a monomial f € L}, and f ¢ L ,. Hence L} , is in-
tegrally closed for all p > 1. It follows the thesis.

Corollary 4.1. Let G be a complete graph with loops on vertices x1,. .., %y,
The generalized ideal 1,(G) is normal.

Proof. It follows from Theorem 4.1.

Corollary 4.2. Let G be a strong quasi-bipartite graph. The generalized
tdeal 1,(G) is normal for ¢ > 3.

Proof. It follows from Theorem 4.2.
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Abstract

The combinatoric of the integral closure and the normality of special classes of Veronese-

type ideals in the polynomial ring over a field in one set and two sets of variables are studied.
Moreover we associate these monomial ideals to complete graphs and complete bipartite
graphs with loops.






