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A degenerate rainfall infiltration model

with periodic data (**)

1 - Introduction

The paper deals with a degenerate nonlinear boundary value problem modelling
incompressible periodic rainfall infiltration into a homogeneous, isotropic, un-
saturated porous medium. The mathematical treatment of incompressible fluids
through unsaturated medium, began with the work of [25]. A porous medium con-
sists of a solid matrix and void pores. The pores are filled with water provided by
rainfall, irrigations, leaking from the surfaces waters or underground sources. To
study water infiltration supplied by rainfall is of great importance when we want to
forecast the history of contamination.The flow is said to be unsaturated as long as
void pores are still present. Water infiltration in unsaturated soils is formulated by
the Richards equation

0, — div(D(O)VO) + iK<0) =f
(9903

(see e.g. [5]) where D(0) represents the water diffusivity and K(#) the hydraulic
conductivity. These functions D(#) and K(6) both depending nonlinearly on 6, were
introduced in the soil sciences by empirical expressions and defined in a subset of R.
This fact is a feature of the diffusion that develops in a porous medium which may
reach the saturation 6; when the fluid fills all free pores. For a weakly nonlinear
isotropic medium, the water diffusion D and the hydraulic conductivity K are real
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functions defined on [0, 6] (see [7], [24]). In the specific framework of the paper, the
degeneracy occurs at only one point where the solution becomes 0 and the water
diffusion D(0) vanishes. The degeneracy of Richards’ equation in [4], [24] appears
since the water diffusivity blows up at the saturation value. In our case, this singular
behavior is avoided by considering a finite value of diffusivity.

Let Q be a bounded and regular open set of R" (n =1, 2, 3), we consider the
Richards equation with nonhomogeneous flux conditions, described by the following
mathematical problem

(1.1) 0y —AE(@)—i—aixSK(H)zfin Q:=QxP,

(1.2) (K(0)iz — VD(©0).0 = p(x,t) on £, := T, x P,

(1.3) (K(0)iz — VD(0)).0 =a(@)D(0) + fo(x,t) on X, :== I, x P,
(1.4) 0(x,t + w) = O(x,t) in Q, » > 0,

where P := R/wZ denotes the period interval [0, w], so the functions defined in @ are
automatically w-time periodic. We assume that

Hp) D is apositive continuous, monotonically increasing function defined in (0, 5]
such that }}H{ly D) = 0.

The function p

D(0) := JD(s)ds, 0 € [0, 6,]
0

is the Kirchhoff transform.

The boundary 0L is composed of the disjoint boundaries I, the inflow boundary
and /Iy, the outflow boundary. On I",,, we consider a flux due to the rainfalland on I, a
flux proportional to the water diffusivity. In this model, v is the outward normal to 02

and i3 is the unit vector along Ox3 downwards directed. The term %K (6) represents
3

the contribution given by the effect of the gravitational field upon the infiltration
process while the function f > 0 stands for a periodic water source within the domain.

To study our problem, we shall do the following structural assumptions on the
data

H,) {K is a positive, bounded and continuous function with }

0 <k < K(s) < ky,Vs €10, 6]

Hy) f € L*@Q);

Hy) ¢ € LA(2,);

Hy) fo € L*(Zy).



[3] A DEGENERATE RAINFALL INFILTRATION MODEL WITH PERIODIC DATA 137

A fairly general situation including the present type of operator is considered in
[1]. The hydraulic process describes the evolution of the volumetric water content 0
present per unit volume of soil. Physical arguments lead to consider ¢ > 0. There is
an extensive mathematical literature on the infiltration in porous medium problems
closely related to the one considered here, [4], [9], [11], [12], [15], [16], [23], [26], [27],
[28]. Degenerate equations are considered in [13], [14]. In most cases, the authors are
not looking for periodic solutions. However, papers like [22] and [17] are focussed
particularly on this issue. Generally, the Richards model behaves hysteretically if
infiltration is followed by evaporation. We assume that only infiltration takes place,
so we can neglect the hysteretic aspect. A consequence of the degeneracy of the
equation is that we do not expect to have classical solutions. Therefore, we need to
introduce the concept of weak periodic solutions.

The paper is organized as follows. In Section 2, we introduce the space of w-
periodic functions where solutions are sought and give the definition of weak solu-
tion. Section 3 is devoted to prove the existence of weak periodic solutions 6,, for the
regularized problem. Uniform estimates are established to pass to the limit on 6,,. In
Section 4, we use Schauder’s fixed point theorem to get the existence of weak per-
iodic solutions. Finally, in Section 5 the Hélder continuity assumption on the inverse
of the Kirchhoff transform (see below), is used to show the existence of weak periodic
solutions to (1.1)-(1.4).

2 - Preliminaries

H,) a is a positive continuous and bounded function such that 0 < a,, < a(x) < ay,
Ve e I,

Next, let us introduce the functional framework for the periodic solutions of
problem.

We consider the Hilbert space

V = LA(P; WY(Q))
endowed with the norm
1/2
1oy = (J | Vo, §) [ dudt + J a@) | v(@,1) [ det)
Q 2y
equivalent with the usual norm in V, and its topological dual space
V* = LA(P;(W2(Q))")

with ||.||, norm. The duality pairing between V and V* shall be written as (., .).
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To prove the existence of solutions, we extend D and K by continuity to the left of
zero and to the right of the saturation value 05, preserving the properties of the
original functions.

=0,if6<0
D(@){ = D), if 0<0 <0
= D(0;), if 6 > 0

=k, f <0
K@) =K@, if 0<0<0;
ZkM, if 0 > 0,

(see [24)).

The mathematical approach to periodicity shall be of static type, that is we will
transform problem (1.1)-(1.4) in an abstract problem to which we apply some tech-
niques of the maximal monotone mappings theory. Because of the degeneracy of
equation (1.1), we consider a nondegenerate regularized problem obtained replacing
the term D(0) with D,,(s) := D(s) + s/n, for any s € R and n € N, (see [18]).

Definition 2.2. A function 0 is called a weak periodic solution of (1.1)-(1.4) if
0 € L*(P;W'3(Q)), 0; € L*(P; (W"*(Q))")
and satisfies

2.1) Jetédxdt + JVE(@)VCdxdt - JK(H)%Cdxdt + J a(x)D(0)(dSdt
3
Q Q Q 2y

- J fla, t)edadt — J (e, )CdSdt — J fole,HCdSdt, Y € V.

Q 2y 2y

3 - The approximating problem

Fixed w € L3(Q) and defined D,,(s) := D(s) + s /n, for any s € R and n € N, the
nondegenerate regularized problem assumes the form

(3.1) O — oD, G)V0,) + - K(w) = in @
3

(3.2) (K(w)ig — D,,(w)V0,).0 = p(x,t) on X,
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(33) (K(’I/U)lg - D;Z(/M))Vgn).l) :a(x)Dn(Hn) +fb(x7 t) on 2{17
(34) O0,(x,t +w)=0,(x,t)in Q, >0
with

1 1
H)— < D (s) = D(s) + —<1+D(0),¥s € R,meN.
Its weak periodic solution is a function ,, € V with 6,; € V* such that

(3.5) Jf)médwdt + JD;%(w)VHnVCdxdt
Q Q

— JK(w)iCdxdt + J a(x)D,,(0,)dsdt
696‘3
Q 2y

- J Fa, t)edudt — J (e, ) dsdt — J folx, t)edsdt, Y € V.

Q 2o 2a

The approach to periodicity of solutions for problem (3.5) is based on the next result.

Theorem 3.1. ([3], [8], [20]). Let L be a linear, closed, densely defined
operator from the reflexive Banach space V to V*, L maximal monotone and let
A be a bounded, hemicontinuous monotone mapping from V into V*. Then,
L + A is maximal monotone in V x V*. Moreover, if L +A is coercive then
Range(LL + A) = V™.

In order to use Theorem 3.1, we must define the operators L and A.
The set
D = {v € L*(P;W'3(Q)) : vy € LA(P; (W'2(Q))")}

is dense in V because of the density of COO@) cDinV.
Let

L:D->V*
be the linear operator with
(LBy, §) = Jﬁmédxdt, forany (€ V.
Q

This operator L is closed, skew-adjoint (i.e. L = —L*) and maximal monotone
(see [20], Lemma 1.1, p. 313).



140 M. BADII [6]

Given w € L?(Q), we define
A: V-V
by setting
(A0, 0) = JD’n(w)VHnVCdacdt + J (@)D, (0,)dSdt.
Q

Za

The properties of the operator A are contained in the following result.

Proposition 3.2. If assumptions Hp) and H,), H,) are satisfied, then A is

i) hemicontinuous;
ii) monotone;
iii) coercive.

Proof. i) By the Holder inequality one has

1/2 1/2
| (A0, {) | <1+ D) (J | VO, [* dxdt> (J | V¢ 2 dxdt)
Q Q

1/2 1/2
+ < J a(@) | D0, det> ( J a(@) | 2 det>

P 2

1/2
<1y [(1 + D) ( J V0, P dxdt) +(1+ D@) J a@) | Oy det)“Z]
Q 2y

< Il (@ + DO 0ully)

so that
A0y ], < @+ DO))||0n |y

and the hemicontinuity emerges from a result of [19], Theorems 2.1 and 2.3.
ii)

(A0} — A%, 01 — 7)) = JD;,(w) | V(0L — 67) | ducdt

n» vn n I
Q

+ J a(@)(Dy(0%) — D, (02)(02, — 07)dSdt

2y
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- J D/ w) | VO, — 02) 2 dadt + J a@)D(EL) — DENO: — 02)dSdt
Q

P

+% J a(@) | 02 — 6% * dSdt =0
Za

because of the monotonicity of D(s).

iii)
(A0, 0, )= JD’n(w) | VO, [? dadt + J a(x)D,,(0,,)0,dSdt
Q o
1 2 1 2
=>—|| VO, " dedt +— | al®) | 6, |© dSdt
n n
Q P
1
> 1|0}
Hence,
(A0,,0,) _ 1
— = —|0, — +o00, as ||0y|y — +oco. u
Ho?lHV nH ”V H ”V
Finally, let
G: V-V

be defined by

(G, = J fe, )dudt — J (e, )CdSdt

Q Zy
- Jfo(ac, t)(dSdt — JK(W)%Cdxdt, v(eV.
3
%, Q

Then, problem (3.5) can be reformulated as an abstract problem of the form
(3.6) Lo, + A0, =G

to which we apply Theorem 3.1.
Hence, we can state the main result of the section.

Proposition 3.3. Given a w € L*(Q), assuming Hp)-H,) and H,), H,) the
problem (3.6) admits a unique weak periodic solution.
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Proof. The existence of weak periodic solutions is a consequence of Theorem
3.1, while the uniqueness comes from the strict monotonicity. |

4 - A fixed point argument

In this section our interest is focussed on the research of fixed points for an
operator equation.
Let

o LAQ) — L*Q
be the mapping defined by
D(w) = 6,
where 0,, is the unique weak periodic solution of (3.1)-(3.4). The mapping @ is well-
defined. In order to prove its continuity, we will prove some crucial estimates and
convergences, useful to utilize the Schauder fixed point theorem. Let w;, € L?(Q)be a

sequence such that wy, — w strongly in L?(Q), we denote with 0, the weak periodic
solution of

(4.1) J@tﬁnkédacdt + JD;z(wk)VﬁnkVCdacdt + J a(@)D,,(0,)(dSdt
Q Q Za

= JK(wk) ﬁolacolt + Jf(x, t)dxdt
8903
Q Q

- J o, )CdSdt — Jfo(ac,t)Cdet, vieV.
z

Z"/‘
Chosen { = 0, as a test function in (4.1), the periodicity of 0,,, implies that
JD’n(wk) | VO, |? dudt + J a(®)D,,(0,1.)0,.dSdt
Q o
89nk

= — JK(wk) dxdt + Jf(ac, )0, dacdt
8.%‘3
Q Q

- J(p(m, £)0,,dSdt — Jfo(m, £)0,,dSdt

5, .,
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and the Young inequality yields
%J | V0, |2 dacdt +% J a(x) | 0, |2 dSdt
Q 24
J | KGuy) 2 ddt + & J | VO, 2 dedt
Q
+iJ | fla, t) [? daedt +
2¢ ’
Q
1 2
+—J | e, ) [2 dSdt +
2¢

2y

g | O 2 daedt

| O 2 dSdt

+2ng | folw,t) [2 dSdt + £ | | 0, 2 dSdt.

2

DO ™
M SML_ & — ‘6

Z‘a
Therefore,
(G2 ([ 190 e+ [ ater | e st
n 2
Q

Za

Q
| O 2 dacdt + — J | p(x, t) [2 dSdt

Q 2

I
<l
— |K(w)|2dxdt+ | fla, t) |? doedt

J | folx,t) |2 dSdt + = J | O 2 dSdt + = J | 0, 2 dSdL.

5 z, .

Recalling that

I8l z2p2cr,y < llsllys I8l 2@z < c2llslly, 18lz@reay < esllslly

on account of the equivalence of the norms in V', we have

1 2 2 2
(1_8( +Cl+02+03 )(J | venk |2 dadt + J a(x) ‘ an ‘2 det)

n 2
Q 2y

<Hrqrel o | 176e0) P d
Q

J | o, t) > dSdt + — J | fole, ) |? dSdt < C'.

2,7, Z‘11

143
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A specific value of ¢, gives us

(42) 190w P dwat+ [ a0, P asat<c,
Q Z,

where C, is a positive constant independent of k.
From (4.1) and the energy estimate (4.2), it follows that 0,0, is bounded in the
V* norm. Therefore 0, lies in a bounded set of D, namely

10kl p < Cu, Yk € N.
Thus, we can select a subsequence, still denoted by 0,, such that
O, — 0, in D when k — + oo.
By a result of [20], Theorem 5.1, the sequence 0, is precompact in L?(Q) that is
O — 0, in L*(Q) and a.e. in Q.

Lemma 4.1. The mapping @ is continuous.

Proof. The convergences
0, —0, in L*(Q) and a.e. in Q
V0, —V0, in L*(P; (L*(Q))")
an 4\871 in LZ(Fa)
wr —w in LA(Q)

D!, (wy,) —D.,(w) in L*(Q)
enable us to conclude that ®(wy) = 0, converges strongly to ®(w) =0, in L*(Q). N
Lemma 4.2. There exists a constant B > 0 such that
|Dw)| 12 < B, Yo € L*(@Q).
Proof. The assertion of lemma is obtained letting k¥ — + oo in (4.1). |
Since &(L*(Q)) C D and the embedding D—L*(Q) is compact, the operator @ is
compact from L?(Q) into itself.

Then,

Theorem 4.3. If Hp)-H,) and H,), H,) hold, there exists at least a weak
periodic solution 6, of (3.1)-(3.4).
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Proof. As a consequence of Lemmas 4.1 and 4.2, the mapping @ is both con-
tinuous and compact. Therefore, by the Schauder fixed point theorem @ has a fixed
point which is a weak periodic solution to (3.1)-(3.4) i.e.

4.3) J O dadt + JD;l(Hn)VHnVCdxdt
Q Q

_ JK(@,Z)igdde J (@)D, (0,)CdSdt
8003
Q Zn
= Jf(x, ) dxdt — J o(x, t)dSdt — Jfo(oc,t)CalSolt7 Yl eV. |

Q 2y Zu

5 - Existence of periodic solutions

The assumption

Hp) D ~1(s) Hélder continuous of order y € (0, 1)
shall play the leading role for the existence of weak periodic solutions. Taking
{ = D, (6,) as a test function in (4.3) and using a result of [2], we get

O (ac,t)

J%J ( J Dn(r)dr> dxdt + J | VD,(0,) ? dedt
0 Q 0 Q

+ J a@) | D,(0,) 2 dSdt
z

- JK(&»%Dn(@»dxdt + jf(ac, HD,(0,)dadt
3
Q Q

2¢ Z(l
The periodicity of 0, and the Young inequality lead to

J | VD,(0,,) |* daedt + J a(@) | D,(0,) |? dSdt
Q Zy

| —

<

DO

J | K(0,) 2 devdlt + gJ | VD, (0,) |? dacdlt
Q Q
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+ J | F, ) |2 dadt +

Q=
DO| ™

J | D,(0,) |? dedt
Q

Q
+ J | (e, t) 2 dSdt + = | | Dy(0,) |* dSdt

2

DO| ™
—

&=
=
I®

L | D,,(0,) |? dSdt.
2¢

+ | fole, ) |? dSdt +

—_—

¢
2

2 —

M
M

Finally,

Za

J | VD, (6,) 2 ddt + J a(@) | Dy(0,) [ dSdt
Q

kzzw € 2 2 1 2
<P 1QI+5EIDAOIE + 5 [ 176wty P doc

Q

e 1
+5BIDOIE + 5 | 1ot P dsat
ZW

, 1 :
5 IDON +3, | 1t S+ ZNDOIE
P

by which

(1 N 2@ +2¢+ 6‘?)) 1D 0|3 < K-

For a suitable choice of ¢, we can obtain

(5.1) 1D, 05 < k2
and
(5.2) IVDu@I[Zep 2y < s
Thanks to (5.1),
. ——— i
(5.3) 1Dy + 2 <hy

and from (4.1), 0, is bounded in L2(P; (W'2(Q))") i.e.
||Hnt||V* <ks

where k; , 1 =1, 2, 3, 4, 5 are positive constants independent of #.

[12]
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By virtue of (5.3), D(0,) is bounded in V and in L2(P; W*2(Q)) Vs € (0, 1), because
V is continuously embedded in L*(P; W*2(Q)). The Hélder continuity of D ~! and
D ~1(0) = 0 imply that 0, € W2/7(Q), for a.e. t € P.

By standard result (see [10], Lemma, p. 266), 6,, is bounded in
L2/7(P; Ws2/7(Q)) because

1/y - = -11/y
10Oy < DO | D~ ipaer -
An integration of this inequality over P yields
2/y =y 2 = _112/y
10, L/z)/;(P;WVS.Z/»,(Q)) < D@22 pws2c 1D 1|\H{§zder :

Since
W2l(Q) c LP7(Q) ¢ LA(Q) ¢ W'(Q))*

with compact injection (see [10], Theorem 3, p. 266), by a compactness result given in
[21] the injection of the set

{6, € L2"(P;W2(Q)) : 0,y € L*(P; W(Q))")}

is compact in L?/7(P; L?/7(Q)). Therefore,
(5.4) 0, — 0 in L*(Q) and a.e. in Q
(5.5) Ot — O; in LA(P; (WH(Q)").

Then (5.1) and HDW(H?Z)||L2(P;L2(1",l)) < c3||Dn(0y)|]y yield
(5.6) D,(6,) — y in LA(P; W*3(Q)) and in L2(P; LA(I,)).

By (5.4) it follows that

| DW(0,) — D) | < | Dy(0,) — DO,) | + | D(0,) — D(O) |

0 _ _
< %+ | D(0,) — DO) |— 0

a.e. when n goes to infinity. Thus,
D) =y .
Furthermore, for (5.2) we have
VD, (0,) — p in LA(P; (LP(Q)")
hence,

J VD, (0, dudt J VD0, dedt + % J V0, cdxdt VeV,
Q Q Q
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Letting n — + oo, we infer from

J,u{dacdt = JVE(O)Cdxdt
Q Q

that

(5.7) VD,(0,) — VD(0) in L*(P; (LAQ))") .
Next we give the main result of the paper.

Theorem 5.1.  Assume Hp)-Hp) and H,), Hy). Then there exists at least a
weak periodic solution for (1.1)-(1.4).

Proof. The existence of solutions is proven taking into account (5.4)-(5.7) and

passing to the limit in (4.3). This concludes the proof. |
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Abstract

The main nterest in this paper is to prove the existence of weak periodic solutions for a
degenerate rainfall infiltration into an unsaturated soil model which consists of Richards’
equation with nonlinear flux boundary periodic conditions. The aim shall be achieved re-
formulating the problem in abstract form in order to apply some general results of the
maximal monotone mappings theory and the Schauder fixed point theorem.
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