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SHAVETAMBRY TEJPAL and T. D. NARANG (*)

On sets of unique best approximants (**)

For a non-empty subset M of a metric space (X,d) and xz € X, let
Py(x) denote the set of all best approximants to x in M ie. Py(x)
= {my € M : d(x,mo) = dist(x, M)}. The concept and properties, defined in
terms of best approximants or derived from it, are called approximative. For
discussing approximative properties, S. B. Steckin [5] introduced and dis-
cussed some sets in Banach spaces. In this paper, we also consider the sets
introduced by Steckin and extend some of the results proved in [5] to metric
spaces.

Let M be a subset of a metric space (X, d) and « € X. An element my € M is said
to be a best approximation to x if d(x,mg) < d(x,m) for all m e M ie.
d(x, mg) = d(x, M) = inf{d(x,m) : m € M}. The set of all such my € M is denoted by
Py(x). The set M is said to be

(i) proximinal if every element of X has a best approximation in M,
(ii) semi-Chebyshev if each element of X has at most one best approxima-
tion in M,

(iii) Chebyshev if each element of X has exactly one best approximation in M,

(iv) antiproximinal if Py;(x) = @) for each « € X\M, and

(v) approximatively compact if for every & € X and every minimizing sequence
(my,) in M i.e. satisfying nILrEC d(x,m,) = d(x, M) has a subsequence (m,, ) converging
to an element of M.

For a given non-empty set M of a metric space (X, d), let
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Ey ={x € X : Py(x) # 0},
Uy ={x € X : Py(x) is empty or singleton},
Ty ={x € X : Py(x) 1is singleton}.

The set M is proximinal (respectively semi-Chebyshev, respectively Chebyshev)
if By =X (respectively Uy = X, respectively Ty = X) and antiproximinal if
EycM.

In order to determine 7'y, we consider another set T]'W as under. Let

Ps(x) =P py(x) = M N By, my46(x),0 > 0,

Dy (@) = lim diam (P, y(x))-

We define
Ty = {x € X : Dy(x) = 0}.

Here, diam (M) is the diameter of the set M and Ps(x) is called the set of J-nearest
points to x.

Before we discuss approximative properties, we recall a few definitions and some
elementary facts.

A subset A of a metric space (X, d) is said to be residual in X if A is a countable
intersection of dense open subsets of X. Equivalently, if complement of A is of first
category in X. A property is called generic if it is true for all elements of a residual
set.

For a metric space (X, d) and a closed interval I = [0, 1], a continuous mapping
W:X x X x I — X is said to be a convex structure on X if for all x,y € X, 2 € I,

du, W(x,y,A) < Adu,x) + (1 — Dd(u,y)

for all u € X. The metric space (X, d) together with a convex structure is called a
convex metric space [6]. A convex metric space (X, d) is said to be strongly convex or
an M-space [2]if for each pair x,y € X and every 4 € I, there exists exactly one point
z € X such that z = W(x,y, 4).

Every normed linear space is strongly convex but not conversely. If (X, d) is
a convex metric space then for each two distinct points x,y € X and for every /,
0 < 4 <1, there exists at least one point z € X such that d(x,z) = 1 — )d(x,y)
and d(z,y) = Ad(x,y). For strongly convex metric spaces such a z is always
unique.

Let G[x,y] denote the line segment joining x and y ie. Glx, ¥yl
={z e X :dx,2) + dz,y) =d(x,y)}; G(x,y,—) denote the ray starting from x
and passing through y.
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A metric space (X, d) is called externally convex [2] if for all distinct points «x, y
such that d(x,y)=4 and k> A there exists a unique z€ X such that
d(x,y) + d(y, z) = d(x,z) = k i.e. z lying on the ray G(x,y, —).

Every normed linear space is externally convex.

A convex metric space (X, d) is said to be strictly convex [3] if for every x,y € X
andr > 0, d(u,x) < r, d(u,y) < rimply d(u, W(x,y, 4)) < r unless x = y, where u is
arbitrary but fixed point of X.

A relation between Ty and T, is given by:

Proposition 1. If M is a closed subset of a complete metric space (X, d) then
T];[ Cc Thy.

Proof. Let x ¢ T;W i.e. Dy(x) = 0. This implies lsin(l) diam (Ps p(x)) = 0. Now

diam Py(x) < diam (P p(x)) for all 6. This implies diam Py (x) < 0 = Py (x) is ei-
ther empty or singleton. We claim that Py (x) # (. Let <u,> be a minimizing se-
quence in M for x. Since Dy (x) = 0, given ¢ > 0 there exists some J; > 0 such that
diam P; () < ¢ whenever 0 < 6 < d1. Fix up such a 6 > 0, u,, € Ps () for all
n > N for a suitable N. Therefore, d(u,,u,,) < ¢ for all n,m > N. This shows that
(uy) is a Cauchy sequence in M. Since M is complete, (u,) — %o € M. Since
W}EI;O d(x, uy,) = d(e, M), d(x,ug) = d(xe, M) and so wuy e Py(x) ie. Pylx)# 0.

Therefore Py (x) is a singleton and so & € Tj;. Hence Tz/w Cc Ty.

For approximatively compact sets M, we have

Proposition 2. If M is an approximatively compact subset of a complete
metric space (X, d) then TZ(I =Ty =Uy.

Proof. Clearly, Ty C Uy. Since M is approximatively compact, Py (x) # 0
(sec e.g. [4], p.382) and so Uy, C Ty. Hence Ty = Uy,

Since M, being approximatively compact, is proximinal and so closed, T, C Ty
by Proposition 1. Now we show that Ty C T,
Let x € Ty and suppose Py (x) = {ug}. Now Dy(x) = 5lir51+ diam Ps pr(x). If
u € Pj p(x) then d(x,u) < d(x,M)+ . For 6 > 0, we can choose n > 5 = N; such
1
that d(x,u) < d(x, M) + " Le. u € Py y(w) for all n > N;. Since Ps y(x) C Py (),

diam Ps y(x) < diam P%’ (@) for alln > N1 = Dy(x) < diam P%} u(@) for alln > Nj.
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Thus we can find Ny such that diam P%’ u(@) > %DM(ac) for all n > N;. We can pick
minimizing sequences (v,,), (v, ) for x such that {v,,v,} C Py p () for alln > Ng and
d(vn,v') > 1DM(ac). Let N= maX{Nl,Ng} Then dlamP1 M(ac) > = DM(ac)
{vn, vn} - P1 M(ac) and d(v,,, v ) > = DM(ac) foralln > N. Since M is approxnnatlvely

compact, there are subsequences <vn,> (v, ) of (v,), (v,,) respectlvely each conver-
ging to uy = Py(x). Since d(vm,vm) < d(vm,PM(oc)) + d(Py(x),v, ), d(vnk,v;%) —0
as nj — oo.Thus 0 > %DM(x) = Dy®)=0=xc¢c TM and so Ty C TJ/W. Hence
Ty =Ty =Un.

The following theorem generalizes and extends a result of Steckin [5] (see also
Braess [1], p.29) proved for strictly convex Banach spaces.

) ”k

Theorem. IfM is an approximatively compact subset of a complete strictly
convex metric space (X, d) which is externally convex then Ty and T M are residual
sets.

To prove this result, we firstly establish few lemmas:

Lemmal. Inametricspace(X,d),thesetG, = {x € X : Dy(x) < a},a > 0is
an open set.

Proof. Let x € G, ie. Dy(x) < a. Then there is some ¢; > 0 such that

0
diam Ps y(x) < a for 0 < 6 < ;. If y € X is such that d(y,x) < —, we claim that

Py y(y) C Py ().
Suppose u € P> M(y) ie. dy,u) < dy,M) —|— . Consider

d(x,u) <d(x,y) + d(y,w)

0 0
<gt+dy,M+g

20
=d(y, M)+—

20
< d(y,») +d@, M) + =

<d(y,M)+ 9.

This implies u € Psp(x) and so Ps u@ CPsy(x) and therefore
dlamPo uW) < diam Pj ps(x) < a for 0 < 6 < 51 This gives hm P> uy <a and so
DM(y)<a1e Yy € G,. HenceB(x)CG i.e. G, is open.
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Lemma 2. [6] In a convex metric space (X,d), d(x,y) = d(x, W(x,y, 1))
+dWx,y,1),y), 2,y e X,0< 1< 1.
Proof. Consider
dx,y) <d(x, W(x,y,4) + dW(x,y,4),y)
<Ad(x, ) + (1 — Dd(x,y) + Ad(x,y) + (1 — Dd(y, y)
=d(x, y).

The result follows.

Lemma 3. Let M be a subset of a convex metric space (X,d) and x € X. If
my € Py(x) and y = W(x, mg, 1) then my € Py (y).

Proof. mgy € Py(x) = d(x,my) = d(x, M)i.e.d(x,my) < d(x,m)forallm e M.
By Lemma 2, d(x, W(x, mqg, A)) + d(W(x, mg, 1), mg) = d(x, my). Consider

AW (x, m, 1), mg) = dlx, mg) — d(x, W(x,mg, 1)
<d(x,m) — d(x, W(x,mg, ) forall m e M
<d(x, W(x,mo, 4)) + d(W(x,mo, 4), m)
— d(x, W(e,mg,A) for all m e M
=dW(x,mg,A),m) for all m € M.

This implies that my € Py(y).

Corollary. If M is a subset of a convex metric space (X,d) then
W(x, Px,2) € Ty, for each x € Ty, and . € [0, 1], where Px = Py (x).

Proof. Letx €T, and z € W(x, Px, /). Then by the above lemma, Px € Pz.
Since

1) d(x,z) = (1 — A)d(x, Px) and d(Px,z) = Ad(x, Px)

we have, d(z, M) = d(z, Px) = Jd(x, Px) = Ad(x, M). Therefore (1) gives
@) d(x,z) = d(x, Px) — d(xe, Px) = d(e, M) — d(z, M).

We claim that B[z, d(z, M) + 6] C Blx,d(x, M) + J]. Let u € Blz,d(z,M) + d] i.e.
d(u,z) < d(z,M) + o. Consider
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d(u, x) <d(u,z)+ d(z,x)
<d(z, M)+ 0 + d(z,x)
=d(z, M)+ 0 + d(x,M) — d(z, M) by (2)
=d@@,M)+o

ie.u € Blx,d(x, M)+ é] and so Blz,d(z, M) + J] C Blx,d(x, M) + J]. Consequently,
M N Blz,d(z, M)+ 6] ¢ M N Blx,d(x, M) + 6]

ie. Psyu®) C Psu(x) and so girr(l) diam (P y(2)) < }sin(l) diam (Ps p(x)) ie Dy (2)
< Dy(x) = 0, which gives Dy(z) =0 ie. z € T;,. Hence W(x, Px,2) € T}, for all
x €Ty and 7 € [0,1].

Lemma 4. If G is a subset of an externally convex M-space (X,d) and x € X
then Pa(W(x, vy, A)) is at most singleton for each vy € Pg(x).

Proof. Let vy € Pg(x). Then by Lemma 3, vy € Pa(W(x,v9,4)). Suppose
v1 € Pa(W(x, vy, 4)). Two cases arise:

Case I d(x,v1) # d(x, W(x, v, A) + AW (x, vy, 1), v1)
ie. d(x,vy) <d(, W(x,v,A) +dW (e, vy, 2),v1)
=d(x, W(x,vo, A) + d(W(x,v9, 4),v0)
= d(x, v),

which is not possible.

Case IT d(x,v1) = d(x, W(x,v9, A)) + dW (x,vg, 1), v1).
This implies v; € G(x,x;, —); where x; = W(x, vy, 4). Thus vy, v; € G(x, x;, —).
Now
d(x,v1) =d(,x;) + d(x;,v1)
=d(x, ;) + d(@;, vo)

=d(x,vo)
ie. d(x,xy) + d(x;,v9) = d(x,vo) and d(x, x;) + d(x;,ve) = d(x, v1). Therefore by ex-

ternal convexity, we get vy = v;.
Since every strictly convex metric space is an M-space [2], we have
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Corollary. IfX is a strictly convex metric space with external convexity then
Pe(W(x, vy, 1)) s at most singleton for each vy € Pg(x).

Lemma 5. If(X,d) is a strictly convex metric space with external convexity
then Uy is dense in X.

Proof. Let x € X be arbitrary. If Py(x) = 0 then x € Uy C Uy. Suppose
1
Py(x) # 0. Let vy € Py(x). Define x,, = W(ac, vg, 1 — %>,n =1,2,...1.e. x, lies on

the line segment joining x, vy and so by Lemma 3, vy € Py;(x,,) for all n. Since X is
strictly convex, Py (xy,) = {vo} for all n by Lemma 4. Thus «,, € Uy for all n. We
claim that (x,) — «. Consider

d(x,, x) :d(W<ac,v0,1 — %),x)

== ld(.’)ﬁ,’vo)
n
—0asn — oco.

Therefore (x,) — x and so x € Uy;. Hence X = Uy, i.e. Uy is dense in X.
Since every normed linear space is externally convex and for proximinal sets M,
Py(x) # 0, we have

Corollary. [51IfM is a proximinal subset of a strictly convex normed linear
space X then the set Ty is dense in X.

Proof of Theorem. Since M is approximatively compact, TM =Ty=Uy
by Proposition 2. By Lemma 5, U, is dense in the strictly convex space X. Since
Tz/w c G, foralla >0, Uy C G, for all a > 0. This implies Uy ¢ G, = X c G, for
all a > 0= G, is dense in X for all a > 0. Now

Ty ={x e X : Dy =0}

. 1
:nDN{oceX.DM(ac)<n}

= G

neN

Hence T]'W and T are residual sets in X.
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Since every normed linear space is externally convex, we have

Corollary. [5] If M is an approximatively compact subset of a strictly
convex Banach space X then Ty and Ty, are residual sets.
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Abstract

S. B. Steckin [5] proved that for a proximinal subset M of a strictly convex Banach space
X, the set {x € X : x has a unique best approximation in M} is dense in X and is a residual
set in X if M is approximatively compact subset of X. We extend these results to convex metric
spaces.



