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MARIA CARMELA DE BONIS and CONCETTA LAURITA (*)

Nystrom methods for Cauchy

Singular Integral Equations. A survey. (**)

1 - Introduction

The Cauchy singular integral equations (CSIEs)

1
F
J %daﬁ- J ke, F(@)de = g@y), [yl <1,

-1 -1

n  awre + Y
where a,b,k and g are known functions and F' is the unknown, appear in several
problems of applied sciences like crack theory, wing theory, elasticity and fluid flow
problems (see for example [1, 20, 30, 49, 52]). The general theory on this topic has
been developed in the fundamental books [18, 31, 44, 49].

In this paper we will consider equation (1) with constant coefficients a, b € R such
that a®> + 6> =1,b # 0.

Itis well-known that (see [49]), even if g and k are regular functions, the solution #'
of (1) can be unbounded at one or both the endpoints +1. Thus the solution is
searched in the following form
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where f(x) is a smooth function and v*#(x) = (1 — 2)*(1 + x)’ is a Jacobi weight. The
exponents —1 < o, f < 1 are given by

a:M—%log(a+Zb>

7l a—1b

and

1 a+1b
p= N+2m.log(a_ ib)’
where M and N are integers chosen so that the index y = —(« + f) = —(M + N)
€ {-1,0,1}. Letting

1
@ @) = afe i)+ [ 22 o

-1

and
1
EF)(y) = J e, ) @™ Ba)da,
i}

equation (1) can be rewritten as follows
A*PH)@) + K@) = 9@).

A*P is called the dominant operator while K is called the perturbation operator.

The aim of this paper is to make a short survey on the numerical treatment of
Cauchy singular integral equations with constant coefficients on the interval [— 1, 1].
We are going to describe some direct methods (quadrature and collocation methods),
but our attention will be mainly focused on the indirect methods. In particular
Nystrém methods applied to the equivalent regularized Fredholm integral equation
will be shown with the related convergence results and error estimates in spaces of
continuous functions with weighted uniform norm. We will also consider the problem
of the well-conditioning of the involved linear systems which is crucial for the com-
putation of the approximate solution.

The paper is organized as follows. In Section 2 we introduce some function spaces
that we will consider in sections 4 and 5 and in Section 3 we show the mapping
properties of the operator A*#. In Section 4 we present a brief outline of some direct
methods, while Section 5 deals with the Nystrom-type methods. Finally, in Section 6
we give some numerical tests on the described methods.
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2 - Functions spaces

For A C[-1,1], let LP(A) be the space of all measurable functions /" such that

1

Nl zocay = (J|f(%)|pdx> <400, 1<p<+o0.

With v(x) = v"0@) = 1 — 2’0 + ), p,0 > f%, a Jacobi weight, we set f € LL(A)

if and only if fv € LP(A),1 < p < + oo. We equip the space L}(A) with the norm

1 leray = Q|f(90)”(90)|pd90> <+oo0, 1<p<+oo.

If A =[—1,1], for brevity, we use the following notations L} = LL([—1,1]) and

Hﬁ)Hp = HfHLI; = ||f||Lf,([71‘1]>-
When p = + oo we define, for p, 0 > 0,

LY =C,= {f eC'%((-1,1) : ‘li‘ml (fo)x) = 0},

where C°(A) is the collection of the continuous functionsinA C [— 1,1]. Incasep = 0
(respectively, 8 = 0) C, consists of all continuous functions on ( — 1, 1] (respectively,
[—1,1)) such that

1in_11 (fo)@)=0 (respectively, 1in} (fo)x) = 0).

In the case where p = 0 = 0, we set C,, = C°([— 1, 1]). We equip the space C, with the
norm

1flle, = 1f2lloe = max|()@].

Finally, for A C [ 1,1], we will set || f|| ;<) = sup | f(x)v(x)] .
! reA

A subspace of LY, 1 < p < o0, is the Zygmund space Z2(v) defined as

& )
Zyw) = {f ey : supM

I <+oo,s>7ﬂ>0}, se N,
>0

Where [1:]
Q ( ,t) D sup (Ab ) P 5
@ f v, <h<t H h(pf HLI,(I/(,_S)
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I =[—1+4s%k%,1 — 45?h%],0 < t < 1, () = V1 — &2 and
5 /8 s
S _ 1) °_
A, f @) = g( ' (5)f (v + ko (5-1))-

We equip it with the following norm

2 Doy

11720 = 10l +sup =3
t>0

In case p = oo we will set Q7 (f, 1), = Q,(f, D)y and Z,(v) = Z7*(v). For v(x) = 1 we
will denote by Z7 the space Z% (v) and then, in particular, Z, = Z°.
Denoting by P,, the set of all algebraic polynomials of degree at most m and by

Em(f)v = plgl[f H(f —P)’UHOO

the error of best weighted approximation of a function f € C, by means of poly-
nomials in P,,, for all functions f € Z,.(v), we have [17, p. 94]

C
3) En(f)o = S Mfllz,e € # COmE).

Here and in the following C denotes a positive constant which may have different
values in different formulas. We will write C # C(a,b,...) to say that C is in-
dependent of the parameters a, b, .... If A, B > 0 are quantities depending on some
parameters, we write A ~ B, if there exists a positive constant C independent of the
parameters of A and B, such that

<A <C(CB.

al

3 - Mapping properties of the operator A%/

Denoting by {pﬁ{g}me ~ the sequence of the polynomials which are orthonormal
with respect to the Jacobi weight v7:, the operator A*# defined by (2) satisfies [53,
Chapter 9]

@ Ayl

_ —0—f (=% — = -
Sm(m)pm,x (4 0, m=0,12..., ye{-1,0,1}.
Moreover, using the Fourier sum in the system of the Jacobi polynomials, it
was proved that A*/ is a continuous map in the pair of spaces (L%/W’L%/m)
(see [3, 5, 22, 23, 27, 29, 44, 48, 53, 54] and the references therein). On the other
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hand, the operator A*# defined as
1

n o, — b &x —0,—,
5) @) = o) - [ K00 e
-1
is the adjoint operator of A*# and satisfies
(6) Ai’ﬁpiyf’fﬁ = R pfﬁﬁp m=0,1,..., xe{-1,0,1}.

sin (7o)
Therefore, for y = 0, A%# L2¢m — L%/W is the two-sided inverse of A»” i.e.,
;{mﬂ — (Ax,ﬁ)fl.

For y =1, A*Fisa right inverse and for y = —1, A*# is aleft inverse.

In spaces of continuous functions equipped with uniform norms, A*# is an un-
bounded operator and, for long time, only partial results were available in literature
on this topic [6, 7, 24, 37, 38]. More recently in [40] and [15], using the de la Vallée
Poussin polynomials in place of the Fourier sums, the operators A*# were studied in
pairs of Zygmund spaces Z,.(v”?) (see the definition in Section 2) and also in the more
general case of Besov spaces. In particular, in [40, 15] the Authors proved the fol-
lowing results: forall» > 0and 0 < o < 1,

1. A% : Z, (%) — Z,.(»"*) is a continuous and invertible map and its two-sided

inverse is the continuous operator A2 7,00 — Z,.(0™0),

2. A~**1 . 7 — Z.(*1"*) is a continuous map and its right inverse is the con-

tinuous map A~**1 : Z,(v*1~*) — Z,. Moreover it results

1
J f ()" 1 (x)dex
(7) Amralgmrely o f o 2L , Yf€EZ.
J v L) de

-1

4 - Direct methods

In this section we give a brief description of some of the direct methods for the
numerical solution of the equation

8) A+ Kf =g.
In the development of direct methods, particular attention, both computationally

and theoretically, was given to those procedures which use polynomials as trial
functions (Galerkin, collocation and quadrature methods), the so-called polynomial
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approximation methods. They are based on the application of the well-known
properties (4) and (6) of the Jacobi polynomials and the literature about them is very
wide. We recommend the interested reader to consult [2, 3, 6, 8, 13, 21, 24, 25, 26, 27,
28, 29, 33, 34, 42, 43, 46] and all the references g”iven there.

We premise some notations. In the sequel L2 will denote the Lagrange inter-

polation operator based on the zeros 90” = xn whk=1.n@ 0 < xly O < i <al?,
of the orthonormal polynomial pn ,le.
n
L0 = fa 5@
k=1
where ln 1 is the k-th fundamental Lagrange polynomial.
Moreover, )" Y= )J:lfc, k=1,..., n,stands for the related Christoffel numbers, i.e

1
nl = J 120 @) v (@)dac.

-1

4.1 - Collocation methods

The collocation method consists in approximating (8) by the finite dimensional
equation

(9) m /{ (AO( / + K)j;ﬂ - Lma 7ﬁg7

and in looking for a polynomial solution f;,, € PP,,_; having the following form
m—1

(10) Fa) =Y ap’@).
k=0

Let us note that, in virtue of (4), the previous equation can be rewritten as follows

@A’ + L, K = L, g.

m—y

Now, studying equation (9) in the space L%/W’ we require that the coefficients of
the polynomial f;,, satisfy the following equation

HL Aoc g + K)fm — g) WHZZ 0.

Consequently, by applying the Gaussian quadrature rule with respect to the weight
v P we get

V /lma ;lLf {(A“ g + K)fm(xmm /[j):| ma )(/jg(x;nu;/f) t= 17 R 8
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i.e, taking into account (10) and (4), the linear system

m—1
(11) ;j‘v;ij{ e ﬂ(acm“/f)+(kaﬁ)(ﬂcm“_xf)]

2Py, =1, m—y,

m—y,i m—y,i
in the unknowns ay, k =0,...,m — 1.
For y = 1, in order to define the solution of (8) uniquely, the additional condition
1
J fv*P@)de =0
-1
has to be considered. In this case the equation
(12) ay = 0

is added to (11).
Let us observe that, in order to compute the entries of the matrix of system (11),
. ) .
the integrals (Kp )(xm“ x/z) k=0,1,... m—1,1=1,...,m — x, usually called
modified moments, have to be computed.

For classical weakly singular kernels like
k(e,y) = e -y, with—1<u<0,
or
k(x,y) =logle —y| (u=0),
they can be exactly evaluated by means of recurrence formulas (see for example [39]).

1 1
Moreover, if u > — 5 and g € Z?(v“’“‘ﬂ) with s > > then, from the estimate

— L% F 2 2
K~ L2 PRy <Ll € Clonp)

ml+y
it follows that, for a sufficiently large m, system (11) is unisolvent and the polynomial
[ corresponding to its unique solution satisfies

1f = fm HLZ\/_ mr
with » = min (1 + &, s) if —1 < u < 0, and » = s if u = 0 (see [34]).

Furthermore it was also proved that the linear system (11) is well conditioned
(see [34)).

When the exact computation of the modified moments (Kp)’ )(x;n“ /f) is not

||f||Z2(\/q;x_)a ¢ 7& C(mvf)v
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possible and the kernel k(x, y) is sufficiently smooth, one can approximate them by
using a suitable Gaussian quadrature rule.

In this case, in place of (9), we consider the following finite dimensional equation
(see [33, 35])

(13) L2 AP + R = L

with
1
Ko fi)y) = J LKy, wo)fs(@)o™ P () dac
-1

and k,(x) = k(x,y) = k. (y).

Then, in order to construct the polynomial solution f, of (13) in the form (10), we
can proceed as above and obtain the unknown coefficients a;, k = 0,1,...,m — 1, by
solving the linear system

m—1

(14) /2,

k=0

—o,—f ¢ —o—f ao, B B, o p
[ blnnapk X (m /1)+ZA k(xmi’ m /1)pk (xm?) e

i bge Tl =1, m—y,

m—y,i m—y,i

with the additional condition (12) for y = 1.
This modified procedure is usually referred to as discrete collocation method.
By assuming the kernel k(x, y) of the integral operator K such that

(15) sup Hkynzg(\/vx,/f) < oo, Sup ||kx||Zg(\/v+/;> < o9,
ly|<1 |v[<1

1
and g € Z2(Vv—=F) with r > 5 from
L C
I~ Ly Rl <ol

one can also deduce (see [33, 35]) that, for a sufficiently large m, system (14) is
unisolvent and well conditioned and that the polynomial f,, corresponding to its
solution satisfies the following estimate

(16) If = Fonll 2

e < Hf”ZZ(\/vz_v C # Cm,f).

A generalization of the described methods can be obtained by replacing in (11)
(respectively, in (14)) the collocation nodes x_* b by the zeros x” of the poly-

m—y,i
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nomial pé’;f_l which is orthonormal with respect to a Jacobi weight v such that

(\/v“vﬁv/’v%)ile L%, (@) =vV1—a2,

and by substituting the Christoffel numbers /lm_y 5 Oy A, (0% B m_y ;), being
m—y—1 9 -1
/lm,}{(/l)_“’_ﬁ,x) = l Z (p];a’_ﬂ(x)> ‘|
k=0
the m — y-th Christoffel function related to v=* 7 (see [34, 35]). Let us recall that for
vP0 = v~ F it vesults Ay, (0P " ;[Z) =" ;/f

In the general case v”? # v=* /’ , the linear system is deduced from equation (9)
(respectively, (13)) by applying a Marcmklevmcz inequality (see [34]) instead of the
Gaussian rule.

4.2 - Quadrature methods

The quadrature method can be considered a procedure equivalent, in some sense,
to the above described discrete collocation method. The method consists in ap-
proximating the unknown solution f of (8) by means of a polynomial of degree m — 1
of the following kind

(17) Il =D& @)
k=1

satisfying the finite dimensional equation (13).

Considering equation (13) in the space L%/W , we require that the coefficients of

the polynomial f;,, in (17) satisfy the following equation
_ —/i((Aoc B +K Von — g),/v—x.—ﬂHZZ 0.

m—y

(18) (12

Since, applying relation (4), one can show (see, for instance, [44, p. 448]) that

- Pl )
Aa* ﬂﬁn)(mm“ //1}) = Z )mk aﬂim;a,fﬁ ’
Lo, k mmf)(.i

if we set

-1
& = (,/m{ﬁc) M, k=1,...,m,

then condition (18) is satisfied if and only if the array (1;,),_; _,, is the solution of the

.....
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following linear system

(19) /lr_rL%;/zg Z \/ m, k [ % /}) + k(xmk’ m—xﬂ]

L 251

= m_wg(xm”//f) i=1,....m—y.

Let us observe that the distance between the zeros x* ok and x, " //f ,Vk=1,.
Vi=1,...,m — y, is large enough to avoid the numerical cancellation [41]. In case

x = 1, the equation

m
S ol =0
k=1
is added to (19). 1
It was proved in [35] that if g € ZE(\/U*“=*/”) and k(x,y) satisfies (15) with » > 5

the polynomial f,, constructed by solving (19) and using (17), satisfies the error es-
timate (16). Moreover, (19) is a well conditioned linear system (its condition number
is independent of its dimension m) as well as (14).

Let us remark that the equivalence between the two procedures (14),(10) and
(19),(17) can be easily proved taking into account the well known relation

and the consequent one

=3 VS A CHOE
j=1
Nevertheless, the first method is more expensive from a computational point of view
because of the evaluation of the orthornormal Jacobi polynomials p;’ F andp o P both
in constructing the entries of the matrix of system (14) and in computing f;,, by means
of (10).

Comparing the above described methods, it is clear that they are equivalent in
terms of convergence order. The collocation method, among the three procedures, is
more expensive from the computational point of view but can also be used when the
kernel is weakly singular.

The exposure of the two methods is essentially the one presented in [34, 35],
where, using ideas proposed in [3, 6, 8, 24, 27, 33, 42], special attention was devoted to
the conditioning of the involved linear systems.
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Finally, we remark that, in case y = —1, such systems are overdetermined (they
have m + 1 equations and m unknowns) and the choice of the equation that has to be
dropped is not clear.

5 - Indirect methods

Multiplying both sides of (8) on the left by A*P we get the equation
(20) f+A"PEf =A%y + b,

where b, = 0 for y = —(a + f) € {—1,0} and b, is a fixed real number for y = 1. In
the cases where y = 0 and y = 1, (8) and (20) are equivalent. For y = —1, sufficient
conditions on the kernel k£ and the known term g can be established in order to obtain
that (8) and (20) are equivalent [30, 52].
If A*PK is compact in the space in which we are looking for the solution of (8), then
(20) is called the regularized Fredholm equation of (8) and it satisfies the Fredholm
alternative. Therefore it is possible to compute the solution of (8) by solving the
equivalent regularized Fredholm equation (20).

The literature about the indirect methods is not very wide. Among the other here
we mention [16, 19, 39]. In [19] a Nystrom method is applied in the special case

1 . . . .
a=p= 3 and its uniform convergence is proved provided that the input functions

k and g have a continuous derivative.

In virtue of recent results on the mapping properties of the dominant operator
A*P_in [39, 16] the more general cases y € {0,1} has been investigated in suitable
weighted spaces C,,.o. The case y = 0 has been treated in both the papers, while the
case y = 1 only in the second one.

Applying projection methods, polynomial approximations, convergent to the
exact solution, are computed by solving well-conditioned linear systems. In parti-
cular, concerning the case y =0, in [39] equation (8) is considered in the space
Cy0,0 < o < 1, and two different linear systems are used for 0 < o < % and o > 1,
while in [16] equation (8) is studied in C,..,s, where y and ¢ satisfy suitable as-
sumptions, and this leads to solve a unique system for any value of 0 < o < 1.
Anyway the results on the condition numbers of the respective linear systems and on
the convergence of both approaches are equivalent.

The numerical treatment of CSIEs with negative index (y = —1) was in-
vestigated in [14].
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In the sequel, for y € {0,1}, equation (8) is considered in spaces of continuous
functions with weighted uniform norm. This is more in line with the numerical
treatment where punctual errors are often shown.

The solution of (8) is computed solving the equivalent regularized Fredholm
integral equation (20) by means of a Nystrom-type method. We premise a brief
description of such method giving results concerning its stability and con-
vergence.

5.1 - Nystrom method

In order to fix the ideas let us consider the Fredholm integral equation of the
second kind

1
(21) Fap + j he, pf @ @de = g, yl <1,
]

where the kernel & and the right-hand side g are known functions.
If we set

1
(22) (Kny)::Jmhmgythv“ﬂmﬂdx,
-1

equation (21) can be rewritten as
(23) I+Kf=g,

where I denotes the identity operator. We will study (23) in the space C,,,
p,0 >0, where v”? is a suitable Jacobi weight.

If h(x,y) is continuous with respect to both the variables, we replace (23) by the
new equation

(24) (I +Knlfn=y

where the operator K,, is defined as follows

m

(25) En ) = 2 h@? pf@h, yel-1,11
k=1

We recall that «;; F and lZ’ﬁ are the nodes and weights of the Gauss-Jacobi quadrature
formula with respect to the weight v*#, respectively.
Multiplying both sides of (24) by the weight function v”:? and evaluating them in
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the quadrature knots, we obtain the following linear system

«x i
(26) a; +v” 0(90“ ﬁ)z p()( ) (mk , jﬁ)ak g(xf’ﬁ)vp’O(xf’ﬁ), i=1,...,m,
Xy,
in the unknowns a; :fm(ac?’ﬂ)v/’*”(x?’ﬂ), i1=1,....m

Then the Nystrom interpolating function f;, defined as

m 0,8

Fnl@) = g@) =y 7 nGay ", wyay,

_ Tk
=1 v7 ()

is a solution of (24) in C,,.» if and only if the array (ax);_; _,, is solution of system (26)
(see for example [2, p. 101]).
Letting
171 =1le,,c,, = swp [7flc,, .

Cop0

for any linear operator 7 : C,,0 — C,,0, the following theorem establishes the
convergence and the stability of the Nystrom method (see for example [2,
Theorem 4.1.1, p. 106]).

Theorem 5.1.  Assume that the operators K and K, defined in (22) and (25),
respectively, satisfy

(27) 18l <Clflle,,. C#C(h),
(28) sup|| K || < + o0,

m
(29) Jm B = Kol =0, € Cyun.
and
(30) mEIPOOH(K — KKy =0.

Further assume that the integral equation (23) is uniquely solvable for any given
g € Cypo. Then for a sufficiently large m, say m > my, the approximate inverses
I+ Km)’1 exist and are uniformly bounded

_ 1+ | +EK)7YIKn
10+ K < (a9 117 N
1= |7+ K) " [|[|(K — K)o

for a suitable constant C # C(m). Moreover the solutions f of (23) and f,, of (24)
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satisfy
(31) 1 = Fulle,, ~ 1~ Kl

Finally, the matrix A, of system (26) verifies
(32) cond(4,,) < cond({ + K,),

where cond(A,,) = ||Anl[||A,}|| denotes its condition number in uniform norm.

In the next corollary we give sufficient conditions on the known functions
assuring that the previous theorem holds true.

Corollary 5.1.  Let v”? be a Jacobi weight such that

(33) 0<p<a+l, 0<O0<p+1
Assume that h,(y) = h(x,y) = hy(x) and g verify the conditions
(34) sup [|fe | 7,00y < + 00,
<1

(35) sup 0”@yl 5, < + o0

lyl<1
and
(36) g€ Z."%

for some v > 0. If the integral equation (23) has in C,,0 the unique solution f for a
fixed g, then, for a sufficiently large m (say m > my), equation (24) has f,, as unique
solution and

C
(37) I =falle,, <=5 fllzomns € #CORD.

Moreover the matrix of system (26) satisfies (32).

Proof. Inordertoprove (37)and (32), we proceed to verify that the hypotheses
of Theorem 5.1 are fulfilled. We first prove (27). We have

1

(KNl () = J [ @b )] (o)) P~ (o) dlae
-1
1

<[£l.,, sup el J -0\,

<1
-1

Then under the assumptions (33) and (34), (27) follows.
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Now we prove (28). We first note that

h
(D" @) < 1flc,,,, 0" @) Z i ,(fi)k( ;%;'
L
m B

<Clfle,,, v ' Wlhylloe Y — .
Cypo Y k; P g(xk./})

Taking into account that i,‘é’ﬂ Am“ﬂ “/5(96“ b ), k —1 ,m, with Axy

1

(38) P J W PE0() d.

Thus we have

1
Il o =€l le, , 550 e @l | e

-1
and hypotheses (33) and (35) imply (28).
By standard computations it is possible to deduce
(K — K)o () < CoP () Bon—2(y o
< C”f”Cv/,ﬁvmO(y)E’mfl(hy)v(l,(i

+ 207 ()| |y || B 1 (o

Then, using (35) together with (3), we get

(39) H(K - Km)f”c ||fHC 0.0 + CEyp- l(f)vﬂ o

w0 —

and, for all f € C,,.0, (29) follows.
In order to prove (30), we replace f by K, f into (39). Thus we have

||(K - Km)Kmf”C ||Kmf||C 2.0 + CEm I(Kmf)uﬂ 0

/ﬂ_

and, taking into account (28), it remains only to estimate £,,_1(K,, f),»0. But

ot[f

|45, En D" @) < | fllc.,, Z [0 @Ay ) W

153

o,
=%

ﬂ(ﬂcmﬂ =1),and that 1 &+ oc ~1+x Vee [ack 7xk+l] (see [50]), we get

and, taking the supremum on y € [— 1 4 45?2, 1 — 4s?h?] first and then the supre-
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mum on 0 < h < t, we get

™ !
.QZ(Kmf, Dyro < HfHCvpﬂ kz:; QZ([’L%Z./;, U)yro W .

Moreover, using (33), (34) and (38), we deduce
Q;(Kmf7 t)q)p.U < CtT”f”CWy(;

and then

C
Em(Kmf)v/’*” < W ”f”Cﬂ

2,0

recalling (3). The proof of (30) is now complete.

Since all the hyphoteses of Theorem 5.1 are fulfilled, (32) holds true and we can
use (31) to prove (37). We first note that Kf € Z,.(v??) for all f € C,,.. In fact, we
have

14, A" ) =v" )

1
J (A ) fo e )
|

1
<Iflle, , | o @i
3

and, taking the supremum on y € [— 1 + 4s2k?,1 — 4s?h?] first and then the supre-
mum on 0 < h < t, we get

1
Q(Kf 00 < fllc,, J Q5 T, V)0 v* PP ()
-1

<Ct"|fllc,, sup el 7,000
U el <1

<Ct'|[ fllc

wp0 )

by (33) and (34), i.e. Kf € Z,(w"?), for all f € C,.0. Then, under the assumption (36),
the unique solution f of equation (23) belongs to Z,.(v”?), too. Consequently (37)
easily follows from (31), (39) and (3). O

In the sequel we will give applications of Corollary 5.1.
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5.2 - CSIEs with index 0

Consider the equation

1
(40) A h)y) + J ke, y)f @0 @) = g)

-1

where A% * is defined in (2) with 0 < « < 1.

Assuming that g € Z,(0**) and k,, € Z,@"*), r € R", uniformly with respect to x,
we can obtain an equivalent Fredholm equation multiplying (40) from the left by the
operator A»~* defined in ®).

Taking into account that (see Section 3) Ar—r A%t — F,VF € Z,(w*%), under
the assumptions on g and k, we get

1
(41) fa) + j A ) ™ *(@)de = (A% *g)(y).

-1

Moreover, setting

P, y) = A" k)y), Gy) = A "9)y),

we rewrite (41) as follows

1

(42) Fap + j Y, y)f @ “@de = GG).

-1

We consider (42) in C.+,s with (« + y) and 0 satisfying (33) (with f = —a), i.e., with y
and ¢ s.t.

(43) 0<y<1l, 0<dé<l-u.

Applying the above described Nystrom method to (42), we get the system

- L VO (a) ¥ .
() > [5““ i QWU?’(%k,%i)] a = G @), i=1,2,...,m,
= VT
wherew, = a, ",k =1,...,m, are the zeros of pj;,* and ;" = AZ%,_;» k=1,...,m,

are the corresponding Christoffel numbers, and we construct the weighted Nystrom
interpolating function

m o, —a

. ﬂ A
(45) VO fu(y) = v (y) [G(?/) - ’;my’m, Yag| .



156 MARIA CARMELA DE BONIS and CONCETTA LAURITA [18]

If ¥ and G verify in C..» the assumptions (34)-(35) and (36), respectively, then we
can apply Corollary 5.1. As a consequence of the equivalence [40]

1911z, ~ 1A 7,20 »

in [16] the following lemma was proved.

Lemma 5.1. If 0<a<1andy,é>0then we have
(46) Gl 2,0y < Cllglz, 009

(47) SUp (|7l z, 0y < € sup 1zl 7,00
<

|¢|<1

, o N
(48) sup @)W, 5 < C|sup vk, |, + sup vt <y>H—ky
ly|<1 ’ ly|<1 RSt oy

)
Zy

Thus, if the right-hand sides of (46)-(48) are finite, then the functions ¥ and G of
(42) satisfy in C,.1vs the assumptions (34)-(35) and (36) of Corollary 5.1, respectively,
and we can deduce the following proposition

with r > 0, P(y) =P, y) =¥,@) and C # C¥,G,x,y).

Proposition 5.1. Assume that the original equation (40) is uniquely solva-
ble in C s and that the kernel k and the known term g of (40) satisfy

Hg”ZT(vU-“) < + 00,

sup [k || 7 00 < + 00,
|z|<1

< + 00,
Z,

) 9
sup vy [k, . + sup “”M(y)H_ k,
lyl<1 yl<1 Oy

with vy, 0 according to (43). Then, for a m sufficiently large (say m > my), system
(44) admits (ay, . .., ay) as unique solution and the condition number i uniform
norm of its matrix of coefficients A,, satisfies

sup cond(4,,) < + co.

m

Moreover, the corresponding Nystrom interpolating function f,, defined by (45)
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converges to the exact solution f and

1f = fullc

R mr ||f||Z (v*+7:9)

where C # C(m, f).

Of course to solve system (44) it is necessary to compute the quantities

Yy, ;) = a kg, x)v™ () — J l;(gik’ t) v () dE
-1
and
G(x;) = a gla)v™>*(x;) — — J t—ﬂ “HX(E)dE.

We can see that the only difficulty consists in the computation of the Hilbert
transforms. When their analytical expressions are not available, the last ones can be
computed using one of the several methods available in literature, which are based
on Gaussian rules, on product rules [9, 10, 11, 12, 45] or on suitable transformation of
the integrand [4, 32, 36, 47, 51, 55].

Here, for completeness, we propose to replace ¥(x,x;) and G(x;),
L,k=1,...,m, by

(49) W a0, ) = (A% L e, )i)

and

(50) i) = (A" Ly, g)(a),

respectively, where L, ** denotes the Lagrange interpolation operator based on
the zeros t; = tm It j=1,...,m, of the polynomial p,**. Moreover, in the sequel,
A = Jont §=1,...,m, are the corresponding Christoffel numbers.

m,j ?
Now, taking into account that, in virtue of (6),

Pa,_%pm”)}( o __b P - pi)

sin 7ot Y-t

and
sm ol

Py ) = —— () ;™"

hold true, we obtain

—o,0

b /1
mcl—tj

(A%, 7)) =

m,J
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Consequently, (49) and (50) become

L TEN ,t 2o
¥, (o, i) = Z i )x

X — 1t
i

and

Gm(mz)—gz g( i o0

=1

Then, we replace system (44) by

m - voH—y,(F L B )
(1) > |:5i,k + 2 W(;((x;;lpm(xkyxi)} ay, = G ), i =1,...,m,
=1

and we construct the following approximation of the weighted Nystrom interpolat-
ing function v*7f,,:

m )1,71

(52) v“*”’é(y)f?ib(y)=v°‘”"5(y)[ m(y) — ZW() ¥ (e, Y0y | 5
=1
where
W@ y) = A% "L "k, )y)
and

Go(y) = A" L *"g)(3).

Using (6) again, we can write

m m—1

t)) axzpfrxa(t)p )

Yo (Xr, y) =

and

Guly) = o Z p; W)

Note that the polynomial solution f;; defined in (52) coincides with the solution f,,
obtained applying the discrete collocation method (10), (14) and with the approx-
imate solution f;'* of the projection method proposed in [16, pp. 1356-1359].

Itis p0551ble to prove (see [16]) that the matrix of the coefficients of system (51) is
invertible and well-conditioned and that

log?m
||f f;n”CH 0 ( my )
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Thus, the proposed approximations introduce an additional log? m factor in the
error.

5.3 - CSIEs with index 1

With respect to the equation

1
(53) A1) + J ke, y)f @ Y @)de = g(),

-1

where A=**71 is defined in (2) with 0 <« < 1, we assume ¢ € Z,.(v*'~*) and
k, € Z,(v*17%), r > 0, uniformly with respect to x. Multiplying (53) from the left by
the operator A=**~! defined in (5) and taking into account (7), (53) becomes

1
6y S+ [ A kG e wde = A ) e,
-1
being
1
J F@w** Na)da
(55) ¢=== eR.
J v () de

-1

Equation (53) cannot be uniquely solvable, since the index of the operator in the
spaces under consideration is equal to 1. However (53) together with the additional
condition (55), for a given constant c, is equivalent to (54). Letting

Iy =A@ )@y and Giy) = A g)y),

and assuming ¢ = 0, (54) can be rewritten as
1
(56) Fa)+ j D,y @ @de = Gr(y).
]
We consider (56) in C,,,» and we choose p, 8 replacing o by —a and f by o — 1 in (33).

Thus, we take

(57) 0<p<l—uq, 0<O<o.
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Proceeding as in the previous case, we solve the system

- —o,0—1 vpva(xi) 0 .
(58) Z |:5i,k + A ) F(ﬂck,xi)} ap = G1e % (x), 1=1,2,...,m,

k=1
where x;, = oc;n”f];“_l, k=1,...,m, are the zeros of p,** ! and /1,;“’“_1 = i;n‘f]’c‘“_l,
k=1,...,m, are the corresponding Christoffel numbers, and we construct the

weighted Nystrom interpolating function

—o0—1
/lk

v 0(xy,)

I (o, yay | -

(59) v fuly) = 0" ) [Gl(y) ->
k=

1

Taking into account the equivalence [15]

A o1
1911z, -5y ~ 1A gll, ,

as in case y = 0, we can deduce the next proposition

Proposition 5.2. Assume that the original equation (53) is uniquely solva-
ble in C,p.0 with p, 0 satisfying (57). If

||g Z,(%1-%) < + 00,

sup [|kz || 7 1wy < +00,
||<1

< 400,
Z,

0
sup Ua+p’17a+6(y)||ky||z + sup ,Uoter,lochH(y)H_ky
<1 Toplst %

then, for a sufficiently large m (say m > my), the matrix A,, of the coefficients of
system (58) is tnvertible and its condition number in uniform norm satisfies

sup cond(A4,,) < + oo.

Moreover, the corresponding Nystrom interpolating function f,, defined by (59)
converges to the unique solution f of (53) with ¢ = 0 and we have
C

15 = Falle,y < 1 FlLzomey

where C # C(m, f).

Proceeding as above, system (58) can be replaced by

- —o,0—1 vpﬂ(xi) _ 0
(60) > {@',k T 07 () Iya (@, ) | @ = Grm-1 (o™ " (27),
=1

1=1,...,m,
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where
b m— lk(ﬂﬁk t )
_ ) }ec d—a
1 (g, ;) = n; a—_
(t ) o( o
Grm-1(;) = 9 e
—' i -t J
with ¢; = t;‘nl 1“], j=1,...,m—1, the zeros of the Jacobi polynomial pf,’zl:l“ and
/1“ A gelme i —1,...,m — 1, the corresponding Christoffel numbers. Note that

m—1,5°

system (60) coincides with the linear system (3.38) in [16].
Moreover, we construct the following approximation of the weighted Nystrom
interpolating function in (59):

m q—o,u—1
p, 0 * _ap.0 _
(61) v YY) = 0”7 (y) Gl,m_l(y)—;mf m—1Ck, YA | 5
where
m—1 s m—2 1 L
T (@, y) = = — kak,tw “Zp“ "o @)
and
o,1—o o,1—o —o,0—1
Grn1(y) = — mmz g()Ay Zp &P @),

Also in this case it is not hard to prove that the matrix of the coefficients of system
(60) is invertible and well-conditioned. Moreover, the following estimate

y log?m
I ~fille,., = (5"

m?

holds (see [16]).

6 - Numerical examples

In the following examples, we compare the numerical results obtained by using
the above described methods.

For the discrete collocation (DCM) and quadrature methods (QM) we first solve
systems (14) and (19), respectively, and then construct the approximate solution f,,
using (10) and (17), respectively. For the Nystrom method (NM), we construct the



162 MARIA CARMELA DE BONIS and CONCETTA LAURITA [24]

approximate solution f by (561) and (52) if the index y of the equation is 0 and by (60)
and (61) if the index y of the equation is 1.

When we don’t know the exact solutions of the integral equations, we will think as
exact their approximate solutions obtained for m = 512 and in all the tables we will
report only the digits which are correct according to them.

Moreover, in every table we will denote by conds and cond,, the condition
numbers in spectral norm and in uniform norm, respectively, related to the matrix of
the solved system.

Example 6.1. Consider the following integral equation of index 0

£f<y>v- + )—£ J @ i + Y2 J P2 f@d @
T —y 2

-1 -1

1

11[ 3n 51 n
=1 _ _ _ _
1024 <8\/— cot cot 3 + cot 3 + cot 8>

The exact solution is the function f(z) = 1.
All three methods for m = 8 give an approximation of the exact solution with 15
exact decimal digits.

Table 1. Example 6.1, m = 8.

cond, cond,
DCM 1.402486506056423 8.858019540413084
QM 1.402486506056423 3.164816989158717
7
NM <y =0= TO) 2.181297493982877 3.180129408984790

Example 6.2. The equation

. T
4 11 sm-a T 1
COSE f(y)fuﬁ’iﬁ(y) — —10 J f( ) ﬁilo(x)dx
T xr —

-1
1

1 o — y? L .
+- | ———————— f(x)v0 0 (x)dr = sin (1 + v)
4[(5+x2+y2)2f Y

has index 0. Its exact solution in unknown.
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In Table 2 we show, for increasing values of m, the values of the approximate

solutions computed using all three methods (the Nystrom method withy = 6 = g) m

the pointsy = 0.1 and y = — 0.8

Table 2. Example 6.2.
m y=0.1 y=—0..8
8 0.974870 0.332143
16 0.9748705 0.33214344
32 0.97487058 0.332143444
64 0.974870580 0.3321434446
128 0.9748705808 0.332143444657
256 0.97487058081 0.332143444657
Table 3. Example 6.2, m = 256.
cond, cond,,
DCM 1.035325516880034 229.6917914275608
QM 1.035325516880032 4.102618625748687

1.057242525446276

1.098035226074213

is the function f(y) =

Example 6.3.

The exact solution of the following integral equation of index 1

1

1
1 J O Yy + J (oy® + ) @)
T)rx—Y

-1

- ‘\/l—y —y+1‘
V1 ’\/1———@5—5—?/—1‘
ylyl-

All three methods for m = 257 give an approximation of the exact solution with 7

exact decimal digits.
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Table 4. Example 6.3, m = 257.

cond

cond,
DCM 2.887363876722051
QM 2.656207875403805

28.59091239949910

2

226.6553606239541
119.5858577072562

28.01088901364780

Example 6.4. Consider the following integral equation of index 1

. 3n 1
3 Sl ——

i) +—4 [ L@ 4
coszf(y)v (y) + - Jx—yv (x)dx

]
1
1 9 _
+g | - ylogle ~ yirey
21
whose exact solution is unknown.

3

’_%(ac)dac = (y3 +4)arctany

In Table 5 we show, for increasing values of m, the values of the approxi-
mate solutions computed all three methods (the Nystrom method with

1

1, . .
=g H:E) wm the points y = 0.5 and y = —0.9.

Table 5. FExample 6.4.

m y=0.5 y=-09

8 —1.22 2.98

16 —1.2275062 2.98697

32 —1.22750621 2.986972374
64 —1.2275062149 2.98697237494
128 —1.22750621493 2.98697237494

Table 6. FExample 6.4, m = 128.

cond, cond,
DCM 2.243480177993310 117.9538660942301
QM 2.724403411295303 117.3450514994343

1 1
NM <p =5 0= 5) 23.33370704403387

9.529793005924597

As you can see in tables 1,3, 4 and 6, if the approximate solution is searched in
a weighted L? space, then DCM and QM lead to the resolution of well condi-
tioned linear systems, while if one needs to solve the CSIE in a weighted uni-
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form space, the linear systems connected with the NM appear, in general, better
conditioned.

In the following two examples we consider CSIEs having weakly singular ker-
nels. In these cases only the collocation method is tested, therefore the approximate
solution f,,, is computed by solving system (11) and using (10). The integrals of type
Kp;"ﬁ ), k=0,...,m—1,y € (—1,1), are computed by using suitable recurrence
relations (see, for example, [39]).

Example 6.5. This example deals with the so called generalized airfoil

equation
1

J f(x)y v ) + J log [ — | f(@yve*@)da = ye!

-1 -1

a

of index 0, whose exact solution is unknown.

Table 7. Example 6.5.

m fm(04) fm( - 08) COHdQ

8 0.789 0.98 2.581412260211701
16 0.7890289492 0.9832512417 2.581438477458795
32 0.789028949270289 0.983251241767435 2.581438477458794

Example 6.6. The equation
471

i) PR

4 _
0875 Fav ™ 73(y) + -
-1
1
+ J |t — y| @ @)de = ¢

1
has index 1. Its exact solution in unknown.

Table 8. FExample 6.6.

m fm(0.2) Ffn(—0.4) cond,

8 —1.00 —0.84 9.038635235280157
16 —1.00 —0.84 9.048980850979259
32 —1.007 —0.8430 9.049978487702072
64 —1.0079 —0.8430 9.050073679168758
128 —1.00793 —0.843080 9.050082631780384

256 —1.00793213 —0.8430803 9.050083462837785
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Abstract

In this paper the Authors make a short survey on the numerical treatment of CSIEs with
constant coefficients on the interval [— 1,1]. They describe some dirvect methods but their
attention is mainly focused on the indirect methods, in particular on the Nystrém method.
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