SHAVETAMBRY TEJPAL and T. D. NARANG (*)

On sets of unique best approximants (**)

For a non-empty subset M of a metric space (X,d) and $x \in X$, let $P_M(x)$ denote the set of all best approximants to x in M i.e. $P_M(x) = \{m_0 \in M : d(x,m_0) = \operatorname{dist}(x,M)\}$. The concept and properties, defined in terms of best approximants or derived from it, are called approximative. For discussing approximative properties, S. B. Steckin [5] introduced and discussed some sets in Banach spaces. In this paper, we also consider the sets introduced by Steckin and extend some of the results proved in [5] to metric spaces.

Let M be a subset of a metric space (X,d) and $x \in X$. An element $m_0 \in M$ is said to be a <u>best approximation</u> to x if $d(x,m_0) \leq d(x,m)$ for all $m \in M$ i.e. $d(x,m_0) = d(x,M) \equiv \inf\{d(x,m) : m \in M\}$. The set of all such $m_0 \in M$ is denoted by $P_M(x)$. The set M is said to be

- (i) proximinal if every element of X has a best approximation in M,
- (ii) <u>semi-Chebyshev</u> if each element of X has at most one best approximation in M,
 - (iii) Chebyshev if each element of X has exactly one best approximation in M,
 - (iv) antiproximinal if $P_M(x) = \emptyset$ for each $x \in X \setminus M$, and
- (v) approximatively compact if for every $x \in X$ and every minimizing sequence $\langle m_n \rangle$ in M i.e. satisfying $\lim_{n \to \infty} d(x, m_n) = d(x, M)$ has a subsequence $\langle m_{n_i} \rangle$ converging to an element of M.

For a given non-empty set M of a metric space (X, d), let

^(*) Department of Mathematics, Guru Nanak Dev University, Amritsar-143005, India, e-mail: shwetambry@rediffmail.com – tdnarang1948@yahoo.co.in

^(**) Received 5th September 2006. AMS classification 41 A 65, 41 A 50, 41 A 52.

$$\begin{split} E_M = & \{x \in X : P_M(x) \neq \emptyset\}, \\ U_M = & \{x \in X : P_M(x) \quad \text{is empty or singleton}\}, \\ T_M = & \{x \in X : P_M(x) \quad \text{is singleton}\}. \end{split}$$

The set M is <u>proximinal</u> (respectively <u>semi-Chebyshev</u>, respectively <u>Chebyshev</u>) if $E_M = X$ (respectively $U_M = X$, respectively $T_M = X$) and <u>antiproximinal</u> if $E_M \subset M$.

In order to determine T_M , we consider another set $T_M^{'}$ as under. Let

$$\begin{split} P_{\delta}(x) = & P_{\delta,M}(x) = M \cap B_{d(x,M)+\delta}(x), \delta > 0, \\ D_{M}(x) = & \lim_{\delta \to 0^{+}} \operatorname{diam}\left(P_{\delta,M}(x)\right). \end{split}$$

We define

$$T_M' = \{x \in X : D_M(x) = 0\}.$$

Here, diam (M) is the diameter of the set M and $P_{\delta}(x)$ is called the set of δ -nearest points to x.

Before we discuss approximative properties, we recall a few definitions and some elementary facts.

A subset A of a metric space (X, d) is said to be <u>residual</u> in X if A is a countable intersection of dense open subsets of X. Equivalently, if complement of A is of first category in X. A property is called <u>generic</u> if it is true for all elements of a residual set.

For a metric space (X,d) and a closed interval I=[0,1], a continuous mapping $W: X \times X \times I \to X$ is said to be a <u>convex structure</u> on X if for all $x,y \in X, \lambda \in I$,

$$d(u, W(x, y, \lambda)) \le \lambda d(u, x) + (1 - \lambda)d(u, y)$$

for all $u \in X$. The metric space (X, d) together with a convex structure is called a <u>convex metric space</u> [6]. A convex metric space (X, d) is said to be <u>strongly convex</u> or an M-<u>space</u> [2] if for each pair $x, y \in X$ and every $\lambda \in I$, there exists exactly one point $z \in X$ such that $z = W(x, y, \lambda)$.

Every normed linear space is strongly convex but not conversely. If (X,d) is a convex metric space then for each two distinct points $x,y\in X$ and for every λ , $0<\lambda<1$, there exists at least one point $z\in X$ such that $d(x,z)=(1-\lambda)d(x,y)$ and $d(z,y)=\lambda d(x,y)$. For strongly convex metric spaces such a z is always unique.

Let G[x,y] denote the line segment joining x and y i.e. $G[x,y] = \{z \in X : d(x,z) + d(z,y) = d(x,y)\}; G(x,y,-)$ denote the ray starting from x and passing through y.

A metric space (X, d) is called <u>externally convex</u> [2] if for all distinct points x, y such that $d(x, y) = \lambda$ and $k > \lambda$ there exists a unique $z \in X$ such that d(x, y) + d(y, z) = d(x, z) = k i.e. z lying on the ray G(x, y, -).

Every normed linear space is externally convex.

A convex metric space (X,d) is said to be <u>strictly convex</u> [3] if for every $x,y \in X$ and r > 0, $d(u,x) \le r$, $d(u,y) \le r$ imply $d(u,W(x,y,\lambda)) < r$ unless x = y, where u is arbitrary but fixed point of X.

A relation between T_M and $T_M^{'}$ is given by:

Proposition 1. If M is a closed subset of a complete metric space (X, d) then $T'_M \subset T_M$.

Proof. Let $x \in T_M'$ i.e. $D_M(x) = 0$. This implies $\lim_{\delta \to 0} \operatorname{diam}(P_{\delta,M}(x)) = 0$. Now $\operatorname{diam} P_M(x) \leq \operatorname{diam}(P_{\delta,M}(x))$ for all δ . This implies $\operatorname{diam} P_M(x) \leq 0 \Rightarrow P_M(x)$ is either empty or singleton. We claim that $P_M(x) \neq \emptyset$. Let $\langle u_n \rangle$ be a minimizing sequence in M for x. Since $D_M(x) = 0$, given $\varepsilon > 0$ there exists some $\delta_1 > 0$ such that $\operatorname{diam} P_{\delta,M}(x) < \varepsilon$ whenever $0 < \delta < \delta_1$. Fix up such a $\delta > 0$, $u_n \in P_{\delta,M}(x)$ for all $n \geq N$ for a suitable N. Therefore, $d(u_n, u_m) < \varepsilon$ for all $n, m \geq N$. This shows that $\langle u_n \rangle$ is a Cauchy sequence in M. Since M is complete, $\langle u_n \rangle \to u_0 \in M$. Since $\lim_{n \to \infty} d(x, u_n) = d(x, M), d(x, u_0) = d(x, M)$ and so $u_0 \in P_M(x)$ i.e. $P_M(x) \neq \emptyset$. Therefore $P_M(x)$ is a singleton and so $x \in T_M$. Hence $T_M' \subset T_M$.

For approximatively compact sets M, we have

Proposition 2. If M is an approximatively compact subset of a complete metric space (X, d) then $T'_M = T_M = U_M$.

Proof. Clearly, $T_M \subset U_M$. Since M is approximatively compact, $P_M(x) \neq \emptyset$ (see e.g. [4], p.382) and so $U_M \subset T_M$. Hence $T_M = U_M$.

Since M, being approximatively compact, is proximinal and so closed, $T_M \subset T_M$ by Proposition 1. Now we show that $T_M \subset T_M$.

Let $x \in T_M$ and suppose $P_M(x) = \{u_0\}$. Now $D_M(x) = \lim_{\delta \to 0^+} \operatorname{diam} P_{\delta,M}(x)$. If $u \in P_{\delta,M}(x)$ then $d(x,u) \leq d(x,M) + \delta$. For $\delta > 0$, we can choose $n > \frac{1}{\delta} \equiv N_1$ such that $d(x,u) < d(x,M) + \frac{1}{n}$ i.e. $u \in P_{\frac{1}{n},M}(x)$ for all $n \geq N_1$. Since $P_{\delta,M}(x) \subset P_{\frac{1}{n},M}(x)$, diam $P_{\delta,M}(x) < \operatorname{diam} P_{\frac{1}{n},M}(x)$ for all $n \geq N_1 \Rightarrow D_M(x) \leq \operatorname{diam} P_{\frac{1}{n},M}(x)$ for all $n \geq N_1$.

Thus we can find N_1 such that $\operatorname{diam} P_{\frac{1}{n},M}(x) > \frac{1}{2}D_M(x)$ for all $n \geq N_1$. We can pick minimizing sequences $\langle v_n \rangle, \langle v_n' \rangle$ for x such that $\{v_n, v_n'\} \subset P_{\frac{1}{n},M}(x)$ for all $n \geq N_2$ and $d(v_n, v_n') > \frac{1}{2}D_M(x)$. Let $N = \max\{N_1, N_2\}$. Then $\operatorname{diam} P_{\frac{1}{n},M}(x) > \frac{1}{2}D_M(x)$, $\{v_n, v_n'\} \subset P_{\frac{1}{n},M}(x)$ and $d(v_n, v_n') > \frac{1}{2}D_M(x)$ for all $n \geq N$. Since M is approximatively compact, there are subsequences $\langle v_{n_k} \rangle, \langle v_{n_k}' \rangle$ of $\langle v_n \rangle, \langle v_n' \rangle$ respectively each converging to $u_0 = P_M(x)$. Since $d(v_{n_k}, v_{n_k}') \leq d(v_{n_k}, P_M(x)) + d(P_M(x), v_{n_k}'), d(v_{n_k}, v_{n_k}') \to 0$ as $n_k \to \infty$. Thus $0 \geq \frac{1}{2}D_M(x) \Rightarrow D_M(x) = 0 \Rightarrow x \in T_M'$ and so $T_M \subset T_M'$. Hence $T_M' = T_M = U_M$.

The following theorem generalizes and extends a result of Steckin [5] (see also Braess [1], p.29) proved for strictly convex Banach spaces.

Theorem. If M is an approximatively compact subset of a complete strictly convex metric space (X,d) which is externally convex then T_M and $T_M^{'}$ are residual sets.

To prove this result, we firstly establish few lemmas:

Lemma 1. In a metric space (X, d), the set $G_a = \{x \in X : D_M(x) < a\}$, a > 0 is an open set.

Proof. Let $x \in G_a$ i.e. $D_M(x) < a$. Then there is some $\delta_1 > 0$ such that $\operatorname{diam} P_{\delta,M}(x) < a$ for $0 < \delta < \delta_1$. If $y \in X$ is such that $d(y,x) < \frac{\delta}{3}$, we claim that $P_{\frac{\delta}{3},M}(y) \subset P_{\delta,M}(x)$.

Suppose $u \in P_{\frac{\delta}{3},M}(y)$ i.e. $d(y,u) < d(y,M) + \frac{\delta}{3}$. Consider

$$\begin{aligned} d(x,u) &\leq d(x,y) + d(y,u) \\ &< \frac{\delta}{3} + d(y,M) + \frac{\delta}{3} \\ &= d(y,M) + \frac{2\delta}{3} \\ &\leq d(y,x) + d(x,M) + \frac{2\delta}{3} \\ &< d(y,M) + \delta. \end{aligned}$$

This implies $u\in P_{\delta,M}(x)$ and so $P_{\frac{\delta}{3},M}(y)\subset P_{\delta,M}(x)$ and therefore $\operatorname{diam} P_{\frac{\delta}{3},M}(y)\leq \operatorname{diam} P_{\delta,M}(x) < a$ for $0<\delta<\delta_1$. This gives $\lim_{\delta\to 0}P_{\frac{\delta}{3},M}(y)< a$ and so $D_M(y)< a$ i.e. $y\in G_a$. Hence $B_{\frac{\delta}{2}}(x)\subset G_a$ i.e. G_a is open.

Lemma 2. [6] In a convex metric space (X,d), $d(x,y)=d(x,W(x,y,\lambda))+d(W(x,y,\lambda),y)$, $x,y\in X$, $0\leq \lambda \leq 1$.

Proof. Consider

$$\begin{split} d(x,y) &\leq d(x,W(x,y,\lambda)) + d(W(x,y,\lambda),y) \\ &\leq \lambda d(x,x) + (1-\lambda)d(x,y) + \lambda d(x,y) + (1-\lambda)d(y,y) \\ &= d(x,y). \end{split}$$

The result follows.

Lemma 3. Let M be a subset of a convex metric space (X,d) and $x \in X$. If $m_0 \in P_M(x)$ and $y = W(x, m_0, \lambda)$ then $m_0 \in P_M(y)$.

Proof. $m_0 \in P_M(x) \Rightarrow d(x, m_0) = d(x, M)$ i.e. $d(x, m_0) \leq d(x, m)$ for all $m \in M$. By Lemma 2, $d(x, W(x, m_0, \lambda)) + d(W(x, m_0, \lambda), m_0) = d(x, m_0)$. Consider

$$\begin{split} d(W(x,m_0,\lambda),m_0) &= d(x,m_0) - d(x,W(x,m_0,\lambda)) \\ &\leq d(x,m) - d(x,W(x,m_0,\lambda)) \quad \text{for all } m \in M \\ &\leq d(x,W(x,m_0,\lambda)) + d(W(x,m_0,\lambda),m) \\ &- d(x,W(x,m_0,\lambda) \quad \text{for all } m \in M \\ &= d(W(x,m_0,\lambda),m) \quad \text{for all } m \in M. \end{split}$$

This implies that $m_0 \in P_M(y)$.

Corollary. If M is a subset of a convex metric space (X,d) then $W(x,Px,\lambda)\in T_M^{'}$ for each $x\in T_M^{'}$ and $\lambda\in[0,1]$, where $Px\equiv P_M(x)$.

Proof. Let $x \in T_M^{'}$ and $z \in W(x, Px, \lambda)$. Then by the above lemma, $Px \in Pz$. Since

(1)
$$d(x,z) = (1-\lambda)d(x,Px) \text{ and } d(Px,z) = \lambda d(x,Px)$$

we have, $d(z, M) = d(z, Px) = \lambda d(x, Px) = \lambda d(x, M)$. Therefore (1) gives

(2)
$$d(x,z) = d(x,Px) - \lambda d(x,Px) = d(x,M) - d(z,M).$$

We claim that $B[z,d(z,M)+\delta]\subset B[x,d(x,M)+\delta]$. Let $u\in B[z,d(z,M)+\delta]$ i.e. $d(u,z)\leq d(z,M)+\delta$. Consider

$$d(u, x) \le d(u, z) + d(z, x)$$

$$\le d(z, M) + \delta + d(z, x)$$

$$= d(z, M) + \delta + d(x, M) - d(z, M) \text{ by (2)}$$

$$= d(x, M) + \delta$$

i.e. $u \in B[x, d(x, M) + \delta]$ and so $B[z, d(z, M) + \delta] \subset B[x, d(x, M) + \delta]$. Consequently,

$$M \cap B[z, d(z, M) + \delta] \subset M \cap B[x, d(x, M) + \delta]$$

i.e. $P_{\delta,M}(z)\subset P_{\delta,M}(x)$ and so $\lim_{\delta\to 0}\operatorname{diam}\left(P_{\delta,M}(z)\right)\leq \lim_{\delta\to 0}\operatorname{diam}\left(P_{\delta,M}(x)\right)$ i.e $D_M(z)\leq D_M(x)=0$, which gives $D_M(z)=0$ i.e. $z\in T_M^{'}$. Hence $W(x,Px,\lambda)\in T_M^{'}$ for all $x\in T_M^{'}$ and $\lambda\in[0,1]$.

Lemma 4. If G is a subset of an externally convex M-space (X, d) and $x \in X$ then $P_G(W(x, v_0, \lambda))$ is at most singleton for each $v_0 \in P_G(x)$.

Proof. Let $v_0 \in P_G(x)$. Then by Lemma 3, $v_0 \in P_G(W(x, v_0, \lambda))$. Suppose $v_1 \in P_G(W(x, v_0, \lambda))$. Two cases arise:

which is not possible.

<u>Case II</u> $d(x, v_1) = d(x, W(x, v_0, \lambda)) + d(W(x, v_0, \lambda), v_1).$

This implies $v_1 \in G(x, x_{\lambda}, -)$; where $x_{\lambda} \equiv W(x, v_0, \lambda)$. Thus $v_0, v_1 \in G(x, x_{\lambda}, -)$. Now

$$d(x, v_1) = d(x, x_{\lambda}) + d(x_{\lambda}, v_1)$$
$$= d(x, x_{\lambda}) + d(x_{\lambda}, v_0)$$
$$= d(x, v_0)$$

i.e. $d(x, x_{\lambda}) + d(x_{\lambda}, v_0) = d(x, v_0)$ and $d(x, x_{\lambda}) + d(x_{\lambda}, v_0) = d(x, v_1)$. Therefore by external convexity, we get $v_0 = v_1$.

Since every strictly convex metric space is an M-space [2], we have

Corollary. If X is a strictly convex metric space with external convexity then $P_G(W(x, v_0, \lambda))$ is at most singleton for each $v_0 \in P_G(x)$.

Lemma 5. If (X,d) is a strictly convex metric space with external convexity then U_M is dense in X.

Proof. Let $x \in X$ be arbitrary. If $P_M(x) = \emptyset$ then $x \in U_M \subset \overline{U_M}$. Suppose $P_M(x) \neq \emptyset$. Let $v_0 \in P_M(x)$. Define $x_n = W\left(x, v_0, 1 - \frac{1}{n}\right), n = 1, 2, \ldots$ i.e. x_n lies on the line segment joining x, v_0 and so by Lemma 3, $v_0 \in P_M(x_n)$ for all n. Since X is strictly convex, $P_M(x_n) = \{v_0\}$ for all n by Lemma 4. Thus $x_n \in U_M$ for all n. We claim that $\langle x_n \rangle \to x$. Consider

$$d(x_n, x) = d\left(W\left(x, v_0, 1 - \frac{1}{n}\right), x\right)$$

$$= \frac{1}{n}d(x, v_0)$$

$$\to 0 \text{ as } n \to \infty.$$

Therefore $\langle x_n \rangle \to x$ and so $x \in \overline{U_M}$. Hence $X = \overline{U_M}$ i.e. U_M is dense in X.

Since every normed linear space is externally convex and for proximinal sets M, $P_M(x) \neq \emptyset$, we have

Corollary. [5] If M is a proximinal subset of a strictly convex normed linear space X then the set T_M is dense in X.

Proof of Theorem. Since M is approximatively compact, $T_M^{'}=T_M=U_M$ by Proposition 2. By Lemma 5, U_M is dense in the strictly convex space X. Since $T_M^{'}\subset G_a$ for all a>0, $U_M\subset G_a$ for all a>0. This implies $\overline{U_M}\subset \overline{G_a}\Rightarrow X\subset \overline{G_a}$ for all a>0 $\Rightarrow G_a$ is dense in X for all a>0. Now

$$T_{M}^{'} = \{x \in X : D_{M}(x) = 0\}$$

$$= \bigcap_{n \in N} \left\{ x \in X : D_{M}(x) < \frac{1}{n} \right\}$$

$$= \bigcap_{n \in N} G_{\frac{1}{n}}.$$

Hence $T_{M}^{'}$ and T_{M} are residual sets in X.

Since every normed linear space is externally convex, we have

Corollary. [5] If M is an approximatively compact subset of a strictly convex Banach space X then T_M and $T_M^{'}$ are residual sets.

References

- [1] D. Braess, Nonlinear approximation theory, Springer-Verlag, Berlin 1986.
- [2] R. Khalil, Best approximation in metric spaces, Proc. Amer. Math. Soc. 103 (1988), 579-586.
- [3] T. D. NARANG, Best approximation and strict convexity of metric spaces, Arch. Math. 17 (1981), 87-90.
- [4] I. Singer, Best approximation in normed linear spaces by elements of linear subspaces, Springer-Verlag, New York-Berlin 1970.
- [5] S. B. Steckin, Approximation properties of sets in normed linear spaces, Rev. Math. Pures Appl. 8 (1963), 5-18.
- [6] W. Takahashi , A convexity in metric space and non-expansive mappings, I, Kodai Math. Sem. Rep. 22 (1970), 142-149.

Abstract

S. B. Steckin [5] proved that for a proximinal subset M of a strictly convex Banach space X, the set $\{x \in X : x \text{ has a unique best approximation in } M\}$ is dense in X and is a residual set in X if M is approximatively compact subset of X. We extend these results to convex metric spaces.

* * *