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A Steffensen’s type method with modified functions (**)

1 - Introduction

Solving a nonlinear equation f(x) = 0 using iterative method is a classical pro-
blem in numerical analysis. The most useful and studied scheme is Newton’s method
(second order for simple zeros)

fa,)

an:xn—m7 %2071,2,....

In [2], Ben-Israel analyzes Newton’s method when it is applied to modified functions.

For instance, if we apply Newton’s method to the modified equation f(x) = J{’((fc)) =0
we obtain a second order method for zeros of any multiplicity. On the other hand, if

f@)
V(@)

method (third order for simple roots)
fn)

, S (@)
fe,) — mf(xn)

In this study, we analyze an improvement of the Steffensen’s method that re-

we consider f (x) = the new iterative method is, the well know, Halley’s

,m=0,1,2,...
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quires only two function values in each step. We are interested to obtain similar
behavior as Newton’s method. We propose also a quasi-Halley’s method without
using any derivative. From the convergence properties and the numerical results the
introduced methods are good alternatives to the classical methods.

The paper is organized as follows: in section 2, we introduce the basic ingredients
of the modified functions, some secant type conditions and an improved Steffensen’s
method. Its convergence analysis are studied in section 3. In section 4, a quasi-Halley
iterative method is described. Finally, a numerical experiment and conclusions are
presented in section 5.

2 - The basic ingredients

The above mentioned modified functions are special cases of

(1) f@) = J 1 p ),

with a suitable integrand a(x).
In this paper, as in [2], we study the special case of (1)

(2) f@) =@—-0/f@), 0,peR

corresponding to the selection of a(x) as

B
x—0

(3) alx) = —

Applying Newton’s method to (2), we get

L @O
(xn - e)f/(xn) + ﬂf(%'n)7

The classical Steffensen’s method can be considered as a modification of
Newton’s method where f'(x,,) is approximated by Jf (xy, ¢, + f(x,)), Where

f() —f )
x—y

(4) Lps1 = Ty n=0,1,2,...

éf(x,?/) =

Our iterative procedure would be considered as a new approach based in a better
approximation to the derivative f’(x,,) from x, and x, + f(x,) in each iteration. We
consider

(5) 5f(90n, 9~0n)

where &, = xy, + ay f ().
These parameters a,, € R will be a control of the good approximation to the de-
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rivative. Theoretically, if a,, — 0, then
5f(xn75€n) _)f/(xn)

In order to control the stability, but having a good resolution at every iteration,
the parameters a, can be computed such that

tOlc << |anf(90n)| < t0lu7

where tol, is related with the computer precision and tol,, is a free parameter for the
user.

At practice, some advantage will present this modified Steffensen’s method.
Since in general Jf (x,, %) is a better approximation to the derivative f'(x,) than
of (2, ¢y, + f(2,,)) the convergence will be faster (the first iterations will be better).
Moreover, the size of the neighborhood can be higher, that is, we can consider worse
starting points xy (taking a,, sufficiently small), as we will see at the numerical ex-
periments.

Thus, we are interested to study the behavior of the iterative method given by

2 = — (xn - H)f(mn)
T = 0)0f (o ) + B ()

First, as in [2] for Newton’s method, we obtain a geometric interpretation of the
method (6).

(6) n=20,12...

Definition 1. Two functionsf and g are called secant at two points x,, and y,
(xn 7& ?/n) 7:ff(%n) = !}(%n) and 5f(xna yn) = 59(9511’ yn)

Clearly, f and ¢ are secant at x,, and x,, + a, f(x,) if and only if f -2 and g -
are secant at x, and x, + a,f(x,), whenever h(x,) and h(x, + a,f(x,)) are dif-
ferent to zero.

Given f and 0, we consider parameters a and b such that

a+ blx—0)

7 F,0,p) =—————
() B s

is secant to f at x,, and x,,.

If 0 # x,, thenf and F'(x, 0, ) are secant at x,, and &,, if and only if (x — H)ﬁ f(x) and
a + b(x — 60) are secant at x,, and &,,.

We summarize:

Theorem 1. Let the nonlinear equation f(x) = 0, let 0, f fixed, and let x,, # 0
and &, # 0 be points where (x, — )of (xy, x,) + ff (x,) # 0. The function
a+blx —0)

F(z,0,p) =
(,0,p) @—0F
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secant to f at x, and X, has a zero at

(@, — O)f (@)
(@, — O)Of (@, T + an f(20) + Bf () ’

(8) Lpyl = Ly — n=20,1,2...

which is the zero of the affine function

l(x) = a+ blx — 0)
secant at x, and &, to

f@) = @ - 0/f@).

This theorem states that the iterative method (6) is equivalent to finding the zero
of the function (7) which is secant to f at x,, and x,.
3 - Convergence analysis

Assuming convergence we analyze the order of (6).
The iterative method (6) can be written as

B S )
Ln+1 = L — 9(t)
_ @y + anf@@n) = f (xn) ﬁ
By Taylor series,
Flan + anf@) =) + 0 0, ) + LU )R + O fa?),
then
g 1 " (Z?Lf(:)&,,)z p
g(xn) —f (@) (1 - zhnanf (n) + O( f/(xn) >> @, —0) f(xw)
A G
where £, = )
Thus,
Tpg1 = L + Iy (l + Sy [ (@) + ——— = ﬂ f @) f" (@) + OCf (@,)?) )

On the other hand, since

0 =f(") =f(w,) + @ —xn)f (@) + %(x* — 2, f"($)
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¢ € mt(x*, x,), we deduce that

fl/(¢)

_ * 1 * 2
hn—(x _xn)+é(x _xn) f,(x”)~

Finally, we obtain

Ly — a1 () ) T
e (@, —a?  2f'@) (1 @) a”)’
and the method has order two of convergence for simple roots, as Newton [2] and
Steffensen [3] methods.

3.1 - Monotone convergence

As Newton’s method, the monotone convergence of the proposed iterative
method (6) is related to a notion of convexity.

All functions in this subsection are twice continuously differentiable in a real
interval 1.

Definition 2. A function f is supported by g at xy if f(xg) = glxg) and
f@) > gx) for all x € I. And supported strictly if the above inequality is strict for
all x # xg.

Let F be a family of functions : I — R.

Definition 3. A function f is called (strictly) F-convex if at each point in I it
18 (strictly) supported by a member of F.

We use the family of functions (7)

a+ble—0)
Fop=3————=: a,be R
& { w—of ~P°F }

where 6 and f are given parameters.
We refer [2] and the references therein for more details.

Theorem 2. Let f be strictly Fogp-convex in an interval I, 0 € R\ I and
xo,x* € I, where f(x*) = 0. Then, all iterates generated by

_ (mn - H)f(x)
(@0, — O)f 2y, %) + ,[))f(xn),

(9) L1 = Xp n= 0, 1,2, .

are in I and
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@) If f(xg) > 0 then f is positive for all points x,,.
(b) If f(xg) < 0 then f(x1) > 0 for ay sufficiently small and thereafter f 1s
positive at all iterations.

Proof. We use that the theorem holds for Newton’s method (Theorem 2 of
[2]).

Let us denote xftef and 2N the sequences defined from xy by the scheme (6) and
Newton’s method respectively.

(a) Since f(x9) > 0 we have Jf (a0, 2o + aof (x9)) > f’(xp), then

Stef _ (wo — 0)f (o) w _ (wo — 0)f (o)
T 00 e, o) + o) — = Of (o) + ff o)

(b) Given & < | f(xYe")|, there exists ay such that | f(New) — f@")| < e.
Since f(xY¥") > 0 we obtain f (x‘lgtef ) > 0. O

4 - A quasi-Halley iterative method

In [2], it is proposed the following quasi-Halley method

flaen)

Tp+1 = Ty — 7 !
/ _ S@n) — f(@n1)
@) 2y, — x’nfl)f/(xn) Flwn)
xn) _f,(xn—l).

/,
where the original second derivative f”(x,) has been approximated by ! ((x %, 1)
n n—

Following a similar idea as before with Newton’s method, we consider the new
quasi-Halley method given by

,n=01,2...

S@y)
5f(xn - (lnf(xn)7 Tyt (lnf(xn)) - 25f(90n — az;f;‘céé:)?j ’90{:)4— (lnf(ﬂcn)) f(gcn)

(10) Lp41= Ly —

n=0,1,2 ..., where p@,,ay,;f) =[x, — anf (@), Xn, Xy + o f(xy); f] denotes a
second divided difference of f
_ f(xn + anf(xn)) - Zf(xn) +f(xn - anf(xn))

((lnf (gcn))z

For simple roots of sufficiently smooth functions the quasi-Halley method pro-
posed in [2] has order of convergence 2.41, our new scheme has order 3:

V(xn y On s f)

Theorem 3. Ifthe quasi-Halley scheme (10) converges to a simple root of a
sufficiently smooth function, then it has order three.
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Proof. The iterative method (10) can be written as

B f,)
Lp4+1 = Ly — g(xn)
with
@) = O @ — an @), @ + @y @) — K, i ) £,
" " " R " " 25f(xn - anf(xn)a Ty + (lnf(xn)) "
By Taylor series,
5f(xn - anf(mn)7 Xy + anf(xn)) :f/(mn) + O( f(xn)z)
W, Oy f) :f”(ﬂcn) + O( f(xn)z)
oy @) 2
9(@y) = f'(wy) Zf’(mn)f(x") + O(f(xn)).
Thus,
Tp+1 = Tn +f/(x ) - f//(xn)f(xn) + O( f(%n) ))
" 2f"(xy)
=2 1+ O(f@)?)
and the method is of order three [1]. O

4.1 - Comparison of the steps

In this section, we compare the step of Halley’s scheme [2]

= ]}(ac(; )
f'en) — o 2y @n)
and the step of the new quasi-Halley’s scheme
f @)

qn =

Y@, O [) .
éf(ﬂcn - (lnf(xn)7 Ty + (lnf(xn)) - zéf(xn — anf(xn)a T+ anf(xn)) f(xn)

We assume that f have continuous third derivative in the interval Jy and that
|f’(90n)|2 < 2f(x,)M where M = sup | f"(x)|.

DCEJ(]
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Using the mean value theorem and algebraic computations we arrive to

20 f(@))? || [t | (2t |N + AM + 2]t || M2)

|hn - (In| <
M(‘4 LMZ +2MaZu,, — ,L| — 4|ay, )
(f' (@) S(@wy)
where N = Supzer, |fw(90)| and u, :JJ:/((Q;Z))

5 - A numerical experiment and conclusions

In order to show the performance of the modified Steffensen’s method, we
have compared it with classical Steffensen’s type methods. We consider
tol, = 1078 >> tol.. We would like to show the importance to consider the
parameters a,,.

We consider the following modified (not-differentiable) function (in particular we
can not apply the classical Newton’s method),

, e i <0
11 _
tn 1 {—(903—1—90) it >0

where k is a real constant.

For 2y =0.1 and k=1, all the iterative method are Q-quadratically con-
vergent, see table 1. Nevertheless, for a, = ¢ fix and small the method has pro-
blems with the last iterations. If we consider a stop criterium in order to avoid this
problems then we won’t get full accuracy. Our scheme converges without stability
problems.

Finally, in table 2 we take different initials guess. In this table, we do not write the
results for Steffensen’s because in all the cases, the method does not converge after
10° iterations. On the other hand, if ¢ is not small enough the convergence is slow, but
if it is too small stability problems appear, as we said before. Our iterative method
gives goods results in all the cases.

TABLE 1. — Error, equation (11), 2y = 0.1

iter. Steff. e=10"1 e=10"8 tol, = 10°8
1 1.38¢ — 03 2.99¢ — 04 2.99¢ — 04 2.99¢ — 04
2 5.09¢ — 11 1.72¢ — 13 5.21e — 09 2.26e — 14

3 0.00e + 00 NaN NaN 0.00e + 00
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TABLE 2. — Final iteration and error, equation (11)

e=10"* e=10"8 tol, = 108
2o iter. error iter. error iter. error
4 13 4.20e — 13 9 6.14¢ — 09 9 0.00e + 00
8 457095 1.27¢ — 13 11 2.42¢ — 09 12 0.00e + 00
16 > 108 — 20 3.46¢ — 09 14 0.00e + 00
32 > 106 — > 106 — 16 0.00e + 00

Concluding:

We have studied a Steffensen’s type method with modified functions. We have
made an analysis of the convergence using generalized convexity. The new iterative
method seems to work very well in our numerical results, since we have obtained full
order of accuracy without using any derivative.
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Abstract

A generalization of the Steffensen’s method with modified functions is studied. Our goal is
to obtain similar properties as Newton’s method, but without evaluating any derivative. A
quasi-Halley’s method with only function evaluations is also presented. Convergence ana-
lysis and numerical results are analyzed






