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The nonlinear Schrodinger equation

in fiber-optic systems (**)

1 - Introduction

This paper aims at providing an overview of the main themes related to the
nonlinear Schrodinger equation (NLSE) in fiber-optic systems, with special atten-
tion to those aspects pertaining to communication theory. The NLSE for the pro-
pagation of light in single-mode optical fibers, in the presence of attenuation, dis-
persion, and nonlinear effects, was first derived in [17]. Its derivation from Maxwell’s
equations relies on some assumptions that are commonly met in today’s fiber-optic
communication systems [1]. Therefore, we take the NLSE as the starting point to
derive suitable models for the fiber-optic channel. The analysis focuses on long-haul
and ultra-long-haul systems, deploying single-mode fibers and optical amplifiers.
The major simplification that will be made consists in neglecting polarization effects.

Although exact solutions of the NLSE are typically not known in analytical form,
except for some specific cases in which the inverse scattering method can be applied
[42], a large number of numerical methods have been proposed for its solution.
Probably, the most known and widely adopted is the split-step Fourier method
(SSFM) [1, 3, 10, 12, 16, 17, 37, 39], by which the propagation problem for a de-
terministic signal can be solved with arbitrarily high accuracy.

However, the signal waveform in a digital communication system depends on the
random information sequence to be transmitted and is corrupted by noise.
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Therefore, the analysis of a fiber-optic system requires to consider the optical signal
propagating through the fiber as the realization of a stochastic process, whose sta-
tistical properties — e.g., its probability density function (pdf) and power spectral
density (PSD) — determine the average performance of the system.

An easy approach to the solution is provided by the Monte Carlo (MC) method,
where the required statistical properties are estimated by averaging a large
number of realizations. The MC method turns the stochastic problem into many
deterministic problems, whose solutions can be numerically found by the SSFM.
To reduce the number of required realizations, advanced simulation techniques
have been proposed, such as importance sampling [38] or multicanonical Monte
Carlo (MMO) [13, 22]. The accuracy of MC and other simulation methods can be
increased at will by increasing the number of realizations. However, the compu-
tational cost for complex systems can still be extremely high. An alternative ap-
proach is the analytical evaluation of the required statistical properties by using
simplified channel models [2, 4, 5, 8, 9, 21, 24, 28, 29, 33-36].

In this paper, after a short discussion on the SSFM and MC methods, we focus on
the application of perturbation theory to the NLSE. As regards the deterministic
problem, we derive two recursive expressions, based on a regular perturbation (RP)
and a logarithmic perturbation (L.P), that, starting from the linear solution, converge
to the exact solution of the NLSE. As regards the stochastic problem, we investigate
signal-noise interaction during propagation and review some perturbation methods
for evaluating the pdf and PSD of the output signal, namely, the continuous wave
(CW) approximation, that is based on a linearized RP expansion and neglects signal
modulation [5, 24, 26], the more accurate covariance matrix method (CMM), that
accounts for signal modulation and adopts a more robust linearization procedure
[21], and the combined regular-logarithmic perturbation (CRLP), that is based on a
different expansion — a combination of the RP and LP expansions — and accounts
for the non-Gaussian distribution of the output signal [33]. We discuss the char-
acteristics and limitations of the various methods and compare their accuracy.
Finally, we highlight the issues still open to investigation.

The paper is organized as follows. Section 2 gives a basic overview of the main
elements of a fiber-optic communication system. Section 3 reports the NLSE that
governs the propagation of light in optical fibers and derives an alternative integral
expression. Section 4 is dedicated to the propagation of a deterministic signal
through the fiber, investigating different propagation regimes and comparing some
numerical or perturbation approaches to this problem. Section 5 is dedicated to the
propagation of a stochastic process through the fiber; again, different propagation
regimes are investigated and some numerical or perturbation approaches are in-
troduced and compared. Finally, Section 6 draws the conclusions.
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2 - Fiber-optic systems

The main elements of a generic long-haul or ultra long-haul fiber-optic system
are schematically depicted in Fig. 1. A composite optical signal is generated at the
transmit end by modulating N lasers according to the information symbols from
different sources. The lasers oscillate at different frequencies, appropriately spaced
such that to avoid spectral overlap between channels. In this way, several signals are
transmitted at different wavelengths on the same fiber, a technique referred to as
wavelength division multiplexing (WDM).

The composite signal is then coupled to the optical fiber and propagates up to the
receiver. In order to overcome the fiber loss and reach the desired distance, the
signal has to be periodically amplified. Thus, the link is made of several spans of fiber
interleaved by optical amplifiers.

At the receive end, each component signal is recovered by optical filtering,
photodetected, filtered again in the electrical domain, and sampled. Finally, the
information symbols are recovered from the output samples through a proper
decision strategy. Different modulation formats can be adopted to carry the
information, such as amplitude or phase modulations, using either binary or
multilevel symbols. The most common format in current fiber-optic systems is
on-off keying (OOK), a binary amplitude modulation format where “1’s” are
carried by marks (signal is on), and “0’s” are carried by spaces (signal is off). The
corresponding transmitted signal is represented as a pulse amplitude modula-
tton (PAM) signal [31]

1) w(t) = app(t — kTy),
k

where {a;} is a random sequence of independent bits taking on values 0 or 1 with
equal probability, p(t) is the elementary pulse, and T}, = 1/R; is the bit-time, that is

. RXy ===----1
Fiber spans i Optical Post-det )§ :
X, /¢ \ : Filtler '@' Filter 'E'
X NS
N Amplifiers RXN

Fig. 1. Schematic representation of a long-haul or ultra long-haul fiber-optic communication
system.
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the inverse of the bit-rate R, at which bits are transmitted. The signal in (1) is a
representation of the actual transmitted signal xy,,(¢), and their relation, assuming an
ideal modulator and neglecting the phase noise of the laser source, is '

pp(t) = R{a(?) exp (jort)}

(2)
= [a(t)| cos [wct + arg (x(?))]

where w, = 27f;, f. being the oscillation frequency of the laser (the carrier frequency).
As evident from (2), the modulus of x(¢) in (1) represents the amplitude modulation of
Tup(?), and its phase the corresponding phase modulation. The spectrum (i.e., the
Fourier transform) of xy,(t) is centered around f. (which is in the order of 1014 Hz),
whereas the spectrum of x(¢) is centered around 0 Hz. It is for this reason that x(t)
is said the low-pass equivalent of xy,(t), which is band-pass in nature. Often,
x(t) = x.(t) + ja; (@) is also referred to as the complex envelope of xy,(¢), and its real
x,(t) and imaginary x;(t) part as the in-phase and quadrature component, respectively.

Among all other modulations formats, the most interesting for fiber-optic sys-
tems are differential phase-shift keying (DPSK) and differential quadrature-phase-
shift keying (DQPSK), a binary and quaternary (two bits per symbol) differential
phase modulation format, respectively. Their low-pass equivalent signals are still as
in (1), but the a;, symbols assume different values (they are complex valued in the
DQPSK case).

At the transmit end, an optoelectronic modulator modulates the optical field at
the input of the fiber according to the mathematical relation (2), such that the PAM
signal (1) is the complex envelope of the transmitted signal, as already said. At the
receive end, different optoelectronic front-ends are adopted according to the mod-
ulation format. In OOK systems, direct detection is usually used, as illustrated in
Fig. 1. The photodetected current is then proportional to the intensity of the optical
field and insensitive to its phase. Such systems are also known as intensity-modu-
lated direct-detection (IMDD) systems. In DPSK and DQPSK systems, differential
detection is usually adopted for the sake of retrieving the required phase informa-
tion from the output optical signal without using a reference local oscillator.

Finally, coherent detection, based on the beating of the output optical signal with
a local oscillator, is now being reconsidered ? for next generation systems. In this

! As commonly done in the communication theory field, we denote by j the imaginary
unit.

2 Coherent detection has been rapidly replaced by direct detection after the introduction
of optical amplifiers.
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Fig. 2. (a) A generic fiber span of length L, with attenuation constant a, dispersion coefficient f,,
and nonlinear parameter y. (b) An optical amplifier with power gain G and additive noise n(t).

case, the photodetected current is proportional to the complex envelope of the optical
field (two output currents proportional to the in-phase and quadrature components).

The basic elements of an optical link, i.e., a fiber span and an optical amplifier, are
depicted in Fig. 2(a) and 2(b), respectively. Each span is characterized by its length
L and by the fiber coefficients a, 5, and y [1], as explained in the following.

The attenuation constant a accounts for the exponential attenuation of the signal
power during propagation caused by fiber loss; in standard fibers, its minimum value
is @ ~ 0.2dB/km at a wavelength A = 1.55 um.

The parameter f3, is equal to the second-order derivative with respect to fre-
quency of the fiber mode-propagation constant . The propagation constant £, whose
frequency dependence is responsible for chromatic dispersion, can be expanded in
Taylor series about the carrier frequency .. The zeroth- and first-order coefficients
of this expansion, f, and f;, determine the absolute phase and propagation delay of
the signal and are thus irrelevant, as they do not introduce distortions; the second-
order coefficient f, = 0%f/0c? |, accounts for group velocity dispersion (GVD) that
causes pulse broadening during propagation; f; and higher-order coefficients ac-
count for third- and higher-order dispersion and can be usually neglected in single-
channel systems. Commonly, the fiber chromatic dispersion is quantified through
the so called dispersion parameter D, which is related to the GVD coefficient S,
through the relation D = — 2rcf,/ /1?, where c is the speed of light and 1. = c/f..

The parameter y accounts for nonlinear refraction, that is the dependence of the
refractive index on the intensity of the optical field (Kerr effect). It is related to the
nonlinear-index coefficient 7y and effective core area of the fiber A through
y = Nawe/(CAesr) [1].

Both D and y depends on the geometry of the fiber, which can be designed to
obtain the desired characteristics. Typical values for standard single-mode fibers
(SMF) at A = 1.55um are D ~ 17ps/(nm - km) and y ~ 2W~!/km. Other kind of
fibers are also used for optical communications, characterized by a smaller or ne-
gative D and a higher y. In multi-span systems, the propagation parameters a, f,
and y change along the link. Often, each span is made of a transmission fiber and a
piece of fiber having coefficient f, of opposite sign, in order to compensate for GVD.
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In general, GVD and nonlinear effects distort the elementary pulses in (1), such
that they broaden and overlap. As a consequence, the output optical signal at time
t = kT, depends not only on the current symbol a;, but also on some neighboring
symbols. This inter-symbol interference (ISI) is responsible for performance de-
gradation.

The optical amplifiers, inserted in-line in order to recover the fiber loss, are
usually modeled as a simple power gain G, followed by the addition of amplified
spontaneous emission (ASE) noise. ASE noise can be modeled as additive white
Gaussian noise (AWGN), with power spectral density Ny = (G — l)nsphv, where hv
is the photon energy associated to the transition of an atom from the excited state to
the normal state, and Np = (N2 — N1)/N; > 1 is the spontaneous emission coeffi-
cient that depends on the number of atoms Ny and N; in those states.

Polarization mode dispersion (PMD), another relevant linear propagation effect
in modern communication systems, will not be addressed in this paper.

3 - The nonlinear Schrodinger equation

The propagation of light in optical fibers is governed by the nonlinear
Schrodinger equation (NLSE) and its variants [1, 17]. Neglecting polarization ef-
fects, and accounting for chromatic dispersion, nonlinear Kerr effect, and loss, in a
time frame moving with the signal group velocity, the NLSE for a fiber span as that
in Fig. 2 can be written as

87)_.ﬂ282’1)

. 2 a
(3) Oz =J 2 Of2 —]V|v| V=37,

2
where v(z,t) is the optical field complex envelope, and a, ff5, and y have been defined
in the previous section. By letting v(z, t) £ exp ( — az/2)u(z,t), we can get rid of the
last term in (3), which becomes
ou P Pu . 2

(4) 9 =J 2 e Jyexp (— az)|ul"u.
We note that in (4) the role played by the time and space variables, t and z, is ex-
changed with respect to the formulation of the NLSE used in quantum mechanics. In
fact, (4) describes the spatial propagation along z of a waveform that is a function of
time ¢. An alternative integral expression for the NLSE can be obtained as follows.

Letting

(5) f@t) & e “ule, ) ulz, t)
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and taking the Fourier transform?® of (4), we obtain

(© O = ifwujr,
which, by the position

(7) Uz, w) & e 7722y (3, ),
becomes

® O — i

Now, integrating (8) from 0 to z leads to
(9) Yz, 0) = Y(0,0) —jy J R )l
0
and, taking into account (7), we have

(10) UGz, ) = Uglz, @) —jy J e RPEDRP(E wyde |
0

where Up(z, w) = U(0, w)e7%2#"2/2 is the Fourier transform of the solution of (4) for
y = 0. Letting H(z, w) 4 exp ( — jPow?z/2), so that h(z,t) = ]:*I{H(z, )}, and in-
verse transforming (10) by taking into account (5), gives

(11) uz, 1) = ug(z,t) — jy J [1uC OPuE, B @ btz — ¢ e “dt
0

where ® denotes temporal convolution, defined as *

+00

(12) () @y@) = J x(t — t)y()de,

—00

and uy(z,t) = u(0,%) ® h(z,t) is the signal at z in a linear and lossless fiber.

3 The Fourier transform with respect to time ¢ of a function x(z, t) is denoted by the same
but capital letter X(z, w), such that X(z, w) = F{x(z,t)}, and x(z,t) = F ‘I{X (7, w)}, where F
is the transform operator. A vector is denoted by a boldface letter x and its Fourier transform
by the same boldface but capital letter X.

4 As evident, x(t) ® y(t) = y(t) ® x(t) and we recall that F{x() @ y@#)} = XY ().
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Two different problems are usually considered. The first one is the propa-
gation of a deterministic signal through the fiber, i.e., given the initial condition
u(0,%) for t € [ — 0o, 00), that is the optical field at the input of the fiber, one has
to find the solution u(z,t) at the output of the fiber. The second one is the
propagation of a stochastic process through the fiber, i.e., given the statistical
description of the input process %#(0,t), one has to find the statistical description
of the output process u(z,t). This last one is a typical problem in communication
theory and is related to the stochastic nature of information symbols and noise.
Most often, rather than in the full statistics of the output field u(z,t), we are
interested in the system error probability, which is directly related to the pdf of
the photodetected signal, which, in turn, is related to the pdf and PSD of the
optical signal. In this case, also the receiver structure plays a fundamental role
in the definition of the stochastic problem.

4 - Deterministic problem
4.1 - Dispersion-dominant regime

When the nonlinear term of the NLSE is negligible, that is when yPoL <« 1,
where P, is the peak input power and L the fiber length, (4) reduces to

8%_ ,[))282_%

(13) % 2o

describing the signal evolution in the dispersion-dominant propagation regime, also
known as linear propagation regime. In this case, practically achieved for low signal
power, the fiber behaves as a linear dispersive system. The solution of (13) is readily
found by taking the Fourier transform of both sides. Indeed, recalling that
F{d"x@t)/dt"} = (jw)"X(w), in the frequency domain (13) turns into a first order
differential equation in z, whose solution is

(14) Uz,w) = Hz,0)U(0, w)
where
(15) H(z,0) = exp (— J %&z)

is the transfer function of the fiber, with unitary amplitude and parabolic phase. It is
this parabolic phase due to GVD that causes pulse broadening during propagation
along the fiber.
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4.2 - Nonlinearity-dominant regime

When the linear term of the NLSE is negligible, that is when f8,B2L < 1, B being
the signal bandwidth, (4) reduces to

ou o . 2
(16) i Jrexp (— az)ul u.

In this case, practically achieved for very low dispersion such as in zero-dispersion
fibers, the fiber behaves as an instantaneous nonlinear system. The solution of (16) in
the temporal domain is

a7 (e, ) = 10, O] exp (7710, Lusr

showing that the signal undergoes a phase shift proportional to its intensity, while its
amplitude does not change. This phenomenon is known as self-phase modulation
(SPM) and the quantity Leg =[1 —exp(— al)]/a plays the role of an effective
length, smaller than L because of fiber losses.

4.3 - Split-step Fourier method

In general, both the linear and nonlinear term of the NLSE are present and
some numerical methods must be adopted to solve (4). Among the many methods
devised to this aim, the SSFM is probably the most known and commonly used
one in fiber-optic communications due to its simplicity and computational effi-
ciency [1, 3, 10, 12, 16, 17, 37, 39].

The main idea behind SSFM is that, for a short propagation distance, dispersion
and nonlinearity, in general acting together along the fiber, can instead be separated
as if they act independently from each other. In its simplest formulation, the pro-
pagation over a small distance 4z is carried out in two steps. In the first step, (14) is
used to propagate the signal as if dispersion was acting alone. In the second step, (17)
is used to propagate the signal as if nonlinearity was acting alone. Since (14) and (17)
are defined in the frequency and time domain, respectively, direct and inverse
Fourier transforms must be performed at each step. This method takes advantage of
the highly efficient implementation of the discrete Fourier transform through the
fast Fourier transform (FF'T) algorithm, and turns out to be faster than finite dif-
ferences methods in most practical cases [39].

The complexity and accuracy of the SSFM is determined by three parameters,
namely the time-width 7" and bandwidth B of the signal to be propagated, and the
step-size 4z. Due to the periodic time and frequency boundary conditions implied by
the discrete Fourier transform, some care must be taken in the choice of T and B.
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Usually, although signals may be not strictly time- or band-limited, 7 and B are
chosen wide enough such that almost all of the signal energy remains confined
during propagation. In some cases, the signal is not time-limited but consists of an
infinite aperiodic sequence of pulses, like in (1). However, as explained in the next
Section, all the relevant propagation effects are correctly reproduced when repla-
cing it with the periodic signal obtained by using a proper pseudo-random bit se-
quence (PRBS).

The signal is then represented over a single period T' = NT}, depending on the
PRBS length N, and is assumed to be periodic in time (as required by the FFT
algorithm) in order to exploit the cyclic properties of the PRBS. Once T and B have
been fixed, the accuracy of the method depends on the step-size Az. It has been
demonstrated that the error due to a step-size 4z is of second-order in 4z for the
simplest SSFM formulation described above, while reducing to third-order for the
symmetric SSFM, obtained by dividing the linear propagation in two half-steps and
applying the nonlinearity in the middle [10]. This fact ensures the convergence of the
method and allows to obtain an arbitrarily high accuracy by simply reducing 4z. In
particular, for a given accuracy, the required step-size depends on the inter-play
between dispersion and nonlinearity along the fiber, that is on the signal bandwidth
and power and on the fiber dispersion and nonlinear parameters. In practice, the
step-size can be fixed according to some guide-lines [12], can be iteratively reduced
until the changes in the output signal are within the desired accuracy, or can be
adaptively adjusted along the propagation [3, 37].

The overall complexity, which any other alternative numerical method should be
compared to, is determined by the number and size of FFTs to be performed. The
product BT determines the number of complex numbers required to represent the
signal, that is the size of each FFT. The step-size 4z determines the total number of
steps, that is the number of direct and inverse FFTs to be performed.

4.4 - Perturbation methods

An alternative approach to the solution of (4) is based on perturbation theory. The
idea is that of expressing the signal u(z,t) as a power series in the nonlinear coef-
ficient y. The leading term of this power series is the linear solution (14) for y = 0,
while further terms describe the deviation from the linear solution due to non-
linearity and are obtained recursively. Here we present two recursive expressions
that, starting from the linear propagation solution, asymptotically converge to the
exact solution. The first one corresponds to the well-known RP method, whereas the
second one corresponds to an LP method, and constitutes an all-order generalization
of the first-order multiplicative approximation in [9].
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44.1 - Regular perturbation

According to the RP method [41], expanding the optical field complex envelope
u(z,t) in power series in y

(18) uz, ) = Yut)
=0

and substituting (18) in (11), after some algebra we obtain

k

(19) i Vkuk = i Vn+1 [_] J (Z Zuiuk_iu;k> ®h(z -, t)e_aédé'] ,
k=1 0

n=0 k=0 i=0

where we omitted the arguments (z, ) for the u;’s appearing on the left side, and ({, )
for those on the right side. By equating the powers in y with the same exponent, we
can recursively evaluate all the u’s

2 /n-1 k
(20) Uy, = —jJ (Z Zuiuk_m:;k> @ — e dl, n=>1.
0

k=0 i=0

As an example, the first three u;’s are

:
U =—j (\uolzuo) ® h(z — ¢, te"d¢,
0
:
U = —j <2|u0|2u1 + ugu;) ® h(z — £, e~ dC |
0
:
U3 =—j (2|u0|2u2 + uuy + 2 [Puo + u?uf;) ® h(z — (e “dC.
0

Turning again our attention to (11), we note that it suggests the following recurrence
relation

9(2,1) =up(2,1)

(1) o ) i
VUn11(2,8) =uo(2,1) —Jy“lvn(é, (@ t)} ® Mz — {,te "dl
0
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and it is easy to see that

(22) lim v,(z,t) = w(z,t)
n—oo
as it can be shown that

1 90,2,

(23) ook |,

= u(z,1t), 0<k<mn.

This means that the rate of convergence of (21) is not greater than that of (18) when
using the same number of terms as the recurrence steps, i.e., it is poor [41]. We will
now seek an improved recurrence relation with an accelerated rate of convergence to
the solution of (4).

44.2 - Logarithmic perturbation

As shown in [9], a faster convergence rate is obtained when expanding in power
series in y the log of u(z, t) rather than u(z, t) itself as done in (18). So, we recast (11) in
terms of log u(z,t) and rewrite it as

z

J[\u(c, DU, 8] @ hiz - e “de.

0

(24) uo(z,t) gz, b)

Using now the expansion

2 3
u o u—uy 1 u—ug 1w —ug

2 log — = _Z - _

( 5) o8 U (Z0) 2( Uo > +3< U )

we replace the term (u — ug)/uo in (24), obtaining

.3 2 3
l__]_y 2 —al _1 U — U 1 U — Uo o
25) g - uO”|u| u| © he i 2( — )+3< — )
0

where, for simplicity, we omitted all the function arguments. So, the sought im-
proved recurrence relation suggested by (26) is

Vo = Uy

2
27 j Vy — V
( ) Un41 = Vp eXp{J—y J [‘vn|2'vn} ® h(z — ¢, t)eiagdé/ - 70}
Vo Vo
0

where we used again (25) to obtain the right side of the second equation. Also in this



[13] THE NONLINEAR SCHRODINGER EQUATION IN FIBER-OPTIC SYSTEMS 81

case lim v,(z,t) = u(z, t), as it can be shown that the power series in y of log v, (2, t)
n—o0o

coincides with that of log u(z, t) in the first » terms.

Notice that v(z,t) evaluated from (27) coincides with the first-order multi-
plicative approximation in [9], there obtained with a different approach. The method
in [9] is really an LP method as the solution u(z, t) is written as

(28) Wz, t) = ug(z, e %D 9=y + y% + P + ...

and 9y(z, 1), 91(2,t) are evaluated by analytically approximating the SSFM solution.
The calculation of 9,(z, t) becomes progressively more involved for increasing values
of n, but that method is useful because it can provide an analytical expression for the
SSFM errors due to a finite step size [9].

We now follow another approach. Letting

(29) l//’n(za t) é _jignfl(zv t) )
such that
(30) u(z,t) = uo(2, t) exp (yyy 2, ) + 1Pyaz, ) + Pysz, ) + ..),

for every n, v, (z,t) can be easily evaluated in the following manner. The power series
expansion of u(z, t) in (30) is

0 0 ) g
o exp (Z y’“w) = Z% (Z y’“w)
k=1 =0 " \k=1

(31)
s (5
n=1
where
0 i £0,k=0
1 ifn=k=0
(32) Onk =

n—1

Z Pmk—1Wn—m Otherwise.
m=k—1
Equating (18) to (31), and taking into account that ¢, ; = y,,, we can recursively
evaluate the y,,’s as

(33) Yy = ’M—() - 2 i

Thus, from the n-th order RP approximation we can construct the n-th order LP
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approximation. As an example we have

Y1 7%_0’

_up 1,
V/2*u—0—§¥/17

us 1 3
Vs :u—o—l//ﬂ//z—éllfu

Uy 1 1 1
LZ! :%_WIWS —Q'!’é —QV/%V/z _ﬂl//ll'

So, once evaluated the u;’s from (20), we can evaluate the s from (33) and then
u(z, t) through (30), unless u(z, t) is zero (or very small), in which case we simply use
(18) as in this case u(z, t) is also small and (18) is equally accurate.

The computational complexity of (20), (21) and (27) is the same, and at first glance
it may seem that a n-th order integral must be computed for the n-th order ap-
proximation. However, it is not so and the complexity only increases linearly with 7.
Indeed, the terms depending on z can be taken out of the integration ® and so all the
integrals can be computed in parallel. However, only for n < 2 these methods turn
out to be faster than the SSFM because of the possibility to exploit efficient quad-
rature rules for the outer integral, whereas the inner ones are to be evaluated
through the trapezoidal rule as, to evaluate them in parallel, we are forced to use the
nodes imposed by the outer quadrature rule. Nevertheless, for practical values of
input power and number of spans, as those used in current dispersion managed
systems, the second-order LP method can provide accurate results in a shorter time
than the SSFM (we estimated an advantage of about 30% for approximately the
same accuracy).

To illustrate the results obtainable by the RP and LLP methods, Fig. 3 shows the
output intensity for a single pulse transmitted through a 5 x 100 km link, composed
of 5 spans of 100 km transmission fiber followed by a compensating fiber and per
span amplification recovering all the span loss. The input signal is a rectangular 100-
ps pulse, filtered by a Gaussian filter with bandwidth equal to 20 GHz, with a peak
power of 12 dBm. The transmission fiber is a standard single-mode fiber with
a = 0.19 dB/km, D = 17 ps/nm/km, y = 1.3 W 'km !, whereas the compensating
fiber has a = 0.6 dB/km, D = — 100 ps/nm/km, y = 5.5 W 'km ™, and a length such
that the residual dispersion per span is zero. The “exact” solution is obtained by the

5 This is apparent when performing the integrals in the frequency domain, but is also
true in the time domain as h(z — {,t) = h(z,t) @ h( — {,t) when h(/,t) is the impulse response
of a linear fiber of length ¢ (h( — {,t) simply corresponds to a fiber of length { and opposite
sign of dispersion parameter).
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Fig. 3. Output intensity for a single pulse with P,, = 12 dBm and 5 spans.

SSFM with a step size of 100 m, while RPn and LP» are the n-th order solutions
obtained by the RP and LLP method, respectively.

In this case, 3rd-order is required to obtain an accurate result through the RP
method, whereas only 2nd-order through the LP method.

5 - Stochastic problem

The stochastic problem consists in the propagation of a stochastic process
through the fiber and the evaluation of its output statistics and system error prob-
ability. A first source of stochasticity is given by the random information symbols in
(1) and a simple approach to account for it is that of replacing the random sequence
with a deterministic periodic sequence having appropriate properties. For example,
a binary de Bruijn sequence of order » — which is a eyclic sequence of 2" bits where
every possible subsequence of length n appears exactly once [14] — is one of such
sequences. Considering a periodic signal corresponding to a de Bruijn sequence of
order n, it is possible to account for ISI due to a maximum of » bits by averaging over
the 2" symbols. PRBSs of length 2" — 1, often used in experiments as they are easily
obtainable through shift registers, have similar properties, but differ from de Bruijn
sequences for a missing zero in the longest run of consecutive zeros. Most often, both
sequences are called PRBS without distinction.

A second source of stochasticity is represented by the ASE noise introduced by
optical amplifiers. Neglecting transient effects, which are usually treated sepa-
rately, lumped optical amplifiers can be modeled as a signal power gain G, plus the
addition of AWGN, at the points where the amplifiers are located. This is formally
represented by adding a forcing term to the NLSE (4) and replacing the exponential
attenuation term exp ( — az) with a more general power-profile function g(z) that
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comprehends both the exponential attenuation and lumped gain G

o PydPu . 2
(34) % )9 —Jy9@ulu +w.

Here, the Langevin term is w(z, t) £ > n(z;, t)0(z — 2;), where z; is the location of the

i-th amplifier, J(z — z;) the Dirac defta function, and the n(z;,t) are independent
identically distributed complex Gaussian random processes with zero mean
E{n(z;,t)} = 0 and covariance function E{n(z;,)n*(z;,t + 1)} = Nod(1)d;;, where J;;
is the Kronecker delta function.

In WDM systems, also the neighboring channels are a source of stochasticity.
Due to Kerr nonlinearity, these channels can affect the main channel by some effects
like four-wave mixing (FWM) or cross-phase modulation (XPM) [1]. Since each
channel carries a random sequence of information symbols, also these effects require
a statistical description. According to the problem under investigation, different
approaches can be followed to model FWM and XPM. They can be treated de-
terministically by using de Bruin sequences for all the channels, or can be ap-
proximated as additional noise sources (often Gaussian distributed) on the amplitude
and phase of the signal [2, 7, 28, 40], or can be more accurately modeled by pulse-to-
pulse interactions among the channels [36].

In this Section we describe different approaches to the stochastic problem, with a
special attention to ASE noise and focusing on single-channel systems.

5.1 - Dispersion-dominant regime

When nonlinearities can be neglected, the NLSE reduces to (13) and the fiber
behaves as a linear dispersive channel with transfer function (15). In this case, the
linear superposition principle allows to independently solve the propagation problem
for all the signals at different wavelengths and for the ASE noise. Therefore, each
WDM channel is not affected by the presence of the other channels and can be
modeled as a single-channel system. The signal propagation problem is easily solved
by (14), while the ASE noise distribution is not affected by propagation. In fact, a
Gaussian process remains Gaussian when passing through a linear system, while its
power density spectrum gets multiplied by the squared modulus of the system
transfer function [6, 30]. Since the transfer function (15) has a unitary modulus, the
noise distribution is unchanged. This important property holds also when considering
polarization mode dispersion (PMD) and implies that in linear systems, the ASE
noise introduced by all the amplifiers along the line can be modeled as AWGN at the
end of the line. This simple AWGN model is commonly adopted also in the presence of
weak nonlinearities. In this case, nonlinear effects are included in the propagation of
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the noise-free signal, that is numerically evaluated as explained in the previous section,
but are neglected in the propagation of the ASE noise, that is still approximated as
AWGN at the end of the link.

For coherent receiver, under the AWGN assumption, the final problem of error
probability evaluation turns out to be the classical problem of communications
through a linear AWGN channel and is widely treated in text books like [31]. On the
other hand, for direct-detection receivers, by far the most widely deployed in today’s
systems, error probability evaluation is a quite complex problem also for the AWGN
channel, due to the presence of the square-law detector. An accurate and efficient
solution can be obtained by a time-domain [25], frequency-domain [27], or Fourier
basis [11] Karhunen-Loéve series expansion (KLSE) of the optical signal. First, the
KLSE is used to found the moment generating function (MGF') of the photodetected
sample. Then, the MGF is directly used for evaluating the bit-error probability
through the saddle-point method [18].

5.2 - Nonlinearity-dominant regime

When the linear term is negligible, the NLSE reduces to (16) and has the explicit
analytic solution (17). In this case, the fiber behaves as an instantaneous nonlinearity,
implying that the process remains white during propagation, i.e., its samples are
uncorrelated in time. However, its distribution changes. In particular, the interaction
between amplifier noise and Kerr effect induces nonlinear phase noise — also known
as Gordon-Mollenauer effect [15]. According to (17), the amplitude fluctuations on
|u(z,t)| due to ASE noise are directly converted into phase fluctuations by the Kerr
effect. This has a significant impact on phase-modulated systems, whose maximum
achievable distance is strongly reduced by nonlinear phase noise, while theoretically
does not affect IMDD systems, that are sensitive only to the amplitude of the signal.
An exact analysis of this case is given in [29]. Different approximations and simplified
models are also discussed and compared in [19].

We note that the zero-dispersion regime is not practical for communications,
since the absence of dispersion strongly enhances nonlinear effects, specially those
related to the interactions among WDM channels, such as FWM and XPM.
However, the theory developed for this simple case turns useful for the approxi-
mated analysis of WDM phase-modulated systems when both dispersion and non-
linearity are present [20].

5.3 - Monte Carlo methods

In the most general case, both dispersion and nonlinearities must be considered
and the stochastic problem becomes hardly treatable by analytical methods. A
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powerful tool for the statistical analysis of such complex systems is the Monte Carlo
(MC) method. In its classical formulation, the MC method is a brute force method
that turns the solution of the stochastic problem into the solution of many (from
thousands to billions) deterministic problems. The problem is defined by the NLSE
(34), and by the statistical description of the input signal %#(0, ) and of the Langevin
term w(z, t). Several independent realizations of all the stochastic quantities involved
in the definition of the problem are drawn according to their known distributions.
For each realization, the deterministic problem obtained by substituting the cor-
responding quantities in (34) is solved by a numerical method such as the SSFM. The
desired statistical quantity — the output signal distribution or the error probability
— is finally evaluated by averaging.

For instance, in a single-channel OOK system, the input optical signal (0, %)
depends on the N = T'/T}, information bits, a4, ..., ay, in the time window 7', while
the forcing term w(z,?) is represented by the M = N4BT independent Gaussian-
distributed complex coefficients, 71, ...,ny, required to represent the ASE noise
generated by N4 amplifiers on the timewidth 7' and bandwidth B. The expansion
timewidth 7" and bandwidth B are chosen according to the system memory and
bandwidth, as explained in Section 4.3. The distribution of the state vector
z=[ny,...,ny,01,...,ay]is then

(35) p(z) = (27[02)71’/21@[ exp(—n—%”) : ﬁ F&(a )+ 15((1 -1)
m=1 20° k=1 2 * 2 ’ .

The independent realizations of the random vector z are drawn by using standard
routines for random number generation. The corresponding output signals are ob-
tained by substituting the components of z into (0, t) and w(z, t), and solving (34) by
the SSFM, eventually including the receiver and the detection strategy. The desired
output distribution is finally obtained by averaging. For instance, if we are inter-
ested in the bit-error probability, we can estimate it by the ratio between the number
of errors at the receiver and the total number of transmitted bits. However, standard
MC methods are not efficient in estimating low-probability events such as the error
probability in a fiber-optic system, which can be as low as 10712, In this case, different
techniques — e.g., importance sampling, Markov chain Monte Carlo, multicanonical
Monte Carlo MMC) — are available.

The first application of MMC to the solution of the problem described in this
section was reported in [22]. The method was extended in [13] to exponentially in-
crease the computational efficiency in long memory systems requiring a large ex-
pansion timewidth 7. In principle, the extension of [13] to WDM systems is
straightforward and could be done by including the information symbols of all the
WDM channels in the state vector z and building the input signal %(0, t) as the su-
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perposition of all the signals transmitted at different wavelengths. However, the size
of the problem increases rapidly with the number of channels, making also MMC
practically unfeasible. Indeed, a larger bandwidth B is required to accommodate all
the WDM channels, a larger T is required to account for the walk-off [1] between
channels, and a smaller 4z is required for the SSFM because of the larger bandwidth
and total power.

5.4 - Perturbation methods

An alternative approach to the stochastic problem is based again on perturbation
theory. For instance, perturbation methods are suitable for investigating signal-
noise interaction during propagation, where the noise can be considered as a small
perturbation of the noise-free signal. Two typical effects induced by signal-noise
interaction are parametric gain, that is the amplification of noise at some fre-
quencies, and nonlinear phase noise, that is the phase noise generated by the con-
version of the amplitude fluctuations due to ASE noise into phase fluctuations, as
shown in (17). In the following, we shortly review the perturbation methods that have
been proposed to account for signal-noise interaction and briefly introduce a novel
perturbation method that we have recently proposed in [33], giving a unified de-
scription of nonlinear phase noise and parametric gain.

5.4.1 - The continuous wave approximation

The simplest approach to study parametric gain and its impact on system per-
formance has been proposed in [5, 24, 26]. The idea is that, for the purpose of in-
vestigating the interaction between signal and noise, the signal can be approximated
as the continuous wave (CW) solution of the NLSE, and the noise can be considered
as a small perturbation of the CW and treated by the RP theory. The solution of the
NLSE is written as

(36) u(z,t) = v/Poll + ez, )] exp[ gy, )],

where Py is the power of the noise-free solution, c(z,t) = a(z,t) +jb(z,t) is the ad-
ditive perturbation, and

(37) bu () = JVPO exp (— ad)dé
0

is the deterministic time-independent nonlinear phase rotation of the noise-free
solution. Substituting (36) into (4), dropping all the terms that are nonlinear in c,
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separating the real and imaginary parts, and finally taking the Fourier transform,
we obtain a linear system of two differential equations

(38) . p
o __P2 24 _
% 5 @ A — 2yPyexp (— az)A,

whose solution can be expressed in matrix notation as X(z,w) = T(z, 0)X(0, w),
where X = [A, B]" is the Fourier transform of the vector processx = [a, b]” and T'is
the 2 x 2 transfer matrix for the RP model é. For constant fiber coefficients, in the
absence of attenuation, the transfer matrix 1" has a simple closed-form expression
[24]. In the presence of attenuation, T' can be expressed either in terms of Hankel’s
functions of first and second kind [5], or calculated by dividing the fiber in several
steps with negligible attenuation and multiplying the transfer matrices of each step
[24]. Later, we will get back to the last approach, that can also be adopted for other
perturbation methods and in the general case of a multi-span link. Now we consider a
simple case, where the ASE noise is added to the CW at the input of the fiber and
propagates through a single span according to (38). Thus, x(z, t) is a Gaussian vector
process described by its PSD matrix

(39) Gz, 0) £ S {B{x x" @t + 0},

where E{-} denotes expectation and 3.{-} the Fourier transform with respect
to 7. At the input of the fiber, the PSD matrix is G(0,w) = (Ny/2) [, with I the
identity matrix. After propagation, the vector remains Gaussian and its PSD matrix
becomes [30]

(40) Gz, 0) = T(z,0)G(0,0) T (2, w),

meaning that, in general, the output noise is not white and its in-phase and quad-
rature components are correlated. As anticipated, the in-phase component a can be
subject to amplification or attenuation at certain frequencies, with a significant
(positive or negative) impact on performance. In [4], the error probability is ori-
ginally evaluated by a time-domain KLL.SE method, but in practice other KL.SE
methods [11, 27] can be easily extended to account for the colored noise.

The CW approximation is used only to determine the output PSD matrix of the
noise, while the output noise-free signal, modulated by a PRBS, is evaluated by the
SSFM. According to the CW approximation, the noise would remain stationary.
However, a different PSD is evaluated for each bit a;, of the PRBS by using in (38) a

6 A matrix is denoted by a capital blackboard letter such as T.
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CW power P, equal to the signal power at time ¢t = kT, (in practice, parametric gain
can be neglected when spaces are transmitted since P, is close to zero). Finally, the
error probability is evaluated for each bit of the PRBS and averaged.

5.4.2 - The covariance matrix method

A more accurate approach to this problem has been later proposed in [21, 23] to
overcome the strong limitations of the CW approximation. First, the authors re-
move the CW approximation by applying the RP theory to the modulated signal.
The solution of the NLSE is written as u(z,t) = ug(z,t) + ou(z, t), where ug is the
noise-free solution of the NLSE, numerically evaluated, and ou is the additive
perturbation term. Substituting « into (4) and dropping all the terms that are
nonlinear in Jdu, one obtain a linearized propagation equation for éu. Expanding
both % and Ju in Fourier series with period equal to the PRBS period 7', the
equation is finally turned into a system of linear differential equations for the
Fourier coefficients of ou.

Taking the ASE noise introduced by amplifiers as the input perturbation, the
input variables are independent and identically distributed complex Gaussian vari-
ables, with zero mean and diagonal covariance matrix. In principle, considering the
linearized system, the output coefficients should remain Gaussian and their covar-
iance matrix could be evaluated by solving the system. Unfortunately, the linear-
ization does not hold in many cases, meaning that the output coefficients are not
Gaussian distributed and this simple procedure cannot be applied. Indeed, we have
shown in Section IV that the main effect of Kerr nonlinearity is a phase rotation of
the signal, that is poorly represented by a linear additive perturbation term. The
solution proposed in [21] is that of extracting the phase- and time-jitter associated to
each pulse of the PRBS. After jitter removal, the linearization of the NLSE is more
robust and the output perturbation coefficients can be approximated as Gaussian.

Two different procedures for the evaluation of the covariance matrix of the
perturbation coefficients, based on Monte Carlo simulations or on the Lyapunov
method, are described in details in [21] and [23], respectively. From the covariance
matrix, the error probability is finally evaluated by an extension of [11], as already
discussed concerning the CW approximation. While the phase-jitter does not affect
the performance of an IMDD system, time-jitter can be detrimental in highly non-
linear systems and must be included in the error probability evaluation. The accu-
racy of CMM is good also for highly nonlinear systems. However, it does not give a
complete statistical characterization of the output process and its application is
limited to IMDD systems and to the return-to-zero format. Moreover, some care
must be taken when the signal pulses overlap during propagation.
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5.4.3 - The combined regular-logarithmic perturbation

Finally, we shortly describe an alternative perturbation method that we have
recently introduced in [33]. The idea is that the inaccuracy of the CW model is mainly
due to the linearization rather than to the CW approximation. In fact, some works
have already shown that a simple linearization does not hold in many cases [21], and
second-order perturbation terms may not be neglected, since they can produce a
strong degradation of the system performance [34]. As done in the CW approx-
imation, we make the hypothesis that, for the purpose of investigating the interac-
tion between signal and noise, the signal can be considered a continuous wave (CW),
and the noise can be treated as a perturbation of the CW solution of the NLSE. The
novelty of our approach is that in the place of the classical RP expansion (36), we
write the perturbed solution of the NLSE as

(41) u(z.t) = /ol + e(e.t)] exp{ ~j [y, 2) + $2.0)] ).

Equation (41) is motivated by the evidence, given in Section 4.4, that the LP
solution of the NLSE can be more accurate than the RP solution, but becomes
singular when the signal power goes to zero. Therefore, it includes both the
complex RP component c(z,t) = a(z,t) +jb(z,t) and a real LP component ¢(z,t).
Equation (41) can also be regarded as a generalization and formalization of the
phase-jitter removal concept introduced in the CMM [21], with the difference
that in (41) the phase jitter is directly determined from the perturbed solution
through the time-dependent term ¢(z,t). Substituting (41) in (4), exploiting the
additional degree of freedom given by the term ¢, and neglecting terms that are
nonlinear in a, b, or ¢, we obtain a linearized system of three real differential
equations for the CRLP model. Taking the Fourier transform we finally obtain
the linear system

0A By »

(42a) %2 (B — @),
OB Py »

(42b) %= 2 WA,

(42¢) % =2yPyexp(— ar)A,

whose solution can be expressed in matrix notation as X(z,w) = T(z, 0)X(0, w),
where X = [A, B, @]" is the Fourier transform of the vector process x = [a, b, ¢]T
and T is the 3 x 3 transfer matrix for the CRLP model. For constant fiber
coefficients, in the absence of attenuation, the transfer matrix T has a simple
closed-form expression [33]. As in the RP case, x is a Gaussian vector process



[23] THE NONLINEAR SCHRODINGER EQUATION IN FIBER-OPTIC SYSTEMS 91

that remains Gaussian during propagation through the linear system (41), with a
PSD matrix that evolves as in (40). However, the signal itself, given by the
nonlinear combination of a, b, and ¢ in (41), is not Gaussian-distributed in gen-
eral. In other words, even if the overall process is not Gaussian, it is nevertheless
fully described by three Gaussian processes and their PSD matrix. The slight
increase in complexity with respect to the RP, brought by the use of a 3 x 3
rather than 2 x 2 PSD matrix, is compensated by a higher accuracy. In fact, as it
is shown in [32], the term ¢ accounts for the quadratic perturbation terms that
are neglected in the RP.

54.4 - Multi-span systems

For the generalization of the perturbation methods to multi-span systems it is
convenient to consider the modified NLSE in (34). When deriving the CRLP
equations (42), the complex forcing term w(z, t) results in two real forcing terms in
(42a) and (42b).

Considering the generic ¢-th span of length L; represented in Fig. 4, with the
amplifier located at z;, the PSD matrix at the output of the amplifier is

(43) G(z], ) = G(z;,w) + Go,

where Gy = diag{Ny/2,Ny/2,0}. In general, the attenuation is not negligible and
the fiber parameters may vary along the span. Thus, we divide the span into N short
steps of length 4z = L;/N, as depicted in Fig. 4. Each step has a negligible at-
tenuation adz ~ 0, constant dispersion, and an effective nonlinear coefficient
7, = yexp ( — andz)[1 — exp ( — adz)]/adz. At each step, the corresponding transfer
matrix T, (4z,w) is evaluated in closed-form as in [33], and the overall transfer

I I
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Fig. 4. Representation of the generic i-th span of a multi-span system with optical amplifiers.
The span of length L;, with variable parameters a, ff5, and y is divided into N short steps of
length 4z = L;/N. Each step has constant values of the fiber parameters and negligible
attenuation a4z ~ 0.
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matrix is evaluated by multiplying all of them

1

(44) T(Li,w) = ] Tu(4z, ).
n=N

Finally, the PSD matrix at the output of the span is

(45) G (274, 0) = T(Li,0)G (2], 0) T (L, o).

By repeating the procedure described in (43)—(45) for each span composing the
system, we finally obtain the output PSD matrix. As in the single-span case, the
vector process x(z,t) remains Gaussian after propagation, while the signal u(z,t)
does not. The same procedure, described here for the CRLP, can be applied with
minor modifications to the RP and CMM.

54.5 - Numerical comparison

Fig. 5 shows a comparison among the different methods presented here for the
case of a CW signal plus AWGN noise propagating in a lossless fiber of length
L = 50 km, with nonlinear coefficient y = 2(W - km)~'. Such a simple case allows to
focus only on the behavior and degree of accuracy of each method.
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Fig. 5. - Comparison among the AWGN , RP, CRLP models, and MMC simulations for the
propagation of a CW signal plus noise through a single lossless span: (a) joint pdf (level
curves) of the real and imaginary parts of the output optical signal, v = u, + ju;, normalized
to the square root of the CW power Py; (b) pdf of the normalized photodetected current.



[25] THE NONLINEAR SCHRODINGER EQUATION IN FIBER-OPTIC SYSTEMS 93

Fig. 5(a) reports the pdf of the optical signal after propagation. The CW power is
Py = 20mW, the noise PSD is Ny = 1.6 - 10~* W/Hz — corresponding to an optical
signal-to-noise ratio OSNR¢ 1y, =~ 14 dB for an ideal 10 Gbit/s-NRZ signal with the
same peak power — and the fiber has a normal dispersion D = —5ps/(nm - km) (a
reasonable value for non-zero dispersion fibers).

The contour lines of the joint pdf of the real and imaginary part of the normalized
optical signal are reported for different levels and models. The dotted curves ob-
tained by MMC simulations are taken as a reference, since they can be considered
exact within the statistical uncertainty of the method. In this case, the large devia-
tion of the MMC simulations from the AWGN model shows that signal-noise in-
teraction is strong. In particular, two effects are evident: a shrinkage of the noise pdf
along the radial direction, and a stretching and bending of the pdf around the origin.
The first effect, corresponding to a reduction of the in-phase noise component a, is
correctly predicted both by the RP and CRLP model, while the second effect, that is
related to the presence of a strong phase noise, is correctly predicted only by the
CRLP model. In this sense, the CRLP model gives a unified treatment of the
parametric gain and nonlinear phase-noise effects. The agreement of the CRLP
model with simulations is excellent for small perturbations, as evidenced by the inner
contour line, and remains good even for large perturbations, as evidenced by the
outer contour lines.

The nonlinear perturbation terms that are neglected in the linearization of the
CRLP are responsible for the discrepancy between MMC and CRLP on the tips
of the outer contour lines. This phase discrepancy is only observed for pertur-
bations that are even larger than the signal itself, and are not expected to be
relevant in amplitude-modulated systems. On the other hand, the RP model
greatly overestimates the quadrature component b, that contributes to increasing
the signal amplitude, and it does not predict the conversion of amplitude noise
into phase noise.

Fig. 5(b) reports the pdf of the electrical signal after a standard OOK receiver. In
this case, the CW power is Py = 10mW, the noise PSD is Ny = 8 - 10~ W/Hz, and
the fiber has an anomalous dispersion D = 17ps/(nm - km) (a typical value for
standard single-mode fibers). After propagation, the noisy optical signal is filtered
by a band-pass Gaussian filter with a 3-dB bandwidth of 20 GHz, photodetected, and
filtered again by a low-pass fifth-order Bessel filter with a 3-dB bandwidth of
7.5 GHz. In this case, taking the MMC simulations as a reference, parametric gain
causes a strong increase of the pdf with respect to the AWGN model. This behavior,
leading to a strong performance degradation in OOK systems, is accurately pre-
dicted by the CRLP model, but is not by the RP model, which instead predicts a
performance improvement.
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6 - Discussion and conclusions

The propagation of light in optical fibers is governed by the nonlinear Schrédinger
equation (NLSE). In high-capacity and long-distance fiber-optic systems, both Kerr
nonlinearity and GVD play a determinant role and affect system performance. Since
they act together and are distributed along the link, it is hard to find a simple channel
model and the system analysis must start from the NLSE itself.

In particular, two different problems should be considered, one being determi-
nistic and the other stochastic. In this paper, we have given a general overview of the
most common numerical and analytical approaches to both problems, with a special
attention to the approaches based on perturbation theory.

As regards the deterministic problem, beside the well-known and widely adopted
SSFM, we have presented and compared the RP and LP approaches. Starting from
an integral expression of the NLSE, we have derived two alternative recursive ex-
pressions for the RP and LLP methods that converge to the solution of the NLSE, the
last one showing a significantly faster convergence.

As regards the stochastic problem, after a short discussion about the use of
Monte Carlo methods, we have reviewed different approaches based on perturbation
theory — the continuous wave (CW) approximation, the covariance matrix method
(CMM), and the combined regular-logarithmic perturbation (CRLP) — and com-
pared their accuracy, showing a good agreement between CRLP and simulation.

Despite the significant effort spent by the scientific community on this subject,
several issues are still open to investigation. Concerning the deterministic problem,
the accuracy of the SSFM is satisfactory for all telecom applications, and its com-
putational efficiency is significantly higher than other numerical methods based on
finite differences. However, for large-size problems (multi-span links and WDM
systems), and mostly when the deterministic propagation must be repeated many
times — as in the statistical approach to the stochastic problem — computational
efficiency is still a big issue.

A possible approach worth further investigation is the LP one described in
Section 4, for instance in order to find more efficient quadrature rules or analytic
approximations for the integrals in (20). Concerning the stochastic problem, only MC
methods give a general and accurate approach for any system, but they have a high
computational cost and are practically unfeasible for complex systems. Reasonable
approximations can be obtained by using analytical or semi-analytical methods
based on perturbation theory, such as CMM or CRLP, even though they have some
limitations. Future works include the extension of the CRLP method to modulated
signals, as done in the CMM for instance, the inclusion of XPM and FWM from
adjacent WDM channels, and the application to different modulation formats or
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detection strategies, where both the phase and amplitude of the output optical signal

are relevant. Finally, an interesting point to be investigated is the application of

inverse scattering to the deterministic or stochastic problem in practical systems,

including attenuation and dispersion compensation.
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Abstract

We review some numerical and analytical approaches to the solution of the nonlinear
Schrodinger equation for the propagation of optical signals in fiber-optic communication
systems. As regards the propagation of deterministic signals, we derive two alternative re-
cursive expression, based on a regular perturbation and a logarithmic perturbation ex-
pansion, that, starting from the linear solution, converge to the exact solution of the equation.
As regards the propagation of stochastic processes, we review different approaches based on
perturbation theory, namely, the continuous wave approximation, the covariance matrix
method, and the combined reqular-logarithmic perturbation. We discuss accuracy, com-
plexity, and limitations of all the methods and compare them with numerical simulations.
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