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1 - Introduction

This paper summarizes a series of lectures given by the author at the University
of Milano in the winter of 2007. It is devoted to a self-contained and elementary
approach to the mathematical properties of reversible reaction-diffusion equations,
almost entirely based on the entropy estimate.

The only mathematical prerequisites for this paper are some familiarity with
PDESs methods (like, for example, Sobolev inequalities), together with a few basic
facts about the solutions to linear parabolic equations.

Our goal is to show how the entropy estimate (which, together with the con-
servation of atoms, is the only physically relevant estimate) can be used in a sys-
tematic way in order to get bounds leading to existence of strong or weak solutions,
as well as bounds for the rate of convergence to the equilibrium.

We have decided to present the estimates for three typical systems corre-
sponding to basic chemical reactions involving a few species, rather than introducing
general systems with an arbitrary number of species and reactions. We hope that
this simplified presentation, which retains many of the difficulties of the general
case, will help the readers.
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1.1 - Reversible reactions

Our aim is to study reversible reaction processes for a set of chemical species
Ai,i=1,2,...,q, of the type

1) WAL+t g Ay = P A+ BpAg, ai B €N

We define by a; := a;(t) the concentration at time ¢ of species A;. Then, thanks to the
mass action law, the functions a;,7 =1,2,...,q, satisfy (Cf. for example [7]) the
following system of ordinary differential equations (ODEs):

q q
(2) a;(t) = (B; — @) (l [Tei®—k]] a_f%t)) :
j=1 j=1

Here a;, f; are the stoichiometric coefficients, and k > 0, [ > 0 are strictly positive
reaction rates corresponding to a reversible reaction.

1.2 - Convection; diffusion

We now assume that the chemical reaction happens in a reactor (that is, from the
point of view of mathematics, a bounded box 2 C RY (N > 1), assumed to be smooth
(C?), bounded and connected), where the molecules of the various species are
moving.

We shall concentrate on the case when the molecules of the various species diffuse
(each species has its own velocity of diffusion) within a non-reactive background
supposed to be at rest. It means that the unknown is a; := a;(t,x) > 0,71 =1,...,q
(where x € Q). 1t satisfies (Cf. for example [3]) the following system of partial dif-
ferential equations (PDE):

q q
(3) Ora; — d; 4,0 = (B; — a;) <z [[ef —&]]d} ) ,
j=1 j=1

where d; is the diffusion velocity (in the non-reacting background) of species A;.

Note that many important problems involve some form of convection. The sim-
plest modeling involving such a phenomenon concerns the case when the (non-re-
active) fluid is not at rest, but has a velocity v := u(t, x) € RY. In this case, equation
(3) becomes

q q
(4) Qi + Vo - (wa;) — d; 4,0 = (B; — a;) (z [[ef —k ] > :
j=1 j=1
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However, the most interesting situation concerns the case of a mixture of reactive
gases satisfying reactive Euler equations or reactive Navier-Stokes equations. We
refer to [7] for a precise description of such a situation.

We shall assume that the molecules are confined in the reactor, so that the flux of
concentration of each species at the boundary 0Q is 0. This gives for equation (3) the
homogeneous Neumann boundary condition:

(5) n(@) - Vya; =0,
where n(x) is (and always will be in the sequel) the outer normal unit vector at point x

of 0Q.

1.3 - Three typical chemical reactions

We shall from now on concentrate on the three typical chemical reactions

(6) A+A=B,

(7 A+B=2C,
and

(8) A+B=C+D.

Without loss of generality, it is convenient to assume that (denoting by || the
measure of Q)

9) l=k=1, |Q=1.

This can be obtained (for example in the case of eq. (8)) thanks to the rescaling

t— %t, x — |QF, (a,b,¢,d) — %(a, b,c,d).

Then, we first describe the system associated to A+ A = B. It can be
written as:

o — dyd,a = —2(a? — b),

(10)
b — dydyb = a® — b,

together with the homogeneous Neumann conditions

(11) @) - Vya =0, n(x)-Vyb=0 x € 09,

and the nonnegative initial data

(12) a(0,x) = a;,(x) > 0, b(0, ) = b, (x) > 0.



[5] ABOUT ENTROPY METHODS FOR REACTION-DIFFUSION EQUATIONS 85

Then, we turn to the system associated to A + B = C. It writes
o — dedpya = —ab + c,
(13) Ob — dpd:b = —ab+ c,
o — dedyc = ab — c,
with a, b, ¢ satisfying homogeneous Neumann conditions
(14) ) - Vya =0, n(x) - Vb =0, ) - Vee=0 x € 09,
and the nonnegative initial data
(15) (0, %) = a;,(x) >0, b(0,x) = by (x) > 0, c(0,2) = cip(x) > 0.
Finally, we write down the system associatedto A + B = C + D:
o — dydpya = —a b+ cd,
Ob — dpdsb = —ab + cd,
o — dedc = ab— cd,
od — dgd,d = ab— cd,

(16)

with a, b, ¢, d satisfying homogeneous Neumann conditions

(17)

) - Vya =0, ) - Vb =0, x € 0Q,
) - Vye =0, n(x) Vd =0 x € 0Q,

and the nonnegative initial data

(18)

a(0, ) = a;,(x) > 0, b(0, ) = by (x) > 0,
c(0,2) = cip(@) > 0, d0,x) = di,(x) > 0.

1.4 - Plan of the paper

The rest of the paper is devoted to the mathematical study of the systems (10) —
(12), (13) — (15), and (16) — (18).

In section 2 are presented the basic a priori estimates for our equations: it is
proven there that strong solutions (with strictly positive initial data) are strictly
positive, satisfy a set of conservation laws (that is, the conservation of the number of
atoms of each kind), and (this will be systematically used in the sequel) an entropy
estimate. By exploiting these estimates, a priori L” bounds are proven (with p > 1
depending on the dimension).
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Section 3 is devoted to the treatment of the Cauchy problem for our equations.
For systems (10) — (12) and (13) — (15), it is possible to obtain an L> a priori estimate,
either thanks to a maximum principle, or to the use of the properties of the heat
kernel. This enables to prove the existence (and uniqueness) of a strong solution for
those systems. The situation is completely different for system (16) — (18). No L™ a
priori estimate is known in this case, except in dimension 1 (and, thanks to a very
recent work, Cf. [8], in dimension 2). It is however possible to prove the existence of
weak solutions to this system in L? (for any dimension), thanks to a method based on
duality arguments.

Finally, we present in Section 4 an estimate of exponential decay toward equili-
brium for the solution of system (10) — (12). This estimate is a direct consequence of
the entropy inequality, together with a Cziszar-Kullback type inequality.

2 - A priori estimates; formal computations

We now prove the standard a priori estimates for systems (10) — (12), (13) — (15),
and (16) — (18). For this, we assume that we have strong (for example C%([0, T[ x Q)
for some T' > 0) solutions of one of these systems.

2.1 - Strict positivity

We begin with the question of strict positivity. The following proposition gives a
classical general sufficient condition on the coefficients of a parabolic equation for
propagation of strict positivity:

Proposition 2.1. Let Q be a smooth (C2) bounded open set of R™, T > 0, and
d > 0. We also consider coefficients a € C*([0,T] x Q) and b € C*([0,T] x Q,R.).
We suppose that u := u(t, z) is a solution in C*([0,T] x Q) to equation

(19) Oyult, x) — d A, ult, ) = a(t, x) ult, z) + bt, z),
together with Neumann boundary condition and initial datum
V. u(t, z) - n(x) =0, w(0, 2) = u;p(x) > 0,
where u;, € C*(Q).
Then, for allt € [0, T] and x € Q, u(t,x) > 0.

Proof of Proposition 2.1. We define ¢y > 0 as the infimum of times ¢ > 0
such that there exists xy € Q satisfying u(t, x9) = 0. For t € [0, ty[, we can consider
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f@,x) = Inu(t, x). Then, f satisfies the inequality

- bt w) | |Veult,o)f
8tf(t,9c)fdzle(t,ac)—a(t,x)+u(t’x)+d o = — ol

Voft,x)-n@) =0,  f(0,2) = Inwuy,(x) > — || Inw,|.

We consider (for any &>0) the auxiliary quantity f*(¢,x) =f, x)
+ el t + || In ey, + @+ 1). This quantity satisfies the inequality,

Oft—dA.f° > ¢
together with Neumann boundary condition and initial datum
Ve ft - n(x) =0, fi0,x) > e.

We define t; <ty as the infimum of times ¢ > 0 such that there exists x € Q sa-
tisfying f“(t1,29) = 0. Note that (according to the definition of ¢;), the function
X+ f(t1, x) reaches its infimum at point «, and that ¢; > 0.

If xg € Q, then 4, f(t;, x9) > 0, so that 9, f*(t1,x9) > 0. Since t; > 0, this is im-
possible.

If 2y € 0Q, then, we know that V,u(t1, x) - 7(xg) = 0 (where t(xy) is any vector
tangeant to 02 at point xy), so that thanks to the Neumann boundary condition,
Vaufé(t1,x9) = 0. Therefore, 4, f*(t1,x0) > 0, and we conclude as in the case when
xo € Q.

Finally, t; = ty, so that f“({,x) > 0 when t € [0,%[, and (letting ¢ go to 0),
f@x) > —lallt — || Inwiml . (still when ¢ € [0,¢[). This finally ensures that ty = 7,
so that Proposition 2.1 is proven.

This proposition can be used directly for proving the strict positivity of the
concentrations in systems (10) — (12), (13) — (15) and (16) — (18).

Proposition 2.2. Let T> 0, Q be a bounded regular C? domain of RY,
dy, dy > 0 (together with d.,d; > 0, depending on the system considered) be diffu-
stvity constants, a;, = agp(x) > 0, by, := by (x) > 0 (together with ¢, := cin(x) > 0,
din == din(x) > 0 depending on the system considered) be initial data in C*(Q). Let
also a := a(t, x), b := b(t, x) (together with ¢ := c(t, x), d := d(t, z), depending on the
system considered) be solutions in C%([0,T[ x Q) of one of the systems (10) — (12),
(13) — (15), or (16) — (18).

Then, for all t € [0, T[ and x € Q, one has a(t,x) > 0, b(t,x) > 0 (and c(t,x) > 0,
d(t,x) > 0 depending on the system considered).

Proof of Proposition 2.2. We consider only the system (10) — (12), since the
other ones can be treated in the same way.
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It is enough to consider the time ¢, defined as the infimum of the times ¢ where
there exists xy € 2 such that a(t, x9) = 0 or b(¢, xp) = 0. On the interval [0, ¢], it is
possible to put the two equations of system (10) under the form (19). Then, one can
use Proposition 2.1 in order to show that a(ty, -) > 0 and b(%, -) > 0, which leads to a
contradiction.

2.2 - Conservation of the number of atoms

We begin by noticing that the flow of equations (10) — (12), (13) — (15), or (16) —
(18), conserves a quantity equivalent to the total L!-norm:

Proposition 2.3. Let T> 0, Q be a bounded regular (C2) open set of RY,
dy,dp > 0 (together with d.,dg > 0, depending on the system considered) be diffu-
swity constants, a;, = ayp(x) > 0, by, := by (x) > 0 (together with c;, = cin(x) > 0,
din := din(z) > 0 depending on the system considered) be initial data in C*(Q). Let
also a := a(t, x), b := b(t, x) (together with c := c(t, x), d := d(t, x), depending on the
system considered) be solutions in C%([0,T] x Q) of one of the systems (10) — (12),
(13) — (15), or (16) — (18).

Then, forallt € [0, TTand x € Q, one has the following properties of conservation:

1. For system (10) — (12):

(20) M= J(a(t, x) +2b(t, x)) de = J(am(ac) + 2bj () dac

Q Q

2. For system (13) — (15):

M = J(a(t ©) + c(t,x)) d J (@in (@) + Cin(@)) dic
21) ? ?
M, J(b(t ©) + c(t,x)) d J (bin(@) + cin (@) due
Q o
3. Finally, for system (16) — (18):
My = |(alt, @) + ct, ©) de = | (apn@) + cipn () de

Q

M; = | (b(t, ) + ct, ) d = | (b (@) + cin(@)) dae

Ms := [(b(t, @) + d(t,x)) de = |(bi(x) + di(x)) doe

De— R— b%
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Proof of Proposition 2.3. Those conservations are simply obtained by
taking linear combinations of the equations, and by integrating on the domain ©,
taking into account the Neumann boundary condition.

This ends the proof of Proposition 2.3.

Taking into account the properties of strict positivity and the previous properties
of conservation, we see that there is a natural L>°([0, T']; L}(Q2)) estimate for all the
concentrations appearing in systems (10) — (12), (13) — (15), and (16) — (18).

2.3 - Entropy estimate

Our main tool in the sequel will be the entropy/entropy dissipation con-
servation property. In order to state it precisely, we introduce the following
definitions of entropy E; and entropy dissipation D; (i =1, ...,3 corresponds to
each system), defined as functions of the concentrations, seen as functions of .
For a general definition of the entropy of a mixture of reactive species, we refer
to [7].

We start with system (10) — (12):

(23) Ei(a,b) = J(a(lna—l)—i—b(lnb—l)) dax
2

mm@:dJWW|d+dJWf'm
Q

Q

(24) <+Jka2——b)(ln(az)—-hlb)dx.
Q
Then, we turn to system (13) — (15):

(25) Es(a,b,c) = J(a(ln (@ -1 +b(In®d) —1)+c(In(c) — 1)) de
e}

mm@@szWW|d+dJWf|d+dJWf

Q Q Q

(26) +J(ab —¢)(In(ab) —Inc)dx.
Q

Finally, we introduce the quantities corresponding to system (16) — (18):
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Es(a,b,c,d) := J(a(ln (@) —1)+b(In)—-1)

Q
(27) +c(ln(c)—1)+d(ln(d)—1))dm,
2 2 2
Dy(a,b,c,d) = daJ 'VZ“| o+ de Vabl” g 4 ch 'V“é‘” de
Q Q Q
|V.df?
(28) +deTdac+J(ab—cd)(ln(ab)—ln(cd))dx.
Q Q

We are able to prove the following a priori estimates:

Proposition 2.4. Let T> 0, Q be a bounded regular (C2) open set of RY,
dy, dy > 0 (together with d.,dy > 0, depending on the system considered) be diffu-
swity constants, a;, := ay,(x) > 0, by, := b (x) > 0 (together with ¢, := ci(x) > 0,
din = dip(x) > 0 depending on the system considered) be initial data in C*(Q). Let
also a := a(t, z), b := b(t, x) (together with c := c(t, x), d := d(¢t, x), depending on the
system considered) be solutions in C*([0,T] x Q) of one of the systems (10) — (12),
(13) — (15), or (16) — (18).

Then, for all t€[0,T] and x € Q, one has the following identity: (for the
1€ {1,...,3} corresponding to the system under consideration)

(29) OE; = —D;.

Moreover, this identity entails the following a priori estimate (for all T € 10, + ool):

T

(30) sup E;{) + JDi(s) ds < E;(0).
te[0,T1]

Proof of Proposition 2.4. Note first that we already know that our solu-
tions are strictly positive, so that we can compute quantities like the logarithms
of concentrations. Then, we detail the computation only in the case of system
(10) - (12):

OE = J(lna@ta +1nbob)de
Q

2 2
_ _J(da Veaf | g, Ve ) da
a b
Q
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+ J (InaVya - n(x) +Ind Vb - n(x)) do(x)
0

+J(—2 Ina(a® —b)+Inb(a® - b)) de.
)

We conclude by using the Neumann boundary condition.

The a priori estimate is obtained by integrating between times 0 and ¢ (0 < ¢t < T)
identity (29). This concludes the proof of Proposition 2.4.

2.4 - Consequences of the entropy estimate

The a priori estimate obtained above can be exploited in order to obtain L? type
bounds for our solutions. More precisely, it is possible to obtain the following pro-
position (Cf. [5]):

Proposition 2.5. Let T > 0, Q be a bounded reqular (C?) and connected open
set of RY, dg, dy > 0 (together with d.,d; > 0, depending on the system considered)
be diffusivity constants, a;, == ap(x) >0, by, := by (x) >0 (together with
Cin = Cin(x) > 0, diy, := din(x) > 0 depending on the system considered) be initial
data in C*(Q). Let also a := a(t, x), b := b(t, z) (together with c := c(t,x), d := d(t, x),
depending on the system considered) be solutions in C*([0,T] x Q) of one of the
systems (10) — (12), (13) — (15), or (16) — (18).

Then, for all t € [0,T] and x € Q, and for a denoting any concentration ap-
pearing in one of the three systems, there exists C > 0 depending only on the initial
data and the diffusivity constants such that:

(31) lallgmazvaqo g < C A+ TP EN/NED)

Proof of Proposition 2.5. Thanks to the a priori estimate (30), we see that
for any concentration a appearing in any of the three systems considered (that is,
a = a,b,cor d), there exists a constant C depending only on the initial data (in fact,
the initial entropy of the mixture) such that

(32) J V/al? dedt < C.

Q

o

We use the Sobolev-Wirtinger estimate (valid for u € H'(Q2), where Q is a
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bounded, regular, and connected open set of RY of volume 1, Cf. [1]):

. 2/p*
(33) (J Jux) — ul’ dm) <K J |Vl d,
Q Q

where u = [u(y)dy, p* = ﬂ, and K = K(Q).
3 N_2

When N = 2, this estimate is true for all p* € [1,+ o[, and when N =1, it is
replaced by the stronger inequality

re

2
(34) (sup lu(x) — 71|) <K J |qu|2 dex.
Q

Thanks to the Poincaré-Wirtinger inequality, estimate (32) becomes

p* 2/p*
dac) dt < C.

T
l( i ‘%a(t,m - i Valt.y) dy

Then,

T

; 2/p*
J( |V a(t,x) |” dm) dt

0 Q

T

< 2201y j( j N J Jat.y) dy

0 Q Q

p* 2/p*
dm) dt

T
2
1 920" -D/p' J( J \/a(t—,x)dac) dt
0@

S 22(10*—1)/?7* (C +

S —3

Ja(t, x) dacdt) .
Q

Using the conservation of number of atoms (20), (21), or (22), and the definition of p*,
we see that that for some constant C depending only on the initial data,

z N-2)/N
(35) j( [tattapre dx) dt<COLT).
0 Q



[13] ABOUT ENTROPY METHODS FOR REACTION-DIFFUSION EQUATIONS 93

When N = 2, this estimate is replaced by

T

1/p
J( J|a(t,x)\p dac) dt<CA+T1),
0 Q

for all p € [1, + ool.
Finally, when N = 1, it becomes

T
j(sup att, x)) dt<Ca+T)

re

We shall now interpolate estimate (35) with the estimate coming out of the con-
servation of number of atoms:
sup Ja(t, x)dr < C.
te[0,T1 A

We compute

S t—_

J (a(t, )N daedt <
Q

St— 3

J a(t, ©) (at, ©)*'N dedt
Q

z N-2)/N 2/N
< J( J (alt, )N/ N2 dac) ( J a(t,x) dac) dt
0 Q Q

r N-2)/N 2/N
< [ K J (alt, x))N/ V-2 dac) dt} X sup ( J a(t, ) dac)
5 t€[0,T] o

Q
<CQA+T)C¥N.

Finally, we see that for some constant C depending only on the initial data (and when
N >3),

all ez qomxg < C A+ TN/ N+2),
This estimate is replaced by
(36) lall oqorvey < CQA+ YORL
for all p € [1,2[ when N = 2, and by

(37) lallz2qo e < CA + )/
when N = 1.
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In order to treat the case N = 2, we use a refinement of Sobolev-Wirtinger’s
inequality.
2.5 - Trudinger’s inequality

In order to obtain estimate (36) in the case when N =2, we first recall
Trudinger’s inequality (Cf. [1]), which is a limit case of Poincaré inequality, saying
that (when Q is a bounded and regular (C2) open set of R?), there are two absolute
strictly positive constants sy and Cy such that, for all u € H'(Q),

2
(38) jexp(sO ) )sco
o ||“||H1(Q)

As a consequence, we can also find two strictly positive absolute constants s and C
such that (for all functions u € H(Q)),

2 2
) [5u exp<s A ><C
HY(Q) HY(Q)

Q

Using this inequality for « = \/a(t, -), and integrating in time between 0 and T, we
get the estimate

T T

”a(t, %) exp (%) dadt < C JH\/a(t, Mo dt
o Vo, i 5

(40) <CA+1D.
We note that thanks to Young’s inequality (valid for x,y,y > 0)

w Y Y
< el 7 )
xy<e +y(log(y) 1),
log

appliedtoy:Ta+§andoc:y:a,wehaveforalla>eands,q>0,

a < aei + -1 gae%—&—%log((f).

@ q @ q

1 1
oga+s 0ga+s

Using this last inequality with s being the constant in inequality (39),
q = ||Va(, -)||121,1(Q) and @ = max (e, a(t, x)), and using also estimates (40) and (the first
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part of) (30), we end up with

2 . 2 2
HaHLZ([O,T]xQ) < mln{ave}”Lz([O.T]xQ) + || max{ave}HLz([O,T]xQ)

T
sa(t,x)

<eT+ J Ja(t, x) exp <7> dxdt
IVat, )7

0Q

T
2
+ §J( Ja(u x) log (a(t, x)) dac) IValt, )5 dt
0 Q
S32T+C(1+T)+§C(1+T)7

which is exactly estimate (37), but in dimension 2.

3 - Existence, uniqueness and smoothness

In this section, we study the traditional problems associated to the systems we
are interested in (that is, systems (10) — (12), (13) — (15), and (16) — (18)), that is,
existence, uniqueness and smoothness of the solutions. More precisely, we shall
show that for the two first systems, existence ans uniqueness of a smooth solution
holds, while we only can prove existence of a weak solution to the third system
(except in small dimensions).

3.1 - Linear parabolic equations

We begin by recalling a few classical facts about linear parabolic equations.

3.1.1 - Existence, uniqueness and smoothness for linear parabolic equations

We first state the following theorem (Cf. for example [11]) for the heat equation
with Neumann boundary condition:

Theorem 3.1. We consider a smooth (C?) bounded and comnected open
subset Q of RN, Let Ui € C2(Q) be an initial datum (compatible with the Newmann
boundary condition) and ¢ € LP([0,T] x Q) (for some T > 0 and p € 11, +ocl) be a
right-hand side.

Then, there exists a unique weak solution u € LP([0,T] x Q) to the linear



96 L. DESVILLETTES [16]

parabolic initial-boundary value problem:
Oou —d d,u = @,
(41) Vou-n=0 on 0Q,
w(0, ) = Uz (X).
Morveover, w € W10, T[ x Q).
Finally, if we know that for some a€10,1[, ¢ <€ C*(0,T]x Q), then

u € CY([0,T] x Q), and if g € C1([0, T1 x ), then u € C*([0, T x Q). Note that in
this last case, the solution is in fact strong.

3.1.2 - The case of the 1D heat equation

In the one-dimensional case, it is easy to give a complete explicit formula for
problem (41), using Fourier series.

Proposition 3.1. Let u;, € C*([0,1]) be an initial datum (compatible with
the Newmann boudary condition) and ¢ € C*([0,T] x [0, 1]) be a second member.
Then, the unique solution u := u(t, x) to eq. (41) is given by the formula

u(t, x) = J Uin(Y) — 6 g dy
27| 0 2 7

t 1

_ @k+w— »?
\f“lﬂswzm W dy s,

where
(42) e () — up@)  wel0,1],

T win(— ) w e[ 1,00,
and

- ot x) xe[0,1],
43 t.x) =
(48) ¢l @) {gb(h—ac) xel—-1,0]

Proof of Proposition 3.1. The proof uses Fourier series, which simplify
when (41) is mirrored evenly around x = 0, i.e. when the functions are extended like

1
B.2) = {u(t,x) x € [0,1],

(44)
ut,—x) xe€[—1,0],
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and when gNiv and u;, are defined analogously by (42), (43). Then, the eigenvalue-
problem ¥, = Ay on [ — 1,1] with homogeneous Neumann boundary and periodi-
city conditions is satisfied by the eigenvalue-eigenfunction pairs

e, ¥,(@)) = (= (kn)?, cos (knzc)) for £=0,1,2,...,

and yields the Fourier representation

k=1

1 1

iitt, ) = J i) dy +2) et ( j Ui ) 1Y) dy) @)
-1 -1

1

t
(45) +J é(s, ) dyds
1

0 —
ot
(46) 42 Z Je’l’cd(t*S) (

klO

1
J é(s,y) &k(y)dy> dsy(x).

-1

Thanks to Poisson’s summation formula (Cf. for example [18] in this context), we
can write down the final form of the explicit solution to the 1-D heat equation with
Neumann boundary condition:

1
1 <1 @kro—y)?
a(t,m:—Ju;n() L
2y/m ) Y k;w vt Y
1 (1 1
~ o0 (2k+x—y)2
R , - e 4G dyds.
vage] | B 3 s e ayas
0 -1

This ends the proof of Proposition 3.1.

3.2 - Nonlinear reaction-diffusion equations with bounded v.h.s.

We now turn to the problem of building solutions to nonlinear reaction-diffusion
systems. Thanks to a simple fixed point argument in L?, it is classical to prove the
following theorem, which holds when the nonlinearity lies in the space W' of
bounded and Lipschitz-continuous functions (we refer for example to [13] for many
results on reaction-diffusion systems including variants of the result below):

Proposition 3.2. Let Q be a bounded and regular (C2) open set of RY, and
let D be a diagonal matrix with entries d; >0, i = 1,.., k. We consider an initial
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datum U, € C2(Q, R¥) compatible with the Newmann boundary condition, and
f € C*(RY; R¥). We suppose moreover that f € WH>(R¥; R¥) (space of bounded and
globally Lipschitz-continous functions), which means that there exists K > 0, such
that for all z,y € R,

| [(@) < K, | f@) = fy)| < K|z —yl.
Then, there exists a unique strong solution U € C*(R, x Q; R to equation

U — DA, U = f(U),
47) n-VyU=0  for x € 09,
U(0,2) = Uin ().

Proof of Proposition 3.2. We introduce Uy(t,x) = U;,(x). According to
Theorem 3.1 for linear parabolic equations, we know that for any integer n > 0, there
exists a (unique) function U,.1 € C2(R. x 2; R") such that

O Uns1 — DA Uyia = f(Uy),
(48) wx) - VyoUy1(t, ) =0 for x € 09,
Un11(0,2) = Upy ().
We denote

7 (f) = ||Un - Unfl”%lz(g)(t)-

We multiply the difference of (48) for n + 1 and (48) for n by U,,.1 — U,,, and perform
an integration by parts. Denoting by UJ, the components of U,, we get

1 k . .
O Jé Upir = UpfPda+Y " d; J VU2, — UD dae
Q =1

_ J(UM — U FW) — U ) da,

Q

so that

t
J Unor — U2 dat) < J{ J|Un+1 UL P dats)
0

Q Q

LK j U, - Un_1|2dac<s>} ds,

Q
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which we can rewrite as
t
Tny1(t) < J(%Hl () + K?”n(s)) ds.
0

Then, we observe that
) < Rp:=2 ||Uin||%2<g) +2(|Uinll 20 + K Ty

for all ¢ € [0, T']. Using the auxiliary quantity

t

wn(t) - eit JT11(S) d87
0

.Thisin

t n—1
it is possible to prove that w,1(t) < K [w,(s)ds, so that w, () < R, gft_) D
turn implies that for all ¢ € [0, T'], 0 '

(K t)n—z

() < @Rp K1+ T)e") T

Since this sequence is the general term of a series which converges uniformy on
[0, T'], and recalling that L>([0, T]; L?(Q)) is complete, we see that U,, converges to
some function U in this space.

Passing to the limit in eq. (48), we obtain that U is a weak solution of eq. (47) on
[0, T1].

We now use the “smoothness” part of Theorem 3.1. Since U is a (weak) solution
(on [0, T]) of the heat equation with a r.h.s. in L™, it lies in W'?(]0, T[ x Q) for all
p > 1, and therefore in C%*([0, 7] x Q) for all a € ]0,1[. Thanks to the hypothesis
on f, this is also true of f(U). As a consequence, still using Theorem 3.1,
U € CY([0,T] x Q) for all a € 10,1[, and (still thanks to the hypothesis on f), so
does f(U). We use a last time Theorem 3.1, and get that U € C?([0, T] x Q), so that
U is a strong solution to the system (47) on [0, T1].

Uniqueness of strong solutions to system (47) on [0, T'] is easily obtained by no-
ticing that if U,V are two such strong solutions, then taking the difference of the
equations for U and V, multiplying by U — V, and integrating by parts, we obtain:

(49) AU =Vl ® < KU = V0.

Finally, it is possible to build a unique strong solution U to system (47) on R, by
sticking together all the solutions to system (47) on [0, 7'], with 7 > 0. This concludes
the proof of Proposition 3.2.
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3.3 - Nonlinear reaction-diffusion equations with unbounded r.h.s: use of L>° bounds

Proposition 3.2 can be used in order to prove existence (together with un-
iqueness and smoothness) of solutions to reaction-diffusion systems with general
r.h.s, once some L*> bound has been proven for the unknowns. Such bounds are
not available in general, but they can be obtained for particular systems (among
which (10) — (12) and (13) — (15) in any dimension, and (16) — (18) in small di-
mension). They can be based either on “geometrical properties” of the r.h.s.
(here we shall follow the method described in [9] for systems of two equations),
or on the fact that (the nonnegative part of) the r.h.s. is a function of the un-
knowns that does not increase too much (we refer to [13] for examples of such a
situation).

In general, L*> bounds are obtained all the more easily than the system has few
equations, and the dimensionality of the space is low.

3.3.1 - Maximum principle
We begin with a maximum (and minimum) principle property of our simplest

system (namely system (10) — (12)). It writes like this:

Proposition 3.3 [Minimum and maximum principle]. We assume that
Q is a bounded, smooth (C?), and connected open subset of RY, and that d,, d, are
strictly positive diffusivity constants. Let a := a(t, x) and b := b(t, z) be a solution
m C*[0,T] x Q) to system (10) — (12). We suppose that the initial conditions
satisfy:

(50) Y € .(_27 0<Ay< i () < Al, 0< By < bm(ﬁ()) < By,

for some constants Ay, Ay, By, By > 0.
Then, a and b satisfy the bounds

(51) Vie[0,T],w €2,  inf(Ay,/Bo) < alt,x) < sup Ay, v/By),
(52) Ve e[0,T],w € Q,  inf(AZ By) < b(t,x) < sup (A2 By).

Proof of Proposition 3.3. The proof shall be carried out following the ideas
of [9]. Let us consider the functions

(53) a’(t, x) = alt, x) et bi(t, ) = b(t, x) e’

From equations (10), it follows that the evolution of a*, b* is governed by the
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system
ot — dy Ayar = —2((@F e~ — b%) + e,
(54) { T x
bt — dyy Ab° = (@°)? e — b¥) + e b*.
We define the set B® as

B = {r >0 : a’(t,x) > inf (4, \/By), bé(t,x) > inf (A(Z),BO) e,

(55) Y (t,x) € [0, x Q} .

Then, we consider { = sup B¢. Note first that £ > 0. Then, there must exist & € Qsuch
that at least one of the following equalities holds:

a‘(t, &) = inf (Ag, \/Bo) or bi(t, &) = inf (A%, By) e .

Case 1: a’(t,¥) = inf (A, \/By). By definition of £ and &, the function x — a*(t, x)
takes it miminum at point &, so that A,05(E, %) > 0. Evaluating the chemical con-
tributions in the first line of (54) at (¢, %), we get
— 2@, &) et + 2b°(, &) + 2eat(Z, &)

—2inf (Ao, VBo)? e ! + 2b%(t, ) + 2¢ inf (Ao, \/Bo)

— 2 inf (Ao, v/Bo)? ¢ *" + 2 inf (42, Bo) e + 2¢ inf (Ag, v/Bo)
0.

\ARY

Consequently, eq. (54) for ¢ implies that 8;a°(¢, &) > 0, hence a*(t, @) < a*(, &) for
some ¢ < t, contradicting the definition of .

Case 2: b’“’(i, ) = inf (Ag,Bo) e~ . In this case, we have bi(t,&) < bg(i, x)
Ve € Q, so that bé(t, ) takes its minimum at point & = &. Therefore we get, as above,
A,b8(E, &) > 0. As concerns the r.h.s. of the second line of (54), we obtain

(@Y, &) e — bt @) + eb*(E, &)
= (a’(t,@) e *! —inf (43, Bp) e *! + ¢ inf (A2, By) et
> (inf Ag, /Bo)® e*! —inf (A2, Bp) e ! + ¢ inf (A2, By) e™**
> 0.

It follows that 9,b%(¢, &) >0, which leads to a contradiction as in case 1.
Consequently, the set B¢ is unbounded, and

Vi > 0,2 € 2, a’(t, x) > inf (Ao, v/ By), bi(t,x) > inf (A2, By) e *'.
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This means that a(t, ) > inf (4, /Bo) e~ and b(t, ») > inf (42, By) e~ 2%". Thus,
passing to the limit ¢ — 0, we have a(t, x) > inf (4y, /By) and b(t, x) > inf (A%, By).

This ends the proof of the minimum principle for system (10) — (12). The max-
imum principle can be proven in exactly the same way. We have therefore finished
the proof of Proposition 3.3

We are now in position to state a theorem of existence (and uniqueness,
smoothness) for system (10) — (12):

Theorem 3.2. Let Q be a bounded, connected and regular (C?) open set of RN
(N > 1), and d,, dp be strictly positive diffusivity constants. We consider initial
data ay,, by, € C2(Q) (compatible with the Newmann boundary condition) which
satisfy the bound:

(56) Yo € Q, 0 <Ay < ap(e) <Ay, 0 < By < b, () < By.

Then, there exists a unique (strong) solution a,bin C*(R,. x Q) to system (10) — (12)
such that:

Vte Ry, x€Q, inf (4g, \/By) < a(t,x) < sup (41, /By),

(57) inf (A2, By) < b(t,x) < sup (A%, By).

Proofof Theorem 3.2. We consider a function y := y(a, b) in CZ(RZ, R) such
that y(a,b) =1 when |al,|b| <2 sup(4;,A%,v/By1,By), and x(a,b) =0 when
la| or [b| > 4 sup(A1,4%, /By, By).

Then, the function

f@,b) = (—2(a® - b) y(a,b), (@* — b) y(a, b))

lies in C2(R?, R?%) N W1>(RZ, R?). According to Proposition 3.2, there exists a solu-
tion U = (a,b) € C3(R,; x Q) to the system

oU — D4, U =f(U),

(68) n-V,U=0 for  x€0Q,
U(0,2) = (ain (), bin(x)),

where D is a (2 x 2) diagonal matrix with entries d,, dp.

On any interval of time [0,7] for which (for all x € Q) |a(t, )|, |b(t, )|
< 2 sup (Al,A%, v/B1, By), (a,b) is also a (strong) solution of system (10) — (12), and
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according to Proposition 3.3, it satisfies

lat, )|, |b(t, )| < sup (A1, A%, \/By, By).

Therefore, the sup of all 7 such that (for all x€ Q) |a, )|, |b{, )
<2 sup (Al,A%, V/B1,By) is infinite, and therefore (a, b) is a (strong, C?) solution of
system (10) — (12) on R, which satisfies (thanks to Proposition 3.2) estimate (57).
If we now have two solutions of system (10) — (12) on R, which satisfy estimate
(57), they are also solutions of system (58), and thanks to the “uniqueness” part of
Proposition 3.2, they are equal. This concludes the proof of Theorem 3.2.

3.3.2 - Using the properties of the heat kernel

We introduce here the idea of using the smoothing properties of the heat kernel in
order to obtain L bounds for system (13) — (15). Those bounds are only local in time
(that is, in L>°([0, T] x ) for a given T > 0), but we take care of controlling what
happens when 7' — + oc.

We give complete proofs for system (13) — (15) in dimension 1, and briefly indicate
how these proofs can be extended to the case of system (13) — (15) in any dimension,
or to the case of system (16) — (18) in dimension 1.

Those proofs are inspired by the book of Rothe [13].

We begin with a standard estimate of the smoothing effect of the heat equation in
dimension 1.

Lemma 3.1 (Explicit L" bounds (r > 1) for the 1D heat equation).
Let u denote the (unique weak) solution of the 1D heat equation (t > 0,x € [0, 1],
with constant diffusivity d) with homogeneous Neumann boundary condition, 1.e.

(59) O — d Oyttt = @, Oyult,0) = d,u(t,1) =0,

and assume for the initial data w(0,x) = uy,(x) and for the source term ¢ := ¢(t,x)
that

(60) uy, € L2(0,11), ¢ € Ly, (10, +ool; LP([0,1])),

loc

for some p > 1.

1 2 1
Then, for any exponent r > 1 such that p + 3 > » and for all T > 0, the norm

1%]| g0 T1x10.17) 9TOWS at most polynomially in T like

3
(61) %]l Lo r1xi01) < " @inll <001+ C A+ T 1Bl 1o r1x10.1) -

3 . .
In the case when p > 2 one can take r = oo in estimate (61).
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Proof of Lemma 3.1. We recall that according to Proposition 3.1, the solution
of the heat equation (59) is given by formula (42):

(62) ult, ) = 7 J i) Z i dy

k—foc

t 1
1 JJ~ s 1 _ @kra—y?
+ — (s,y) - 1aa=s dy ds .
2ﬁ071¢ Y k;w\/d(t—_) Y

This yields the estimate

1 -
”uHLT([O,T]X[—Ll]) < 27\/% i *e S”L“‘([OA,T]x[fl,l])

1 .-
(63) + m H¢ *ta S Lr(0,TTx[—1,1]) ?
S 1 K42
where S, x) == > ﬁ (Z]Mt) satisfies (for q € [1,3])
k=—00
1,1
(64) ISE IMpig-1.1p = 2V, 1SN oo 110y < C(1+ Tit2) .

The second formula of (64) can be obtained by using (when n #0) 2n + x)®
> |12n + x| > 2n — 1 in order to estimate

dt)” z(e H 211:13)
n=1

< [lante |

”S”L‘l( 0,7]x[-1, l])

Mz

La([0,T]x[-1,1])

La([0,T]x[-1,1])

+2 ||(d H (61/4(“ - 6_1/4dt) - HLq([O.T]x[fl.,l])

z Y z 1/q
_ dt V4
dt)y 22w\ |— f<—>dt 4( 2dt1/2th>
g(l( ) NG qer VT > + !|( )7

Returning to (63), we can estimate each term in the right-hand side in order to

obtain Lemma 3.1, the last term being the most difficult. In order to treat it, we apply
- ~ 1 1 1
Young’s inequality |[|¢ =S|, <@l /S|, for . +1= » + p (remember that

1 2 1
. + 3 > 5, which is compatible with ¢ € [1, 3[), and estimate (64) for ||S||;,,. The same

is true when » = co and p > g This concludes the proof of Lemma 3.1.
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Remark. The lemma above extends to dimension N > 1, with a certain

number of changes in the assumption and the conclusion. The main one is that

1 2 1 1
R, | 1 -
T+3>plsrepacedby7‘+

1
> —, so that the solution of the heat equation lies
N+2 p

in a L" space which is not as good as in dimension 1.

We use this lemma in order to prove an a priori L™ estimate for the concentra-
tions solving system (13) — (15) in dimension 1.

Proposition 3.4. Let a;,, by, and c;, be strictly positive initial data lying in
C%([0,1]), and d,, dy, d. be strictly positive diffusivity constants. We consider a,b, ¢
a (strong) solution in C*([0,T] x [0, 1]) of system (13) — (15).

Then, there exists a constant Cr (which grows at most polynomially with T, and
depend only on the initial data) such that

(65) lla, b, ¢ll L~qo,r1x10,1) < Cr-

Proof of Proposition 3.4. According to Proposition 2.5, we already
know that ||a, b, ¢c||;2q0. 14017 < Cr, Where Cr is (and will systematically be in
the sequel of this proof) a constant which grows at most polynomially with 7'. Then,
& —bellpago.rxoiy < Cr- We see thanks to Lemma 3.1 that [|a, b, ¢[| - 71xj0.1) < Cr
for all < 3. As a consequence, ||& — b ¢|| 320 71x0.1) < Cr- A second use of Lemma
3.1yields [|a, b, ¢l o rxp01p < Cr for all ¥ < + oco. Then, |l — bel| Lz 01y < Cr
for all 7 < + oo, and a third use of Lemma 3.1 yields [|a, b, ¢[| ;~ o 71xj0.1) < C7-

This ends the proof of Proposition 3.4.

Remark. We note that the same proof holds for system (16) — (18) in di-
mension 1.

A variant of this proof (in which the nonnegativity of the concentrations is used:
the nonpositive part of the r.h.s of the equations is not estimated) shows that the L*>
estimate also remains valid for system (13) — (15) in any dimension.

This a priori estimate enables to prove the existence (and uniqueness, smooth-
ness) of a (strong) solution to system (13) — (15) in dimension 1:

Theorem 3.3. Let a;, b;, and c;y, be strictly positive initial data lying in
C%([0,1)), and dg, dy, d. be strictly positive diffusivity constants.

Then, there exists a unique solution a, b, ¢ € C*(R x [0,1]) to system (13) — (15)
such that ||, b, ¢||«qo rix01) < Cr (where Cr grows at most polynomially with T).
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Proof of Theorem 3.3. We consider a function yx := yx(a,b,c) in CZ(Rg, R)
such that yx(a,b,c) =1 when |a|,|b|,|c| < K, and yg(a,b,c) =0 when |a| or
|b] or |¢| > 2K.

Then, the function

fla,b,¢) = ((be —a) yg(a,b,e), (@ —bc)yg(a,b,c), (@ —be) xg(a,b,c))

lies in C2(R3, R®) N Wh(R3 R®). According to Proposition 3.2, there exists a
(strong) solution U = (a, b, ¢) € C3(R,. x [0,1]) to the system

(66) n-V,U=0 for x € 09,
U(0,2) = (@3, (), by (), €0 (),

where D is the diagonal matrix with entries d, dy, d..

On any interval of time [0, 7'] for which (for allx € Q) |a(Z, x)|, |b(t, 2)|, |c®, x)| < K,
the functions (a, b, ¢) are also a (strong) solution of system (13) — (15). According to
Proposition 3.4, we can thus build a (strong) solution to system (13) — (15) on any
interval [0, T'] such that Cr < K.

Letting K — + oo and using the “uniqueness” part of Proposition 3.2 (on bounded
time intervals), we obtain a (strong) solution of system (13) — (15) on R, by sticking
together solutions on [0, '] (remember that Cy < + oo forall T > 0 since Cr grows at
most polynomially with 7).

Finally, if we now have two solutions of system (13) — (15) on R, which satisfy
estimate (65), they are also solutions to system (66) for a certain K on a time interval
[0, 7] depending on K but arbitrarily large (that is, T is going to + oo when
K — + 00). Thanks to the “uniqueness” part of Proposition 3.2, they are equal on this
time interval. This concludes the proof of Theorem 3.3.

3.4 - Unbounded source: the duality method
3.4.1 - Duality for parabolic equations with non smooth coefficients

We begin with the following proposition, which shows that the solutions of a
parabolic differential inequality with bounded coefficients satisfy a natural L2 bound.
We refer to [12] for this type of arguments of duality:

Proposition 8.5. Let T > 0 and Q be a bounded, connected and reqular (C?)
open set of RY. We suppose that A :[0,T] x @ — R is a smooth (belonging to
C*([0,T] x Q)) function such that Ay < A(t,x) < A;, for some strictly positive
constants Ay, A;.
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We assume that z:[0,T] x Q — R is a strong (belonging to C%([0,T] x Q))
nonnegative solution to the parabolic inequation:
Oz — 4,(Az) <0,
(67) Vi.Az)-n=0 on 0Q,
200, ) = 2.

Then, there exists a constant C (depending on T, Ay, A1) such that
21l 2q0.m1x2) < C l|Zinll 12(0)-

Proof of Proposition 3.5. For any smooth (C?) nonnegative function
H := H(t,x), let us consider the nonnegative (smooth) solution of the dual pro-
blem:

0w — Ad,w = H,
(68) Vew-n=0, on 0Q,
w(T,-) =0.

Integrating by parts, we see that

Jz (0w + Adyw) dacdt = —
Q

Jw (02 — 4(A2)) ducdt
Q

S —
S —

T
- sz(x) w(0, %) dx + J J 2AV,w-ndo(x)dt
Q 040

T
- J J wV,(Az) ndo(x)dt.
090

Using the Neumann boundary conditions, we end up with

(69) — Jz(t, x) H(t, x) dedt > — sz(x) w(0, x) dux.

Q

S
S)

Let us estimate w(0, -) in L2(Q). Multiplying eq. (68) by —4,w and integrating by
parts in the variable x gives (for any time ¢ € [0, T'])
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Q Q

Q

< J( Uyaolt, ) +
Q

2
54, H(tx)>

It follows, after integration in time, that

T
J J (U, x))? daedt <
0

ON| =
O — 3

JHz(t, x) dxdt.
Q
Integrating eq. (68) between times 0 and 7', we obtain

T T
w(0, x) + JA(S,.?C) Ayw(s, x)ds = JH(S,ac) ds,
0 0

so that

Jw(O,x)dedt < (2T+2T )
Q

S —_

J 2(t, ) dacdt.
Q

Therefore, thanks to estimate (69), we see that

T
J Jz(a x) H(t, x) dadt < sz(x) w(0, x) d
00 Q

< zinll L2 10(0)]| L2

42\ 2
< <2T+2Tﬁ> 2l 20 HH | 20 17% 0)-
0

By density, this estimate is true for any nonnegative function H in L?, and, using

H=H"—-H", we see that for any function H in L? one has | for

- (ererdl)”)

T
JJZ(t» x) H@t, %) dwdt | < C |2inll 120) 1H | 20 m1x0)-
00
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By duality (L2 is the dual of itself), this gives a bound for zin L?(0, 7] x Q)in terms of
lI2inl 120> and the proof of Proposition 3.5 is ended.

34.2 - The L? LogL estimate

We shall now follow [5] and use the duality argument of Proposition 3.5 in order
to build a weak (L?) solution to problem (16) — (18):

Theorem 3.4. Let Q be a bounded, regular (C?) and connected open set of
RY , let dg, dy, d. and dg be strictly positive diffusivity constants, and let a;,, by, Cin,
d;y, be strictly positive initial data in C*(Q).

Then, there exists a weak solution a,b,c,d € L? (R ; L*(Q))to system (16) —(18).

loc

Proof of Theorem 3.4. We introduce the approximated system:

anby, —cpd
ata/n—danan: _ n Yn n n

1 3
1+%(ai+bi+ci+di)

Oby, — dpApb, = — by —cpdy

1 )
1+%(ai+bi+ci+di)

Gy by — €y dy
sy — deduCy = )

1
1+%(a§/+bi+c§/+di)

atdn - ddAacdn = u bn — G d" y

1
1+%(ai+bi+ci+di)

together with the homogeneous Neumann conditions
n(x) - Vap, =0, (@) - Vb, =0,
(71)
@) - Ve, =0, n(x) - Vypd, =0, x € 0Q,
and the strictly positive initial data
{ @ (0,2) = ain(@),  bu(0,2) = by (),
Cn(0> 90) = Cin(x)7 dn(oa 96) = din(x)-

(72)

We know thanks to Proposition 3.2 that there exists a unique strong solution to this
system, since the right-hand side is C?, bounded and globally Lipschitz continuous
(W),
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We introduce the quantity =z, = ¢(a,) + ¢(b,) + $lc,) + $(d,), where
¢(x) =« Inx — x + 1. Note that ¢ is a nonnegative function whose second derivative

isx— - The computation gives
Oz — dg Am¢(an) —dy Ax¢(bn) —de Ax¢(cn) —dg Ax‘ﬁ(dn)

0y by — Cy dy Ay by — Cy dy

=—Ina, —Inb,
1+%(ai+bi+c§+di) 1+%(ai+bi+c§+d§)

+ln Cn Qy, bn —Cy dn —‘rh’l dn Oy, bn —Cy dn
1+%(ai+bi+ci+di) 1+%(ai+b§+c§+di)

2 2 2 2
—d, |Vt —d, |V —d, [ VaCal —d, Vady| .

a, by, Cn dy
Therefore,
Nzy — do Axplay) — dy 4,9(by) — de A:$(cy) — dg 4,$(dy)
(73) +d, 'v”(ﬁ”'Z +dy 'Vzi“z +de 'sz’”z +dg 'vgj”Z <0,
and finally
Oz — Ap(An 20) <0,
where
4, Gad@) +dgb,) + de fea) +do i)
Zn
Note that

Vi > 0,2 € 2, inf (dg, dp, de, dg) < Ay(E, ) < sup (dg, dp, de, dg),

and
VoA, 2. -n(x) =0 for x € 0Q.

According to Proposition 3.5, we obtain the estimate

”z%”LZ([O,T]xQ) <C (H‘Jb(ain)HLZ(Q) + ||¢(bin)||L2(Q)

Hleeill 2 + ||¢(di7l)HL2(Q)>7

where C does not depend on % (but depends on 7' and the diffusivity constants).
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This ensures that the sequences a,, b,, ¢, and d, are bounded in the space
L?(In L)Z([O7 T1 x Q). In particular, the quantities a,, b, and c,, d,, are equiintegrable.

We conclude the proof ot Theorem 3.4 in next paragraph, by showing the strong
convergence (i.-e. the convergence a.e.) of the sequences a,, b, ¢, and d,.

3.4.3 - Existence of weak L? solutions

In the previous paragraph, we proved that there exists for each n > 1 a smooth
solution (a,, by, c,, d,) to system (70) — (72).

Moreover, we have shown that the sequences a,, b,, ¢, and d,, are bounded in
LZ(In LY*([0, T] x ), so that the quantities a, b, and ¢, d, are equiintegrable.

We start again from estimate (73). Integrating between times 0 and 7 and for
x € Q this estimate, we see that
J Ve

2
J|den| dadt < Jz(&x) dx.
) 2

Jzn(T,x)dm—kda JJW% a &) dxdt + d, (t)dﬂcdt

O%ﬂ

T
2
+d, J J Valul” geat + g,
Cn dw
0Q

S

As a consequence, we obtain that V,.(1/1+ a,) is bounded in L?([0,T] x Q), and
therefore in L1([0, T] x Q).
Then, we compute

O —dg 4.)\/1+ay, Cff 1|vxan|3/2_~_2 Cn(lin—(lnbn 7
I +an) \/1+an(1+%(ai+bi+ci+di))

so that (8; — d, 4,)\/1 + @, is bounded in L1([0, T] x Q).

We consider now g, = v/1 + a,, and we prove that this quantity is strongly
compact (in Lloc(]O, T[ x Q)), using the fact that V,g, is bounded in L([0, T] x Q)
and that (0; — d, 4,) gy, is also bounded in L'([0, T] x Q). This is a variant of Aubin’s
lemma (Cf. [17]).

We denote by o, the set {x € Q : d(x,02) > v}. Let x € o, (with v positive and
such that w, is not an empty set), and k € RN , with | k| < v. Since V,g,, is bounded in
LY([0, T] x Q), we know that

T
(1) [ [1ontt.0+ 10 gutt. 2 dade < o1

0 o,

where Cr is some constant depending on 7.
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Then, introducing any smooth function ¢ := ¢(x), with compact support in Q, we
have

0 [g.0d0 =, [g. pdo+ [, 800

Q Q Q

where f3,, is bounded in L'([0, T'] x Q). Therefore

O Jgn ¢dr|dt < do || gullpr | Aell e+l Bull e 18]

Q

T
(75) |
0

< Cr | Pllwe~-

We introduce v > 0 and a mollifying sequence ¢s(x) = 0N ¢(x/d) of smooth
functions with compact support B(0, d), so that B(0, ) + w, C 2 when J < v. Then,
foranyt e [, T — ] C [0,7) (0 < < T/2), and for any h € R, | k| < u, we get

T—n
J J |9 + B, ) — g, (t, )| doedt
"oy
T—u
< J |G %0 )(E+ I ) — (G 50 D5)CE, )| dacdlt
now,
T
+ 2 [1u w6900, gt 0| o
0 w,
T—n
< J | 1@ %0 89t + ) = @ 20 89t dact
now,
+ 2Cro.

Using (75), we see that

J | gut + ) — gu(t, )| dadt

no oy

!

(t + uh)du|dxdt

j - J I, y) Esc — y) dy

u=0 - yeQ

+2Cro
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1 T

] ]

r€wy u=0 t=0

dtdudax

&ngtw%W—yMy

yen

+2Cro

SCMMJ|mw—wam+2@é.

rEW,

Finally, optimizing in J, we get

T—u
J Jlgn(t + R, %) — gu(t, x)| daedt <Crp|h|6 N2 4+2Cr o
uo oy
<Cr |h‘1/(N+3) )
Recalling estimate (74), we obtain
T—n

J J|gn(t + I+ k) — gult, )| daedt < Cp (JB[YY 4 |k]).
no oy

This ensures that g, is a strongly compact sequence in L'(Ju, T — u[ x w,) for all
(sufficiently small) x > 0, v > 0, or, more simply, that g, is a strongly compact se-
quence in L}, (10, T[ x Q).

Then, up to extraction of a subsequence, ¢, converges a.e., and so does a,,. The
same proof applied to the other concentrations shows that b,,, ¢, and d,, also converge
(up to extraction) a.e.

It is now possible to pass to the limit in the weak formulation of system (70) — (72).

We recall that this formulation (written here only for the first equation) is the
following: for any smooth (C?) test function ¢ := p(t,2) with compact support in

[0, +-00[ x Q and such that n(x) - V,o(t, ) = 0 for x € 09,

+00
J J ay, Opp dacdt + J a;in () (0, ) da
0Q Q
(76) +00 +o00 d b
+ “da ty Apgp ducdlt — “ o€ = b o dudt.
00 091+%(ai+bi+ci+di)

At this point, let us recall that since a,, converges a.e. (up to a subsequence), and is
bounded in L2(1n L)2([0, T] x Q), it converges strongly in LZ([0, T] x Q) to a function
a lying in this space (and so do the other concentrations), so that the quantity a,, b,
and ¢, d,,, which are equiintegrable, converge respectively to a b and c¢d in L*.
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We can pass finally to the limit in the left-hand side of (76), obtaining

+00 +00

(77) J Ja O daxdt + Jam @0, ) dx + J Jda a Ay dadt.
0Q Q 0Q
As concerns the right-hand side of (76), we see that

+00

JJ . cnd —ayb, » dacdt
val+= (2 +0b+c+d)
n

converges to

+o0

Jj(cd—ab)(p dxdt .
0Q

We end up in this way with the weak form of the (first equation) of system
(16) — (18).

4 - Large time behaviour

4.1 - Entropy dissipation estimate: general theory

We first describe the traditional strategy (sometimes called entropy/entropy
dissipation method in the context of kinetic equations) used to get explicit estimates
of convergence toward equilibrium for equations where dissipative effects are pre-
dominant.

4.1.1 - Lyapounov functionals; De La Salle principle

The principles of the approach described below and many applications can be
found in [6].
We consider an abstract equation

(78) ohf =Af,

where A is an operator which can be linear or nonlinear, and can involve derivatives
or integrals.

We suppose that there exists a (bounded below) Lyapounov functional H := H(f)
(usually called entropy (or opposite of the entropy)) and a functional D := D(f)
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(usually called entropy dissipation) such that (what is called in kinetic theory the first
and second part of Boltzmann’s H-theorem) holds:

(79) OH(f) = —-D(f) <0,
(80) D(f)=0 = Af=0 <= [f=fy

where fq, is a given function.
Then, one can often prove that the decreasing function ¢— H(f(¢)) converges
toward its minimum, that ¢t — D(f(¢)) converges toward 0, and that as a consequence

(81) Jim &) =1y

in a convenient topology (a precise theorem could for example be written down, in the
case when H is coercive).

Unfortunately, the situation desecribed above is often slightly more intricate,
because one has to take into account quantities which are conserved in the evolution
of eq. (78). In particular, in eq. (80), f¢, is in general not a given function, but a set of
functions depending on a number of parameters equal to the number of conserved
quantities.

4.1.2 - Use of the Gronwall lemma

In order to obtain an explicit rate of convergence toward equilibrium, one looks
for functional inequalities of the form

(82) D(f) > BH() — H(f.y)),

where @ : R, — R, is a function such that @&(x) = 0 <= x = 0. One tries to find a
function @ which increases as much as possible near 0.

Note that we look for such an inequality for functions f which are not necessarily
solutions of eq. (78) (they do not even depend upon ¢ !). This is a way of transforming a
problem on PDEs in a problem of functional inequalities.

In the case when there are conserved quantities in the evolution of eq. (78), it is
enough to prove estimate (82) when the corresponding quantities are fixed.

Assuming that estimate (82) holds, we apply it to the function f := f(¢) solution of
eq. (78) and get thanks to estimate (79) the differential inequality

(83) O(H(f)D) — H(feoq)) < —PH()) — H(fog))-
Then, Gronwall’s lemma ensures that
(84) H(f)(®) — H(feq) < B(®),

where R is the reciprocal of a primitive of —1/®.
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When one can take, for some constant Cy >0, &(x)=Cyx, one gets
R(t) < Cste~%?, Sometimes, it is however only possible to take &(x) = Cst, 2'** for
some (or all) ¢ > 0, and consequently R() = Cst,t~1/%.

4.1.3 - Cziszar-Kullback inequality

It is often more interesting to estimate || f(t) — foy|| for some norm || ||, than to
estimate the more abstract quantity H(f(t)) — H(foq). Therefore, we are interested
in inequalities of the form

(85) H(f) — H(f.g) > (I f® — fugll).

where we look for a function y > 0 which increases as much as possible near 0.

Note that since H reaches its minimum at f = f,,, we expect at best that y be-
haves quadratically at point 0.

Next proposition, sometimes called Cziszar-Kullback or Pinsker inequality
(Cf. [2] and [10]), enables to prove such an estimate in the case when
H(f)= [(f Inf —f), where Q C RY.

Q

Proposition4.1. Let Qbe a measurable subset of R and f,g: @ — R.. Then

f(@) 5
i(ﬂ@ln<aﬁ)_f@y+mm>¢”2(2jﬂ@dx+4fgmﬂm)
Q Q

2
X <J | f(x) — g(@)] dx) )
Q

Proof of Proposition 4.1. We recall the following elementary inequality,
due to Pinsker: for all u € R,

Slu—1P < @u+4) (ulogu —u+1).

Then, o)
X
Jlf(ﬂc) —g(@)| dw = J 0@ 1‘9(%)«190
Q Q
f@) f@ . (f@\ f@ . g
1 flx)
< 7 Jl@f(x) + 4 9(x)) dw \ll<f(9c) In (@) —f () +g(x)> d.

This concludes the proof of Proposition 4.1.
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In the sequel, since we shall use Lyapounov functionals which are sums of
quantities like j(a Ina — a), for various concentrations a, we shall have to use

2
Crziszar-Kullback inequality in order to obtain estimates like (85).

4.2 - The case of two reaction-diffusion equations
4.2.1 - Large time behavior: the result

We now present a result which gives an explicit estimate about the speed of
convergence of a solution to system (10) — (12) towards equilibrium. This result is
extracted from [4].

Theorem 4.1. Let Q be a bounded, regular (C?) and connected open set of RY
(N > 1) of measure 1, and dg, d; be two strictly positive diffusivity constants. Let
the initial data a;, b, be two strictly positive functions of C%(Q) with mass
f(am +2b;,)de =M > 0.

' Then, the unique strictly positive smooth (C?) solution t € R, — (a(t), b)) to
equations (10) — (12) obeys the following estimate of exponential decay toward
equilibrium:

att, ) — @soll7ai0) + 1B, ) — bos|7ai0y < Cre” 1,

where C1,Cy > 0.
Here, a. and b, are the unique nonnegative numbers which satisfy the equation

(86) 0% =by, G +2b =M.

4.2.2 - The proof: the entropy dissipation estimate

Proof of Theorem 4.1. We recall that since the initial data are strictly po-
sitive and smooth, system (10) — (12) has indeed a unique smooth C? solution, which
moreover satisfies (for some constants Ay, A1, By and By > 0)

(87) Vi>0,xeQ, Ag<altwx) <A,  By<btwx) <Bi.
This is a direct application of Theorem 3.2.

We then prove the following proposition, which corresponds to estimate (82) in
the abstract formulation of subsection 4.1:

Proposition 4.2. Let Q be a bounded, smooth (C?), and connected subset of
RY of measure 1. We consider d,, d, > 0 two strictly positive diffusion constants.
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Let a,b : Q — R be two functions such that (for some constants Ay, A1, By and
Bl > 0)

(88) Va € Q, Ap <alx) <Aj, By < b(x) < By,
and
(89) J(a(ac) +2b()de =M > 0.

Q

Then, there exists a constant C > 0 (depending on Q, M, d,, dy, Ay, A1, B1 and Bg)
such that

Di(a,b) > C(E1(a,b) — E1(@oo, b)),

where 0., by are defined by (86), and functionals E1, D1 are defined by formulas
23) and (24).

Proof of Proposition 4.2. We systematically denote the average over  of a
quantity z by z = f z(x) dx (remember that Q is of measure 1).
Vo _ V.o’

Q
We start with the identity >
llallz~

Poincaré’s constant P), so that

2 — 2
J—W”“' daczPJm I g
a ) Tl

, and apply Poincaré’s inequality (with

Q

We do the same for b, but we also use the identity
2 _
J% de =4 J\Vx\/azdx >P JNE — Vb[? de.
Q Q Q
Using then the inequality
@ —y)(In@) —In @) > 4(Ve — /)

and the L> bound on a and b, we get (for a strictly positive constant which we denote
by C, as any other strictly positive constant in the sequel)

(90) Di(a,b) > C (Ha - \/EHiz +lla — a2+ ||b—BlZ + H\/E 7%”;)

We shall prove that the r.h.s. of (90) is bounded below by (some constant times) the
relative entropy E(a,b) — E(0s, bso).
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Firstly, we use the conservation law (89) to rewrite the relative entropy as

Ei(a,b) — E1(0x, bs) = Jz(aln<%> — (@ —aw)

+bIn (%) - boc)> da.

Va > 0, alna—a+1§(a—1)2,

We use the elementary inequality

in order to obtain
O)  B@h) - B € - la— a4 [0 bl
We see therefore that we only have to show that for some constant C > 0,
o= Vel[f,+la — al.+1b - Bl + |V - VB |,

> C (|la — asoll7> + 116 — bsoll72).
We notice that

o - axelife <2 (lla — alif: + 1@ - ax ),
16— bocliF <2 (116 = BliFz + 15— b ).

o= VBl > |a—-Va|,
so that we only have to show that for some constant C' > 0,
‘6—75‘24—“\/5—%”22 C(|6—aoo|2+ |5—boo|2).

Then, we observe that

N
Vo Vi (Vi vB) YIS
’ 2 Vb+ Vb
L2 2[

<|
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Thus, we only have to show that for some constant C > 0,
a— Vo[> c (\a — a4+ b boo|2)‘

Note that this is a statement on numbers and not on functions.
We recall that
0420 = o + 2bs,

and that aio = b, S0 that we only have to show that for some constant C' > 0,

1 1
|(d)2+§6—a§o —éaoo|2 > Cla — ax|”.

This is easily obtained by noticing that if f(x) = 2 + % x, then |(f~1)(x)| < 2. This
ends the proof of Proposition 4.2.

4.2.3 - The Cziszar-Kullback type inequality

We now turn to another proposition, which shows that the relative entropy
Ei(a,b) — E1(aw, bs) defined by (23) and (86) controls (from above) the squares of
the L!-distances to the equilibrium:

Proposition 4.3. Let Q be an open subset of RY of measure 1. For all
(measurable) nonnegative functions a,b: Q2 — R such that f(a(:v)—i—Qb(x)) dx
=M>0, @

(92) E1(a,b) — B1(to0, o) > C (@ — aso |21 + (16— bool 1),

where definitions (23) and (86) have been used.

Proof of Proposition 4.3. We still use the notations @ = [adx and
_ Q
b = [bdx, and define ¢(x) := x Inx — x. Then,

Q

E1(a,b) — E1(au, boc) = Jaln (%)dm + Jbln <%>doc
Q

Q
+(q(@) — q(ax))+(q(d) — q(b)).

We first note that thanks to Cziszar-Kullback inequality (Cf. Proposition 4.1),

a 1 12 b 1 =12
Ja ln<5> de > o o~ alf}, Jb ln<z) do> b= Bl
Q Q



[41] ABOUT ENTROPY METHODS FOR REACTION-DIFFUSION EQUATIONS 121

and moreover a <M and b< M /2 by (89). Then, we consider Q@) := q(@)
+ q<u> for @ € 10, M[ and R(b) := q(b) + q(M — 2b) for b € 10, M /2[. Since

2
) 1 1 3+2V2
(93) Q()_i éM_az oM
and
_ 1 4 6+ 42
94 R,,b ::—|— _>
(94) B =3+ =2
we combine 2/3 of (93) and 1/3 of (94) to Taylor-expand
_ — 3+2vV2 _ 3+2
(@@ — q(as)) + (q(b) — q(bs)) > GM\[ @ — as* + \flb bool .

Finally, we observe that

6+2\/_ —2 3+2\/§_ 2
-l < 202 (- + 242 ).

and

3+2V2

by Young’s inequality. This concludes the proof of Proposition 4.3.

We come back to the proof of Theorem 4.1.

We consider the unique smooth solution ¢ — (a(t), b(f)) to system (10) — (12) ob-
tained at the beginning of the proof. We apply Proposition 4.2to a = a(t) and b = b(?).
This is possible since condition (88) is satisfied thanks to estimate (87), and condition
(89)is satisfied thanks to the conservation property (20). As a consequence, we see that

D1(a(®), b®) = C (E1(a(®), b)) — E1(ts, b))

6+ 2v2 _ 3+2\f
16— b7 < (IIb—bllil b — Do |>

Thanks to the entropy estimate (29), we obtain
d
%(Eh(a(t), b)) — E1(0, b)) < —C (E1(a(?), b)) — E1(00, bso)),

and thanks to Gronwall’s lemma:
E](a(t), b(t)) - E’l(a/ooa boc) S (El(am, bm) - El(a/ooa b:)o)) e_th

Using now Proposition 4.3 with a = a(t) and b = b(t) (and noticing again that the
conservation property (20) enables to fulfill the assumptions of this proposition), we
conclude the proof of Theorem 4.1.
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Abstract

In this work, we present an approach for a certain type of reaction diffusion equations
(those coming out of problems of reversible chemistry) based on the relationship between
entropy and entropy dissipation. We first discuss the existence, uniqueness and smoothness
of solutions for the equations under study. Then, we get an explicit bound of exponential
decay describing the large time behavior of those solutions.
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