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1 - Introduction

The Boltzmann equation (BE) is the fundamental mathematical model of the
kinetic theory of gases, describing the time-evolution of the one-particle distribution
function of a simple rarefied gas, f = f(x,v,t), where x € RYveR%te R, are the
position, the particle velocity and the time respectively, in the phase-space R% x RY.

Discretization methods have been developed on the idea of replacing the original
BE by a finite set of non-linear hyperbolic PDEs (the so-called discrete BE, [7])
corresponding to the densities linked to a suitable finite set of velocities. This dis-
crete model is relatively simple with respect to the continuous BE, easier to analyse
from both mathematical and numerical point of view, also useful to describe gas
mixtures or equations with multiple collisions. The concept of discrete velocity
models (DVMs) was first considered by Carleman [8], but the real development of
this theory began after Broadwell (1964) introduced his first models [6]. An im-
portant role in the development of the mathematical theory of DVMs had Gatignol
[16] and Cabannes [7]. After their pioneering work, a considerable amount of re-
search was devoted to DVMs. In particular, we mention the papers [3], [19] where it
was proved that BE can be approximated by DVMs with any given accuracy. This
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result was generalized to mixtures in [4]. A relatively recent review on DVMs can be
found in the book [2]. More information on DVMs can be also found in the following
books [17], [1], [18], [10].

It became clear already in 1975 [16] that the velocity discretization can lead to
equations with spurious conservation laws (not linear combinations of the physical
conservation laws). In many papers on DVMs authors postulate from the beginning
that a finite velocity space with such “good” properties is given, and after this step
they study the discrete BE. Our aim is not to study the equations for DVMs, but to
discuss all possible choices of finite spaces (sets) satisfying this type of “good” re-
strictions (Cercignani called such models “normal” in [9]).

This paper consists of three main parts presented in sections 2, 3 and 4.

Section 2 is devoted to the general method for the construction and classification
of discrete kinetic models (DKMs) and its applications in the particular cases of
inelastic and elastic BE. In 2.1 — 2.3 we present the general DVM of the BE and
some preliminary results [5], [21], [13]. We introduce in 2.4 the most general class of
DKMs in the spatially homogeneous case. We discuss the structure of invariant
subspaces of such models and show that the number of invariant subspaces is always
finite (Lemma 3). In sections 2.5, 2.6, the problem of the construction of all normal
DKMs with given invariants is reduced to an equation for the phase set of the model
(Theorem 1). We introduce the concept of universal invariants and use them to re-
duce the number of equations we need to solve. By using all these results, we classify
all normal DKMs and give a general algorithm for their construction. Section 2.7 is
devoted to DVMs with inelastic collisions. In this case, all normal models can be
described explicitly (Proposition 1). Applications of the general theory to DVMs of
the elastic BE are given in 2.8, 2.9, where we classify all models with up to 9 velocities
and construct them. By our method, we find new classes of normal DVMs that can
not be obtained by the inductive method [5].

In section 3 we develop a new method for the construction of normal DVMs, based
on the idea of symmetric extensions. This is an inductive procedure, similar, in some
sense, to the 1-extension method [5], that can lead from a given normal DVM to an
extended DVM. The main result of this part is given in Theorem 3, where conditions
for an extended model to be normal are stated. Many new normal models can be
constructed in this way, and we give some examples to illustrate this.

Section 4 is devoted to normal DVMs for mixtures. Using our general approach to
DKMs and our results on normal DVMs for a single gas, we develop a method for the
construction of the most natural (from physical point of view) subclass of normal
DVMs for binary gas mixtures. We call such models supernormal (SNMs). We
discuss in detail in section 4.2 a geometrical interpretation of plane DVMs for mix-
tures. Then, we give the definition of SNMs and derive a general method for the
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construction of such models. We applied in [22] this method and obtained SNMs up to
20 velocities and their spectrum of mass ratio. In this paper we give some examples.

2 - Discrete kinetic models and conservation laws

2.1 - Introduction and preliminaries

The general discrete velocity model (DVM) of the Boltzmann equation reads [16]

0 0 .
(1) <§+V7 &)ﬁ(xat) = Q?(f) = Qi(ﬁ7 . 7.](;7/) ) 1= 17' .- anv
where x € R? and t € R, denote the position and the time respectively, and
V ={v1,...,v,} C R? denotes a set of velocities of the model. The functions f;(x, t)
are understood as spatial densities of particles having velocities v; € RY, usually
d = 2,38 in applications. The collision operators Q;(f) in (1) are given by

@) Q) = 3 UG~ fif) fori=1,....m.

=1

such that the collision coefficients I'*, 1 < 4,5, k,1 < m, satisfy the relations

ij>
(3) rt=ri=ryj>o,

with equality unless the conservation laws (momentum and energy)

(4) Vit vy = Vi 4 v i = el

are satisfied. A DVM (1), (2) is called normal [9] if any solution of the equations
(5) Pv) +P(v) =¥wvi) + ¥V

where indices (1,7; k, ) take all possible values satisfying (4), is given by

(6) Yv)=a+b-v+cv]

for some constants a,c € Randb € RY

It is not easy to construct a normal d-dimensional DVM (to be more precise, its
set of velocities {vy,...,v,} C R?, such that any conservation law (5) is given by Eq.
(6). This problem appeared already at the early stage of the development of the
mathematical theory of DVMs [16] and still remains, generally speaking, unsolved.
One can easily find an actual number of invariants for any given DVM by using the
method proposed in [21]. However the general problem “How to construct DVMs
without non-physical invariants?” remains open (especially for more general
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discrete kinetic models related to gases with internal degrees of freedom, mixtures,
chemically reacting gases, ete.). To our knowledge, before this work, there was just
one particular method to do this. The method was proposed in [5] (see also [20]).
Many new DVMs were obtained by the inductive method in the last years [20] [14].
On the other hand, this is just a particular method that does not answer many
questions. For example, before this work it was still unclear whether or not the
conjecture that all normal DVMs with a given number # of velocities can be obtained
by the inductive approach is true. We shall see below that the answer is negative.

The main objective of this paper is to develop a very general approach to the
problem of the description of all distinct classes of normal discrete kinetic models
with given conservation laws. The word normal, in this case, means the absence of
other (spurious) conservation laws.

2.2 - How to find the actual number of conservation laws for a given model?

We start by discussing a simple idea of Vedenyapin and Orlov [21] that represents
(together with the paper [5]) a starting point for our present work. They have con-
sidered an arbitrary (not necessarily normal) DVM with the collision term (2) and
introduced a set of vectors

7 el =(..,1,...,1,...,—-1,...,-1,..)eR" " >0,
@ K @ G (k) 0 Y
for any combination of indices (¢,7; k, ) such that I” ’L;l > 0 (dots stand for zeros). The
conservation law (5) can be rewritten as a set of orthogonality conditions

®) v.eff =0, I'lf >0,
where
9) ¥ = Py),...,PH,) € R".

The whole set of vectors (7) for all cases when I” ff > 0 can be written (one vector
under another one, in an arbitrary order) in the form of a matrix A with » columns.
The rank p of this matrix cannot, by the construction of the DVM, exceed
(n — (d +2)), since for v = (v, . .., vq), the functions

(10) Po(v) =1; u(v) =vg, a=1,...,d; Yg1(v) = |v]°

lead to (d + 2) linearly independent (in the general case) vectors (9) of conservation
laws. Hence, the DVM is normal if and only if

(11) rank A =n — (d +2),

provided that the vectors (9), (10) are linearly independent.
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This gives a simple practical criterion of normality for any given DVM: the
number of linearly independent vectors (7) must be equal to (n — d — 2). By using
this technique, the authors of [21] proved that some DVMs for mixtures proposed in
[4] had spurious invariants. This idea helps to reject some “bad” DVMs; however, it
says nothing about the way to construct normal models. This question will be con-
sidered below for general discrete kinetic models (DKMs) and vectors of type (7) will
play an important role in our approach.

2.3 - Inductive method (1-extension)

In [5] the authors introduced a method of constructing DVMs without non-phy-
sical invariants (normal models) using an inductive scheme of 1-extensions. The idea
is that one can start with the simplest discrete model such as, for example, the
modified Broadwell model for a simple gas. The Broadwell model with % = 2d ve-
locities is not (formally) normal since it has only d + 1 conservation laws; to obtain a
normal DVM, one adds one more velocity as in the following figure.

Here (a) represents the Broadwell model, (b) the modified Broadwell model and (c)
the extended Broadwell model (the extended models (a) — (c¢) were first introduced
in [4]). We explain below the general idea of [5].

Given a normal discrete model with the phase set

(12) X, ={x1,...,x,} CR?
(X, is a set of velocities for DVMs of BE) one constructs its extended version
(13) Xivs = {X1y o, Xy Xppi 1y - - s Xpgs by S > 1,
where all new states {n + 1, ...,n + s} satisfy the conditions
W1 <r<s (@) (i.4.k),1 <k <n, such that I';"*" >0,
in other words, each new state (n + 7) is a product of a certain reaction

&)+ () = (k) + (n+7)
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which includes three states {%,7,k} present in the initial discrete model (12). The
extended Broadwell model (c) corresponds to the case n = 5, s = 4.

Lemma 1 [5]. Ifthe initial discrete model (12) is normal, then the same is true
for the extended discrete model (13).

The proof is quite obvious, it is enough to consider the case s = 1, [5].

We shall use this approach in the case of DVMs for the classical Boltzmann
equation. Let us look closely at the above figure. By using 1-extensions one can prove
that such normal DVMs exist for any given n > 6 (we exclude DVMs with an isolated
phase state, as in (b) for n = 5). A straight forward continuation of the above de-
scribed procedure, starting from the 9-velocity model (c), leads to an infinite hier-
archy of normal DVMs whose velocities belong to the regular lattice in R? [5]. On the
other hand, it is clear that (at least for small numbers of velocities n = 6, 7) there are
normal DVMs of different structure, with “rational” and “irrational” velocities. All
normal DVMs obtained by 1-extensions are obviously “reducible” (by taking away
one phase state after another) to some “irreducible” normal models. Can we reduce
any normal model to the simplest 6-velocity one? If so, then the whole class of normal
DVMs could be described in a simple way: just consider 6-velocity DVMs and make
all possible 1-extensions.

We shall see in section 2.9 that the answer is negative: already in the case n = 9
there are some normal models which can not be obtained by 1-extensions. Other
examples, with more than 9 velocities, are given in Section 3.

2.4 - Discrete kinetic models

The most general spatially homogeneous DKM can be described in the following
way. We consider an asymptotically large number N of particles and assume that
each particle occupies one of » distinct phase states z; C RY,i=1,...,n.

We fix the phase set

(14) Z={z,...,2,} C R
and describe the state of the N-particle system by a vector p of occupation numbers
(15) pZ(Nl,...,Nn), Ni+...+N, =N,

such that N; is the number of particles occupying the phase state z; (i =1,...,n).
We do not assume that all particles are identical. Therefore the numeration of the
phase states is fixed.

A stochastic dynamics of the multi-particle system is defined as follows: at any
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time instant ¢ > 0 the system may undergo, with certain probability dW(t) = psdt,

s=1,...,m, one of m elementary reactions (“jumps”). This can be written as a
transition from a pre-reaction state p (15) to a new state p®(s = 1,...,m)
(16) p— o = (N, ND), NP N = N,

where, generally speaking, N©®) # N.
It is econvenient to introduce m vectors

(17) 0S:p—p<8>:(k$>,... k<8>), s=1,...,m,

»

with integer components kES) and call them “vectors of reactions” (similar vectors
were introduced in [21] for DVMs of the Boltzmann equation).
Let us assume that the total “set of reactions” of the model

(18) A={0y,...,0,} COC 7"

is fixed. Then it is clear that the Markovian dynamics of the model is uniquely defined
by the set of reactions A (18) and the set of probabilities (frequencies) {p1, ..., pm } of
the reactions 64, ..., 6,,.

The time-dependent state of the multi-particle system is given by

(19) p(t) = (N1(t),... . Nu(t)),t > 0 .

Definition 1. A linear conservation law of a DKM 1is defined by a linear
functional l[p] (I : R" — R), such that l[p] = const.(independent of the time t).

It is easy to prove that there exists a unique vector u € R” (called a vector of

conservation law) such that
(20) lpl=u-p=> Nuju=(ug,...,u),
i=1

where dot “.” denotes the usual scalar product in R”.

Lemma 2. A vector u € R" is a vector of conservation law if and only if
u-0; =0, forall s € A.

Now we can easily describe the total set of linear (independent of p) conservation
laws of a DKM with a given set of reactions 4 . We introduce a space of reactions

(21) L = Span A = Span {0y,...,0,}
and its orthogonal complement in R"

(22) U=L"LeU=R"
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The following statement follows directly from Lemma 2 (a similar statement for
DVMs of the Boltzmann equation was proved in [21]).

Corollary 1. Amny vector u € U 1is a vector of conservation law for a DKM
with a given set of reactions A. The number p of linearly independent invariants is
given by the equality

(23) p=dimU =n —dimL.

The important conclusion is that all the invariants of a given DKM are uniquely
defined by its set of reactions A (18), and form a linear subspace U C R" (an or-
thogonal complement to the space of reactions L = Span A).

Definition 2. The subspace U defined by Eqs.(21), (22) is said to be the in-
variant subspace of the DKM (with given A). The number p = dim U is called the
number of conservation laws.

In applications we usually know in advance the maximal set @ C Z" of reactions
(consider, for example, pair collisions that preserve the total number of particles).
Moreover, the set @ is finite for finite n. Then we can prove the following.

Lemma 3. Iftwo numbers n > 2, 1 <p <n-—1, and the maximal set O of
reactions (a finite subset of 7") are given, then there exists at most finitely many
distinct p-dimensional invariant subspaces {U;,i=1,...,N(n,p;0)} of corre-
sponding DKMs having exactly p linearly independent invariants.

Proof. Any such DKM with the phase set (14) has a certain set A (18) of re-
actions containing exactly (n — p) linearly independent vectors 6,...,60,_, € ©
(other vectors from A can be ignored since they do not influence the conservation
laws). Then U = L+, where L = Span {61, ...,0,_,} in accordance with Egs. (21),
(22). On the other hand, the set @ is finite by the assumptions of the lemma, so it can
not have more than a finite number of distinct subsets with (n» — p) pairwise different
elements. This completes the proof. [ |

2.5 - Normal DKMs with given conservation laws

We assume below that the conditions of Lemma 3 are fulfilled and we fix two
natural numbers %, p and a finite set @ c 7".
Let us consider a d-dimensional DKM. Its phase set Z (14) is an element of the
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space

(24) Q=R%Yx.--xRL

The basic conservation laws of the model (as functions of Z) are assumed to be
known in advance.

We introduce p vector functions {u, : @ — R",a =1,...,p} and call them given
invariants. Then the total set A (18) of reactions of the model is a subset A(Z) of the
set

(25) A(Z)={0€0:0 u,(Z)=0,a=1,...,p.

This means that only the reactions satisfying the basic conservation laws are al-
lowed. We do not assume that A(Z) = A4.(Z) since there can also be other restrictions
on A(Z) (not related to conservation laws).

We denote such DKMs by {Z, A(Z)}. The model is uniquely determined by its
phase set Z € @ (in the case when A(Z) # A.(Z), one uses the given “other re-
strictions” to determine A(Z) from A.(Z)).

In the next step we exclude some phase sets that are not acceptable.

Definition 8. A DKM {Z A(Z)} with given invariants {u,:@ — R",
a=1,...,p} is said to be non-degenerate if the vectors {u,(Z), a =1,...,p} are
linearly independent. Otherwise, the DKM 1is called degenerate.

The following class of such models is particularly important for applications.

Definition 4. A non-degenerate DKM {Z, A(Z)} is said to be normal if it has
exactly p linearly independent invariants.
We introduce the space of invariants (see Definition 2)

(26) U(Z) =8pan {u,(Z),a=1,...,p}, Z € Q,

and partition all normal models into equivalent classes.

Definition 5. Two normal (as in Definition 4) DKMs {Z;, A(Z;)}, 1=1,2,
are said to be equivalent if U(Zy) = U(Zs).

We can now formulate the result related to the classification of normal DKMs
with given invariants.

Theorem 1. We assume that the following data are given:

(A) three natural numbers (n,p,d), n >p+1;
(B) a maximal (finite) set of reactions @ C 7
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(C) plinearly independent invariants {u, : @ — R", a =1,...,p} (Q from (24)).

Then there exists at most a finite number of distinct equivalent classes of normal
DKMs with giwen mvariants. Each such class is uniquely determined by the
equation

(27) UZ)=U,

forthe phase set Z € @, where U is one of the N distinct invariant subspaces defined
m Lemma 3, and U(Z) is defined in Eq. (26).

Proof. Two distinet classes of normal models can not have identical subspaces
U(Z) (26) (see Definition 5). On the other hand, all N (%, p; @) possible (under con-
ditions (4), (B)) p-dimensional invariant subspaces are defined in Lemma 3. Hence,
we obtain the equation (27) and this completes the proof. ]

Remark 1. The Theorem 1 reduces the problem of the classification and
construction of DKMs to a solution of Eq. (27).

By introducing a basis {e;,...,e,} in the known subspace U C R", one can re-
write the equation (27) as a set of equations

(28) u,(z1,...,2%,) = agpep, a,f=1,...,p.

Here and below the summation over repeated Greek indices is assumed. The non-
singular matrix {a., a,f=1,...,p} and the points (phase states) z; € RY,
i=1,...,nareunknown, whereas the functions u,(Z) € R" and the vectors e, € R"
(a=1,...,p) are given.

Therefore, we obtain, in the most general case, pn scalar equations with (dn + p%)
unknowns. Whether the equations (28) have a solution or not, depends on the specific
functions u,(Z) (¢ =1,...,p) and the subspace U.

This problem should be considered separately for any specific class of DKMs
(some results for the case of DVMs of the Boltzmann equation are presented below).
On the other hand, the equations (27)-(28) are universal for all non-degenerate
normal DKMs with given invariants.

It is convenient to introduce the following definition.

Definition 6. A vector w € R" is said to be a universal invariant for a set
ec /i

(29) w-0=0, forall 6 €O.

If the set © has | linearly independent universal invariants {w;, i =1,..., 1} then
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the space
(30) W = Span {wy,...,w;} CR", dimW =1<n-1,
1s called a universal invariant subspace.
In the case when the set @ admits an [-dimensional universal invariant subspace

W, the equations (27), (28) can be simplified (to skip some possible confusions, we
stress that W c R” is not a subspace of @, which is actually a finite set of reactions).

In particular, all p-dimensional (p > [ + 1) subspaces Uj, . .., Uy, defined in Lemma
3 can be written as
(31) U=WaU,dmU,=p—1,i=1,...,N,

where @ denotes the direct sum in R".
Similarly, the subspace U(Z) (26) is represented as

(32) UZ)=WeaUZ),dmU (Z)=p—1,

and finally we obtain, instead of Eq. (27), the equation
(33) Uz =U,
where U = U, i=1,...,N.

A simplified version of Eqs. (28) can be obtained in such cases in the following
way. We assume that the invariants (condition (C) in Theorem 1) are given in the
form

(34) wi,...owiu: Q- RUa=1,...,q=p—1}.
Then we introduce a basis {, . .., w/q} in the known space U’ and obtain
(35) ula(Z):aa[fw//)’a a7ﬂ:17"'7q7

where u,(Z) are the orthogonal projections of u,(Z) onto R"\W and {a,
a,f=1,...,q}is a non-singular matrix, ¢ = p — L.
If there exists Z € @ satisfying Eqgs.(35) then

!
(36) Uy (Z) = aa/)’w}f + Z CoiWi ,
i=1

for some coefficients c,;, a =1,...,q.
On the other hand, it is clear that {w'ﬂ, f=1,...,q} canbe changed to any set { ey,
p=1,...,q} provided that the p vectors

(37) {Wl,...,wl;wl,...,wq}
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form a basis of the subspace U =W @ U ". Then the equations (36) read
l
u, (Z) = Qupop + Z buiwi,
i=1

for some coefficients b,;, a = 1,...,q. This proves the following lemma.

Lemma 4. Ifthe conditions of Theorem 1 are satisfied and

(1) the set @ has 1 < p — 1 universal invariants w; € R", i =1,...,1;
(2) a set of given invariants (condition (C), Theorem 1) reads

{Wi,...,wiu,: Q — RY, q = 1,...,q9},
then Eq. (28) can be reduced to the system of equations
!
(38) ua(Z) :aaﬂw/j—FZbaiWi, a?ﬁ: 17"'7q7
=1
where {o1,... 04} are vectors of any basis B7) in U=Wad U and {a.

a,f=1,...,q} is a non-singular matrix.

Thus, the number of equations to be solved, in the process of the construction of
DKMs, can be reduced if the maximal set of reactions © has universal invariants.

2.6 - Classification problem. General algorithim for the construction of DKMs

In applications we usually need to construct a DKM with a phase set
Z={21,...,Zy} C Rd,

a set of reactions 4 (both 4 and Z are unknown) and with p given conservation laws

n
(39) ZNk(t)ua(zk) =const.,a=1,...,p,
k=1
(or p given invariants u,(Z) € R").

The DKM {Z, A(Z)} is assumed to be non-degenerate (Definition 3), i.e.

P
(40) D daa(z) =0, k=1,...,n
a=1
implies that all A, =0,a =1,...,p.
The model is normal if it has no other conservation laws except (39) (we discussed
already in section 2.1 the example of DVMs).
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By the classification of normal DKMs we mean the description of all distinct
classes of normal DKMs (Definitions 4 and 5 ), i.e.the phase sets Z and the sets A of
reactions, for given numbers » (the order of the model), d (the dimension of the
model), p (the number of conservation laws), given invariants u,(Z) € R"
(a=1,...,p) and given maximal set @ of reactions.

It is clear in advance (see Theorem 1), that there exists at most a finite number
(perhaps zero) of distinct equivalent classes of normal DKMs, each of them uniquely
determined by the Eqs. (28), or equivalently (see Lemma 4) Eqs. (38).

The solvability of these equations is not enough in order to construct a “good”
normal DKM. We need the extra condition that the model has exactly = distinct
phase points. For this we introduce the following definition.

Definition 7. A set of reactions A is said to be well-defined if
e, —e¢Span A, 1 <k <l<m,
for any pair of standard unit vectors in R”,

ei=C., 1,0 i=1..mn
i

where dots denote zeros.

We get the following result.

Lemma 5. The condition zy #z; for k#1 is fulfilled for all z; € Z,
1=1,...,n, if the set of reaction A is well-defined.

Proof. Suppose that A is well-defined and let z; =z;, for k #[. Then
u,(z;) =u,(z;) foralla =1,..., p and moreover
u,(2)-(ey—e)=0,a=1,...,p,
where dot denotes the usual scalar product in R”. Hence,
e.—e € L=Spand, L*-=U(Z)
and the supposition is false. This completes the proof. ]
Now we are able to give a general algorithm for the construction of all distinct

normal DKMs {Z, A(Z)} with given numbers (n, d, p), given invariants u,(Z) € R",
a=1,...,p and given maximal set of reactions 6.

Step 1. Consider the whole set of well-defined sets of reactions A4, ..., Ay.
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Step 2. Construct all corresponding distinet subspaces Uy, . .., Uy (from Lemma
3), N = N(n,p; 6).

Step 3. Fix U =U;, 1 € {1,...N} and verify the solvability of Eqs. (28) (or
equivalently Eqs. (38)).

If these equations are solvable, we compute the phase set Z(? and construct the
model {Z), A(Z")}, where Span {A(Z")} = U+.

Step 4. Return to Step 3 and take the next space of invariants U = U,,, ete.

The algorithm is finished in N + 2 total steps. It is clear that the algorithm can be
modified in some specific cases (see below) in order to simplify and accelerate the
procedure.

There are three possible cases: (@) p=d; (b) p <d ; (¢) p > d. The cases (a)
and (b) are relatively simple since the number of equations (28) is equal to N1 = np
and the number of unknowns is equal to No = nd + p?. Hence N; < N foranyn > 1
and p > 1 provided that p < d. This means that, under certain conditions, the
equations (28) are solvable for any admissible set of reactions A. This solves the
classification problem in the case p < d.

Hence, the only time when we really need the above-described algorithm is in the
case (¢) p > d (the number of conservation laws is greater than the dimension of the
phase space). This explains the difficulty of constructing normal DVMs for the
classical Boltzmann equation with p = d + 2 (conservation of mass, momentum and
energy).

2.7 - DVMs for inelastic collisions

2.7.1 - Statement of the problem and geometrical interpretation

We consider the particular case of DVMs (identical particles with pair collisions)
with mass and momentum conservation (granular gases, for example). The phase set
Z (14) is the set of % distinet velocities (the numeration is fixed)

(41) V={v,....,v,} CR" de{23,..}.
The reactions (inelastic pair collisions)

(42) ™) + ) — V) + V1), {4,4,k, 1} all distinet,
correspond to the vectors of reaction

(43) 0=(.., 1 ... 1 ....—1 ....—1 ...)

\ , 9\ ;) I\ i 9\ 2l
i j k !
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where dots stand for zeros. Thus, the maximal set ® C 7" of reactions consists of
vectors (43) with all possible combinations of indices (¢,7; k, 1), all distinct.

The inelastic collision (42) satisfies (d + 1) conservation laws (mass and mo-
mentum). The only non-trivial conservation laws are

(44) v+ =+ ua=1,....d,
geometrically represented by a parallelogram in RY.

i :
']

W, ki
; I

The model has p = d + 1 basic invariants (34)

{uu:(v§,...,v%),a:l,...,d

(45) . L
w = (1,...,1) (universal invariant for ).

In the general theory for DKMs we mentioned that we are in general looking only
for non-degenerate models. The Definition 3 can be rewritten for this particular
problem.

Definition 8. The set (41) is said to be non-degenerate provided the equal-
ities
a-v,=const.,ac Rd, k=1,...,n,

imply a = 0. Otherwise, the set is said to be degenerate. The same terminology is
used for DVMs with the phase set (41) and given invariants (45).

The meaning of degeneracy is obvious: a degenerate model has a real dimension
d; < d — 1 and should be considered after corresponding change of coordinates. It is
clear that any set (41) with n < d is degenerate. From now on we consider only non-
degenerate models.

The problem of the classification of all normal DVMs for inelastic collisions has an
interesting geometrical interpretation. Consider a set V' (41) of n points in R? and
assume that each point v; € V, together with three other points v;;; € V, forms a
parallelogram in R? (the numeration of the points can be chosen arbitrarily). Then
consider all such parallelograms with vertices v € V and prescribe to each paralle-
logram a corresponding vector 6 € O (for example, the vector + 0 from (43) corre-
sponds to the parallelogram represented in the above figure). The sign of 8 plays no
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role in the problem of the construction of normal models. In the case of inelastic
collisions with energy dissipation, the sign of @ can be “almost always” defined un-
iquely by the condition

Vil + v > i + v

The whole set 4 ={6;,7 =1,...,m} of such vectors coincides with the set A.(V)
(25), where p=d+1,u,(Z) =u, (e =1,...,d) from (45) and ug1(Z) = w from
(45). Thus the set 4 = A.(V) contains at most (n —d — 1) linearly independent
vectors of reactions (or geometrically, parallelograms). Therefore, the set V (41) of
velocities of a normal non-degenerate DVM for inelastic collisions is geometrically
equivalent to such a configuration of % points in RY that contain exactly (n —d —1)
mdependent (in the sense of the following definition) parallelograms.

Definition 9. The parallelograms of a model are said to be independent if
the corresponding vectors of reactions are linearly independent in R".

It is clear that any DVM for inelastic collisions can not have more than
(n — d — 1) independent parallelograms (otherwise the model would have less than
(d + 1) conservation laws). Therefore the normal models have a simple geometrical
meaning: they maximize (for given # and d) the number of independent parallelo-
grams.

We briefly describe, in the next section, how to construct all such models.

2.7.2 - Classification and construction of normal models

Since we are studying a particular case of DKMs, we are going to follow the
general theory for the classification and the construction of normal models, de-
scribed in section 2.6. We consider a normal non-degenerate DVM for inelastic
collisions, with given numbers » > 4 (order) and d > 2 (dimension), given set of in-
variants {w,u,(V),a=1,...,d} (45), and let V (41) be the velocity set.

The normal DVM has exactly p = d + 1 conservation laws

n n
(46) ZN vy, = const. € Rd, ZN (@) = const. € R,
k=1 k=1
The set O of all possible vectors of reactions consists of vectors (43) and the set A4 of
reactions must have (n — (d + 1)) linearly independent vectors {6, ...,6,_4 1} C 6.
The number of conservation laws p = d + 1 relates formally to the “difficult” case (c)
in the general algorithm (section 2.6). The models exist and we are able to construct
them if Eqs.(28) are solvable. The solvability can sometimes be difficult to check.
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Fortunately, in this particular case, the algorithm can be simplified, due to the ex-
istence of the universal invariant

w=(1,...,1) e R"
(orthogonal to all vectors of the maximal set @). This allows us to apply Lemma 4,

reduce the number of equations and solve, instead of Eqs. (28), the simplified
Egs. (38), i.e.

(47) W = g + by, a,f=1,...,d,i=1,....n,

where the vectors oy, . . ., wg of the basis (37) in the invariant subspace U = W & U’
(note that I = 1 and wy = (1,...,1) € R") have the form

(48) op=(h,....dl), p=1,....d

and b, = b1, a = 1,...,d (in the notations of Egs. (38)).
The system (47) has N; = nd equations and Ny = nd + d? unknowns. Hence
N2 > N; and Eqs.(47) are solvable for any invariant subspace

U=U;,i=1,...,N,dimU=d +1,

defined in Lemma 3.
The solution (the velocity set of the normal DVM for inelastic collisions)

(49) V ={v,...,v,} C R

is determined by Eqs.(47) with accuracy up to any non-singular linear non-
homogeneous transformation.

The construction of normal DVMs for inelastic collisions follows the general al-
gorithm of classification and construction of DKMs, presented in section 2.6. We
should remind that, in order to have distinct phase states, the sets A of reactions
should be well-defined (see Step 1 of the general algorithm). In the particular case of
the inelastic BE, the equations (88) in Step 3 of the general algorithm, read (47), and
are always solvable. The solution is the velocity set V' (49) of the normal inelastic
model {V, A(V)}. We have the following result.

Proposition 1. Any well-defined set A of reactions
(50) A={0y,...,0, 41} CcOCL"
generates through Eqs.(47) a velocity set

V=A{v,...,v,} C R?

of a normal inelastic DVM.
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Conversely, the total set @ of reactions of any such DVM contains a certain well-
defined set (50).

The above result solves, in principle, the problem of classification and construc-
tion of all normal DVMs for inelastic collisions.

Remark 2. Geometrically, any such model admits the 1-extension scheme
(described in section 2.3), since one can always find three vertices (not all belonging
to the same parallelogram of the model) and construct a new parallelogram with a
new-added fourth vertex. The extended model is also normal (its parallelograms
are independent).

We shall see below, when we discuss the elastic case for DVMs, that the problem
of classification and construction becomes, by adding one more conservation law
(energy conservation), more difficult to solve. We shall study in detail some prop-
erties of admissible (well-defined) sets of reactions and try to modify, using these
properties, the algorithm of classification and construction of DVMs of the
Boltzmann equation, in order to implement it.

2.8 - DVMs of the Boltzmann equation

2.8.1 - Statement of the problem and geometrical interpretation

We consider the problem posed in section 2.7 with an additional restriction: any
collision (reaction) (42) satisfies, besides the mass and momentum conservation, the
energy conservation

2
(51) Vi P |vi| "= vi[Pva

The collision (42) is, in such a case, elastic (satisfying (d + 2) scalar conservation
laws) and has as geometrical interpretation a rectangle in RY.

" v

. . IIIII
v i |

This justifies our assumptions that all indices 1, j, k, [ are distinct (exchange of
velocities v; = v;, v, = v; is irrelevant for identical particles).
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The model has p = d + 2 basic invariants (34)

u, =0f,...,v%),a=1,...,d
(52) ugin = (Wi vl
w = (1,...,1) (universal invariant for 0).

Definition 9 of independence is the same for the case of rectangles. However,
Definition 8 of non-degeneracy needs to be modified.

Definition 10. The phase set V (41) of an elastic DVM is said to be non-
degenerate provided that the equalities

(53) a+b-vk+c|vk|2:O,beRd,a,ceRk:l,...,n,

mply a = ¢ =0, b = 0. Otherwise the set is said to be degenerate.

This means that we exclude two cases: (1) all velocities lying on a hyperplane
b-v = const.; (2) all velocities lying on a sphere |v|°= const. The case (1) can be
reduced to the same problem, but in R4, For the case (2), it can be shown that the
only class of normal elastic models on the sphere S?~! (its radius can always be made
1) is the class of Broadwell-type models with 2d velocities, 2 < d <d.

From now on we consider only non-degenerate models. Similarly to the inelastic
case, we note that the normal DVMs of the Boltzmann equation represent sets of »
points in R? which correspond to the maximal possible number (7 —d — 2) of in-
dependent rectangles. All such configurations are invariant under rotation, trans-
lation and scaling transformations (we obtain equivalent models). The DVMs with
n € {6, 7} velocities on the plane have some additional invariant transformations.

Hence, all normal DVMs of the Boltzmann equation can be geometrically de-
seribed by certain configurations of % points in R? together with (n—d—2)in-
dependent rectangles connecting the points. In the inelastic case, one could always
construct a new normal model by using the 1-extension scheme. This is not true in
the elastic case (where parallelograms are replaced by rectangles). This means
that we can not conclude automatically (as in the inelastic case, Proposition 1) that
we have a one-to-one correspondence between well-defined sets of reactions and
normal models. Moreover, as we shall see later, there are well-defined sets of
reactions for which we can not construct a normal elastic model. Even if until now
all known normal elastic models could be obtained by the 1-extension method, we
wonder if we can not find normal models that are not 1-extentions. We shall try to
do this by using a modified version of the general algorithm for DKMs (from
section 2.6).
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2.8.2 - Algorithm for the construction of elastic DVMs

Our goal is to describe and construct (if possible) all distinct non-degenerate
normal DVMs for elastic collisions {V, A(V)}, where V (41) is the velocity set and
A(V) represents the set of reactions of the model, when the order n > 4, the di-
mension d > 2, the set of invariants (62) {w,u,(V):a=1,...,d+ 1} and the
maximal set @ of reactions, are given.

The normal DVM has exactly p = d + 2 conservation laws

n
> Ni(t) = const. € R,
k=1

n
(54) S Ni(t)vi = const. € R?
=1

n
S Ni()|vi|P= const. € R, .
=1

The set © of all possible vectors of reactions consists of vectors (43) and a set A(V') of
reactions must have (n — d — 2) linearly independent vectors {0;,...,0,_4 2} C ©O.

Following the general algorithm for the classification and construction of DKMs,
we first consider the whole set of well-defined sets of reactions

(55) AV)={0:CcO,i=1,....n—d—2}.

Then we construct all corresponding distinet subspaces of invariants Uy, .. ., Uy (see
Lemma 4) and, by taking them one by one, try to solve Eqs.(38) (with w (52) the
universal invariant for @). If these equations have a solution, then we can construct
our normal model. Otherwise we reject the subspace U; and move further.

This theoretical algorithm needs to be slightly modified in order to implement it.
That is why we are going to use, instead of the sets of reactions A(V'), the corre-
sponding A-matrices of reactions

0:(1) . 61(n)
(56) A= . . .
andfz(l) cee 0n7d72(n)
We need to introduce the following definition.

Definition 11. A matriz A (56) is said to be well-defined if the corre-
sponding set of reactions A (55) is well-defined (as in Definition 7).

We can now rewrite the general algorithm in the following way.
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Step 1. Generate all (n — d — 2) x n A-matrices (56) having as rows (n — d — 2)
linearly independent vectors of type

57 O,=(.., 1 ..., 1 ..., —1,...-1,..)€0, a=1,....n—d—2.
YT
ZU ]’l a o

In addition, these matrices should be well-defined. To get such matrices, we add to
A a new row, containing one element 1, one element ( — 1) and the rest of the ele-
ments zero (all possible combinations), and then check if the new matrices have the
rank equal to (n — d — 1). For positive answer, we store the starting matrix A

The set © = {;11, ey ZN}, of all generated matrices ;1, is finite, since the set @is a
finite set.

Step 2. Forj=1,...,N do:

) Take?lzz_je(:);
o Suppose that there exists a normal discrete DVM with the matrix A of reac-
tions and denote by

(58) X=&g,..%),x CRUE=1,....n,

the vector of phase points of the model,
o Denote X = (\x1|2, cel, |xn\2);
o Check the solvability of the system

AX = O a-2)xa

AX = Op—g-2)x1,

(69)

where O;,; is the (¢ x j) null-matrix. The first equation has as motivation the mo-
mentum conservation, the second one, the energy conservation. Since the vector
w = (1,..., 1) is a universal invariant, orthogonal to every matrix of reactions A, we
do not need an extra equation for the mass conservation.

One way to check the solvability of the system (59) is the following.

From the equation AX = O(n—d-2)xa> Where rank A=n—d-— 2, we can express
(n —d — 2) variables through (d + 2) parameters. Under certain numeration we
obtain

n
(60) Xp= > X, k=1,...,n—d-2
a=n—d—1
where ay, are uniquely defined by the matrix ;1, choice of independent variables
{Xp_d-1,---» Xy} and given numeration.
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Since we supposed that the model exists, we have that |xi\2, 1=1,...,n, satisfy
Eqgs. (60). Hence,

n

(61) XelP= > s k=1,...n—d-2.
a=n—d—1
We know that
(62) Y a=1,k=1....n-d-2,
a=n—d—1

since w = (1,...,1) is a solution to the system (60). We obtain the system of
(n — d — 2) equations

n 2 n

(63) ( > akaxa> = > ol k=1 n-d-2
a=n—d—1 a=n—d—1

for (d+2)d scalar variables (components of the d-dimensional vectors

{Xp-d-1,---sXn} C R%). If the Eqgs. (63) have a non-trivial solution, then we compute

the vector of phase points (58) by Eqgs. (60) and construct the normal model

(V,4(V)), where

(64) V=_x1,...,x,} C R? with X = (X1, .., Xp), Xp; C Rd,k: 1,...,n

and A(V) is the set of reactions corresponding to the matrix ;lj. Otherwise, we reject
the matrix ;.

2.9 - Classification and construction of normal plane elastic models with small numbers
of velocities

2.9.1 - Starting point (n = 6) and 1-extension

We are going to study the particular case of plane elastic models with small
numbers of velocities. It is already known that all quadratic DVMs are normal and
that they can be obtained by the 1-extension method. We are now especially inter-
ested in the case of “reducible” non-quadratic models. Using geometrical argu-
ments, we shall obtain all models up to 10 velocities, which are results of the 1-ex-
tension scheme. As we have seen before, from the geometrical point of view, we can
represent a normal plane elastic model as a lattice of rectangles. The simplest model
has six vertices (velocities) and two independent rectangles; for normal models, the
number p of independent rectangles is given by the equality

p=n—d-2

where 7 is the number of points and d is the dimension.



24 A.V.BOBYLEV and M. C. VINEREAN [24]

Definition 12. By a neighbour of a rectangle in a normal plane DVM, we
understand any other independent rectangle in the model having at least a vertex
m common with the initial rectangle.

Lemma 6. For any given rectangle in a normal model with n = 6 velocities
there exists only one neighbowr of it; in a model with n = T velocities there exist two
neighbours of the given rectangle; in a normal model with n > 8 velocities there exist
at least three neighbours of a given rectangle, except the case of a quadratic 8-ve-
locity model of type (E) (see below) where there exist at least two neighbours.

Proof. We denote by

o X, = {x1,...x,} C R?, the phase set of the model;

o A = {x1,Xg,X3,X4} C X, the set of phase points that are vertices of some fixed
rectangle belonging to the model with phase set X,;

o B =X,\A, the rest of the s = (n — 4) vertices of the model;

o R(B), the number of independent rectangles having as vertices only elements
of B;

o R(AB), the number of neighbours of the fixed rectangle.

Since the model is normal, the total number of independent rectangles is
1+RB)+RAB)=n—4=s.

We need to evaluate the number R(AB) in order to prove our lemma. We have
from the above relations

(65) RAB)=s—1-R(B)=n—5—R(®B).

We study the following possible cases: (i) s < 3; (i1) s = 4; (i11) s > 5.

Case (1). We have n — 4 = s < 3, which implies n € {6, 7}. Since s < 3 we have
automatically that R(B) = 0. Using the relation (65) we obtain R(AB) =n —5 and
hence, R(AB) =1ifn =6 and RAB) =2ifn ="1.

Case (11). Since s = 4, we obtain the necessary condition R(B) < 1.

If R(B) = 0 then from (65) R(AB) = 3 and the result for » = 8 is proved.

Suppose now that R(B) = 1. This means that the 8 vertices of the model can be
seen as two groups belonging to two different circles (if the circles are the same, the
energy conservation is automatically fulfilled and we have degeneracy). Since s = 4
and R(B) = 1 we have in the model two independent rectangles: the set of vertices of
rectangle(1) is A and for rectangle(2) is B. A normal model of order n = 8 has four
independent rectangles and hence R(AB) = 2 (two independent rectangles neigh-
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bours to the fixed rectangle(1)). It is clear that both these independent rectangles
contain two velocities from the rectangle(1) and two velocities from the rectangle(2).
Both these new rectangles can be constructed having as parallel sides:

(a) one side of rectangle(1) and one side of rectangle(2);
(b) one diagonal of rectangle(1) and one diagonal of rectangle(2);
(c) one side of rectangle(1) and one diagonal of rectangle(2) (or vice versa).

Geometrically, all these cases can be rejected, except the last case side-diagonal
which gives a normal quadratic model of type (£) (see below in Section 5.3.1, Fig. 3).

Hence, R(AB) = 3 for n = 8, except the particular case of the quadratic model
().

Case (iit). To this case belong the models with % > 9 velocities, since s > 5.

We rewrite Eq. (65) as

R(AB) =3+ (s —4 - R(B)).

If R(B) <1, then R(AB) > 3+ (s — 5) > 3 and the lemma is proved.

Suppose now that R(B) > 2. Then the model has at least two independent rec-
tangles with all vertices in B. Since the set B contains s vertices, the number of in-
dependent rectangles we can construct with vertices from B is less or equal to
(s —4), if B is non-degenerate. In this case, we obtain the necessary condition
(s —4) > R(B) > 2, which implies that (s —4 — R(B)) > 0. Hence, R(AB) > 3 and
the lemma is proved.

We study now the case when R(B) > 2 and B is degenerate (all points are lying on
aline or a circle). The case when the points are lying on a line is impossible, since then
we have two independent reactions on a straight line.

Let us study the case when all s points of B are lying on a circle. Assume that
there exist q free points (not participating in any reaction) in B. It is clear that the
number of the other points in B must be even (every rectangle has as diagonals
diameters of the circle). We fix a rectangle on the circle. One can prove that to get
N more independent reactions, one need to add 2N particles. We fix one reaction on
the circle. If we want one more reaction we need to add two more particles (the
number of new reactions N = 1, the number of added particles 2N = 2); if we now
add two more particles we get formally three rectangles, but only two of them are
independent (the number of new reactionsis N = 2, the number of added particles is
2N = 4); by induction one can prove that this is true for any N.

We have the total number of reactions in B given by R(B) =N + 1, with N > 1
(because R(B) > 2). The number of particles in B is s =4+ 2N + ¢ . Hence,
(s—4—R(B))=N —1+q > 0and from Eq. (65), R(AB) > 3.

The lemma is proved. u
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Lemma 7. All 6-velocity normal models contain two independent rectangles
having two vertices in common.

Proof. Suppose the contrary. We know that a 6-velocity normal model has
p =6 —4 =2 independent rectangles. From Lemma 6 we know that a given
rectangle in a 6-velocity normal model has exactly one neighbour. This means
that the two independent rectangles have at least one vertex and at most two
vertices in common. From our supposition they can have only one common
vertex. Then the A-matrix corresponding to the model can be arranged in the
following form

H B NH E(O0|O

(66) m(O(O0O (0O |W|®H|’

where the first line represents a fixed reaction (M-symbol is a non-zero element of
the row, belonging to the set {£1}; every row is a vector of type 0+ from (57)). In
the second row we can take a non-zero element in one of the first four positions
(so we get a vertex in common): for example in the first column. Since there can
not be two vertices in common, we are forced to put zeros in the next three
columns. This leaves only two free places for the other three non-zeros of the
second row, so the model is impossible to construct. Our supposition is false and
the lemma is proved. ]

This result leads to all possibilities for plane 6-velocity normal models:

(a) two rectangles that share one side;

(b) two rectangles such that one diagonal in the first rectangle is a side in the
second one;

(c) two rectangles that share one diagonal.

The last case (common diagonal) is forbidden since all velocities lie on a circle
(1,v,\v|2 are linearly dependent) and the conservation of energy is automatically
fulfilled. Hence, the only possible cases for n = 6 are illustrated in Fig. 1. All other
possibilities are obtained by translation, rotation or scaling. The models have, as free

parameters, the anglestand s, 0 < ¢,s < g (to be able to plot, we fix these parameters
in Fig. 1).

Definition 13. Two A-matrices are said to be equivalent if they correspond
to two equivalent normal models (in the sense of Definition 5).
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[

Model (a) Model (b)
Fig. 1. All 6-velocity normal models.

To a normal DVM it can be put in correspondence a class of equivalent -ma-
trices. The corresponding A -matrices for the above two cases are

< _(t 11 10 0
@=\1 0 0 -1 1 -1)°

- ( 1 -1 1 -10 0 )
Ap) = )
1 0 -1 0 1 -1
and all matrices equivalent with 71<a> and 71(1,), in the sense of Definition 13.

Using the 1-extension method for the construction of normal models (section 2.3),
we can start with the simplest normal model (in our case with » = 6) and add one
more velocity such that the new point is a vertex of some new independent rectangle.
By Lemma 1, we obtain a new normal model. If we approach the problem in this way,
using only geometrical arguments and checking the rule for the number of in-
dependent rectangles, we get the complete results for 1-extensions.

We start from a 6-velocity model, given in the above figures, (@) or (b), with the
angles ¢ and s as free parameters. We add a new velocity such that the new model is
normal (a 7-velocity model with 3 independent rectangles). The only possible cases
for n = 7 are illustrated in Fig. 2 (we fix the parameter ¢, to be able to plot).

ocnl 1 Wocwl

Model (1) Model (2) Model (3)

Fig. 2. All 7T-velocity normal models.
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Mkl Vo (8]
1

Model (A) Model (B)

Model (E)

Model (F) Model (G)

Fig. 3. All 8-velocity normal models.

Knowing all 7-velocity models obtained by the 1-extension method, we try to add

a new velocity in order to get 8-velocity normal models (with 4 independent rec-

tangles). We have 7 possible cases for n = 8 (illustrated in Fig. 3). Model (A) has a

free parameter ¢ (to plot the model we fix the free parameter ¢ = arctan2/3). The

other models do not have free parameters. Model (B) and (£) have ¢t = g Model (C)

V11— V3 )
4

1
has ¢ = arctan —, model (D) hast = g, model () hast = arctan ( and

V2
model (G) has t = g

The next natural step is to find all 9-velocity models obtained by 1-extensions. We
try to add one new velocity to the 8-velocity models obtained above. This time, we
construct models with five independent rectangles. All 6 possible models (illustrated

™ model (iii) and

in Fig. 4) do not have free parameters. Model () and (i) have t = 1
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Vo [

Model (i) Model (ii) Model (iii)

Model (iv) Model (v) Model (vi)

Fig. 4. All 9-velocity normal models: 1-extensions.
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4 3 5
4 3 5
] 1l 1 B
1.3 B 10
g 79
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4 5 45
Y
v Y K
1 5 1 ‘ 10
SN

7 g 7 g

Fig. 5. All 10-velocity normal models: 1-extensions.
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\/ﬁ4— \/§>

1
() has t = arctan —, model (v) has ¢ = arctan ( and model (vi) has
t

: V2
6
The only left 9-velocity models which admit 1-extension are the models (7), (i7),

(727) and (#v). Their extensions are given in Fiig. 5. Model (/) does not admit further 1-
extension, but the quadratic models admit 1-extensions in infinitely many steps.

2.9.2 - Classification results for n € {7,8}

We have described in the previous section all reducible normal models with n = 7
and n = 8 (results of the 1-extension scheme). We wonder now, if there exist other
normal models with #» = 7 and n = 8 which are irreducible.

We can arrange the corresponding A-matrix of any normal model in the special
equivalent table-form, described below.

(67)

[ X | *k|[*x]|%|O
¥ || X[ *]|%|O

— first we rearrange the matrix A (if needed) in order to obtain a row that has all
its four non-zeros in the first four columns: denote the new matrix by A (we can
always interchange columns and get an equivalent matrix);

— every line of the above table can contain more than one row of the matrix A
(vectors of type 6+ (43));

— every column of the table contains exactly one column of the matrix /;

— first line contains only one row of the matrix 4 having in the first four columns
all its non-zeros {1,1, —1, —1} (because of the first step, this row exists);

— the “l”-symbol is a non-zero element of the row, belonging to the set {1} (or
avector of non-zeros, if the line of the table contains more then one row of the matrix);

— the “x”-symbol stands for the elements of a line left after we filled the positions
we know; it can contain an element belonging to the set {0,4 1} (or a vector of such
elements).

— the second line contains all k1 > 0 rows of A, left after we wrote the first line,
having a non-zero element in the first column;

— the third line contains all ks > 0 rows of A, left after we wrote the two first lines
of the table, having a non-zero element in the second column;
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— the fourth line contains all k5 > 0 rows of A, left after we wrote the first three
lines of the table, having a non-zero element in the third column;

— thefifth line contains all k4 > 0 rows of A, left after we wrote the first four lines
of the table, having a non-zero element in the fourth column ;

— the last line of the table contains all left n2; > 0 rows (these rows will have only
zeros in the first four columns);

— we have 1+ (ky + kg + ks + k4) +my = n — 4 (if the model has order » and
dimension d = 2).

Remark 3. The rectangles given by the rows ki,ks, ks, ky represent all the
neighbours of the rectangle given in the first line of the table and because of Lemma
7 we have that for n > 8

k1 + ko + ks + ks >3,

except for the particular case of the quadratic 8-velocity normal model (E), Fig. 3.
Lemma 8. All normal models of order n =7 or n = 8 contain a 6-velocity

normal model (in other words, two independent rectangles having two vertices in
COMmmon,).

Proof. (a)n = T7:Wesuppose the contrary. We can arrange the corresponding
A-matrix of the model using the special form (67) as

IS
LIS
CIEE IS

We are forced, because of our supposition (not two vertices in common), to replace
“+” in the columns 2,3, 4 of (67) by zeros. Since we have four non-zero elements in
each row, we need to fill the rest of the columns, with non-zero elements.

The matrix A has only three rows (n = 7), so it fulfills the condition

(69) k1 + ko + ks + ky +my =2.

Fromthe table (68) we notice that m; = 0is anecessary condition (we get only three
non-zero elements in a reaction). Then ki + ko + k3 + k4 = 2, so there are two rows
having three common non-zero elements (in other words they describe the same re-
action). This is a contradiction since all rows should describe linearly independent re-
actions. Hence, our supposition for n = 7was false and the lemma is proved in this case.
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(b) n = 8: For the quadratic models it is known that all 8-velocity normal model
contain a 6-velocity normal model. Thus, it only remains to prove the lemma for the
non-quadratic models.

We suppose the contrary. Then we can write the corresponding A-matrix of the
model, using the special form (67), as

(70)

.%***O
.****O

-****o

.****O

To obtain (70) we used the assumption that there are not two vertices in common.
Since the matrix A4 has only four rows (n = 8), it fulfills the condition

ky + ke + ks + kg +my = 3.

But we have that k1 + ko + ks + k4 > 3 (Remark 3).

Hence, my = 0 and ky + ko + k3 + k4 = 3.

In the last three rows, all possible combinations for arranging the left non-zeros,
lead to at least two non-zeros in common for two different rows. Hence, our sup-
position is false and the lemma is proved. ]

With the help of Lemma 8 we can now prove the following theorem.

Theorem 2. All normal models of order n =T and n = 8 are 1-extensions of
models of order n = 6 and n =T, respectively.

Proof. We treat the two cases separately.

(a) m =T7: We proved that all normal models with % = 7 velocities contain a 6-
velocity normal model. Hence they are all 1-extensions.

(b) n = 8: We proved that all normal models with » = 8 velocities contain a 6-
velocity normal model. If they all contain a 7-velocity normal model, then the theo-
rem is true.

Suppose that there exist normal models with # = 8 velocities, obtained as 2-ex-
tensions of a 6-velocity normal model. Then the corresponding A-matrix of the model
has at least two non-zero elements in all columns (otherwise the model is reducible to
a T-velocity normal model).
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Case 1. The model contains a 6-velocity model of type (a).
The corresponding A-matrix is given by

1 -1 1 -1 0 0

1 0 0 -1 1 -1)
(all other models of this type lead to matrices which are equivalent with ;1, in the
sense of Definition 13).

Then the matrix corresponding to the 8-velocity model has the form (we now use
the normal way to write a matrix)

1| -1{1|-1]010 010
1 Ol —-1]1|-1101]0
(71) 0 x| 0 * H N
0 10 * H N

Since we (by our supposition) cannot have a column with only one non-zero, we are
forced to put non-zeros in the last two columns (last two rows). We also need to have
at least one more non-zero in columns 2, 3, 5 and 6. Since for each of the last two rows
we have available only two more non-zeros, we need to put zero in columns 1 and 4, in
the last two rows. These arguments explain the form (71). Noting that by inter-
changing two rows or multiplying them with (— 1) or interchanging two columns in
the matrix of reactions, we obtain the same model, we have the following possible
matrices for the 8-velocity normal model in Case 1.

1{1-1]11]-1]01]0 010

110 O|—-1(1|(-1]01]0
(72) 00 |0 Hm|0 L BN N

o|m |0 |0 O|Wm [Hm ||
or

11 -1]1|-1]0 {0 010

110 O(-1(1(-=1]01]0
(73) O|m |W|O0 010 N

010 010 HE N BN
or

11 -1]1|-1]01{0 010

110 O|-1|1|(-1]01]0
(74) o|m |0 |0 |0 H N

010 |0 O (W [m ||
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Using geometrical arguments, one can prove that all these three cases are im-
possible (we remember the reader that “l” symbolizes a non-zero element belonging
to the set {£1}).

Case (72): If we denote by (1,7, k, [) a reaction of the model (where 1,7, k, [ are the
positions, in the vector of reaction, containing the non-zeros), then the last two reac-
tions are (3,5,7,8) and (2, 6,7, 8) and the first two reactions are given in the 6-velocity
model of type (a). Suppose that the last two reactions are possible. Then (3, 5) and (2, 6)
are either both sides or diagonals or one is a diagonal and the other one is a side of their
corresponding rectangles (by (¢,7) we mean the segment connecting the vertices ¢ and
7). Inthe first situation, we can construct two such rectangles, but the 8-velocity models
will not be normal since they will contain only three independent rectangles, instead of
four. In the second situation, if both are diagonals they intersect the diagonal (7, 8) in
its middle point and hence, they have a point in common, which is false, since they are
parallel (see Model (a)). The last possibility is not working either (we have (3,5) and
(2,6) parallel, and (7, 8) is parallel with one of them and intersect the other one).

Case (73): The last two reactions are (2,3,7,8) and (5,6,7,8). We can easily
prove, using similar arguments as for case (72), that they are impossible.

Case (74): The last two reactions are (2,5,7,8) and (3, 6, 7,8). The segments (2, 5)
and (3, 6) are diagonals in the rectangle (2,3,5,6). This means that they cannot be
both sides in the rectangles (2,5,7,8) and (3, 6,7, 8), since this leads to that (2,5) is
parallel with (3, 6). They cannot both be diagonals in these two rectangles since then
the model will have only three independent rectangles instead of four. If one of (2, 5)
and (3,6) is a diagonal in the new rectangles, then it intersects (7,8) in the middle
point and hence, (7,8) intersects the other one also in the middle point, so the case
when one is a diagonal and the other one is a side is excluded.

Case 2. Can be treated in a similar way as Case 1 (see for details [22]). ]

Since we proved that all normal models of order » = 7 and n = 8 are 1-extensions
and in the previous section we described all these models, we have now a complete
image over the case of normal plane elastic models of order n =7 and n = 8.

2.9.3 - Algorithm for normal plane elastic models with small numbers of
velocities

We start by proving a result that will enable us to give a more explicit algorithm
for the construction of elastic plane normal discrete models, based on the general
algorithm, given in section 2.8.
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Lemma 9. Let (1) + (2) < (3) + (4) be one reaction (a rectangle, geome-
trically) of a normal model {V, A(V)}, with V from (64). Then there exists 6 € N,
5 <0 <, such that

(75) X = (@p1X1 + AQpeX2 + A3Xs + ApsXs) € RZ, forallk=1,.. n,
where

Qg = 510(17(1 = 1727375
(76) Ay = 0 s

41 = g2 = — g3 = 1

1 ifk=a
0, otherwise
that x1 + X2 = X3 + X4 ); t.e. all velocities of a model can be expressed by a linear
combination of three velocities belonging to a fixed reaction, and a fourth velocity
from a different reaction.

(we remaind that oy, = { ; we have used for the last coefficients the fact

Proof. From the system
(77) 0, X=0,a=1,...,n—4,

with 6, (a =1,...,n —4) from (57), linearly independent, and X from (58), there
exist 1 < a,f, 7,0 < n all different such that

X, = ApaXq —|—Ak/;X/; —I—AkyX;, + ApsXs s k= 1,...,n.

(a1) If 1 € {a,p,7,0}, and (without loss of generality we can let) a = 1, then
X = ApXy + AppXp + ApX, +ApsXs , k=1,...,n.
(az) Else
X] = A10Xy + Apxp + A X, + A1sXs,

with at least two coefficients from Ai,,A;p, A1, Ars different of zero, since
A+ A+ A, + A5 =1 from Eq. (62) and since, if we consider for example only
Ay, #0, then x; = Ay,x, implies A1, = 1, and x; = Xx,.. This contradicts our suppo-
sition that all numbers a, 8, 7, 0 are different of 1. Without loss of generality, we can
assume that A;, # 0. Then x, can be expressed as

X, = A;lxl + A;ﬂx/; + A;},x;, + A;(sx,;.
Hence,

Xp = ALX +A;;ﬂx/; +A;;yxy + A%, k=1,...n
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In both cases (a1) and (az) we have x;, € Span {x;,X;,X,,X,} forallk =1,...,n. We
denote by Bj;, the coefficients Ay; or A;’Cj, je{1,p,7,0}, from the cases (a;) or
(az), respectively.

(b1) If 2 € {B,y, 6}, for example f = 2, then

X, = Bpixq + BieXs + BkyXy +Bisxs  k=1,...,n.

(b2) It 2¢ {B,y,6}), then
Xp = Ba1X1 + Bopxg + B2, X, + BasXs.

Suppose that Byp = By, = By; = 0. From Ba; 4 Bag + Bz, + Bas = 1 (see Eq. (62)),
we get Bo; = 1and hence, x; = X2 (contradiction to the supposition that x;, xs belong
to the same reaction). This means that at least one of Bgg, By,, Bas is non-zero, for
example Byp # 0. We can now express Xz as a linear combination of xi,X», X, Xs.
Hence, we can write

Xk = Bk1X1 JerQXg +Bk},Xy Jer(;X(; 5 k = 17 oo ,n.

In both cases (b1) and (b2) we have x;, € Span {xi1,X2,X,,X,} forallk =1,...,.n. We
denote by Cy;, j € {1,2,7,6} the coefficients By; or B;Cj, from the cases (b;) or
(b2), respectively.

(c1) If 8 € {y, 0}, for example y = 3, then

X; = CiiX1 + Croxo + Cisxg + CisXs, k=1,...,n.
(c2) Else
x3 = C31X1 + C32Xp + C3,X3 + Cs5X;.

If C3, = C35 = 0 we obtain using (62)

Cs1=a

C351+C=1—=Cpp=1—-a
and in this case
X3 = 0X1 + (1 - (,l)Xg.
We get x1,Xg, X3 collinear. But these velocities belong to a reaction of the model
(which, from geometrical point of view is a rectangle) and thus, this case is im-
possible. Hence, at least one of the coefficients Cs,, Css is different of zero. We can

take, for example, Cs, # 0. We express X, as a linear combination of x;, Xz, X3, X, and
obtain

X, = C}clxl + CI,CZXZ + C;C3X3 + C;c(SX(S k= 1,...,n.
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In both cases (¢1) and (cz) we have x;, € Span {X;,X2,X3,Xs} forall k =1, ...,n. We
denote the coefficients Cj; (or C}Cj), 7 €1{1,2,3,0} by a1, are, ars, axs, respectively.
Then

(78) Xj = Qp1X1 + WpeXe + WisXs + QX k=1,...,m,
with
(19) k1 + Qg2 + gz + s =1

and X1, X2, X3 belonging to the same reaction and x; to another one (if x; = x4, since
X4 € Span {X;,Xg, X3} We get

’ ! !
Xj = X1 + ApoX2 + Uy3X3, k=1,...,n,

which contradicts the fact that the system (77) has four free parameters) and the
lemma is proved. ]

From Lemma 9 we have that the solution of the system AX = 0 can be written in
the form (78), with coefficients fulfilling (79).

Because of the invariance under translation, rotation and scaling transforma-
tions, we can take

x; = (0,0)
xe = (1,0) = ¢;
(80) x3 = (1,0)
X1 = (0,0) = fes, 0 € R,
X5 = (2,y) & {x1, X2, X3}

Hence, the solution has the general form
(81) X, = aie; + biles + x5, k=1,...,n,

where ay, by, ¢, are real constants. One can prove that x; = («, %) fulfills an additional
restriction

1\2 0\% 1+ 6
) (e-5) +(v-3) 27 -

i.e. it does not lie on the circle circumscribing the triangle having as vertices the
points X7, Xz, X3 from (80).
The system (59) given in the general algorithm in section 2.8, will be replaced,
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using the Eq. (63) by

x4 = (1,0

(83) X5 = (0, 9) ¢ {x1,X2,X3}; X,fulfills (82)
X = ayer + biles + cpXs, k € {5,...,n}\{d}
AX =0

(@ — o) + B — b0 + (¢ — c)@® + y?) + 24 + 20,0y = 0
for all k € {5,...,n}\{J}

If this system admits a non-trivial solution (8,x,y,a,by,cy : k > 6), then we
can find the normal model {V,A(V)}, with

V={x1,..,X,} CR?

and we can construct it.
We try to improve the form of the system (83) by proving the following lemma.

Lemma 10. All normal models of order n € {9,10} contain a 6-velocity
normal model (in other words, two independent rectangles having two vertices in
COMMon,).

Proof. (a)We suppose that the normal models of order n = 9 do not contain
two independent rectangles having two vertices in common. In this case, using the
special representation (67), we can write the corresponding matrix of reactions of the
model as

(84)

olololomlm
ololomolm
olomelconm
¥ *|*¥|*x|%| O
X | XX | %] %D
¥ *x|*¥|*x|%| O
¥ | XXk | X| %D
¥ | XX | *|%|O

We know that for a normal model with n = 9 velocities we have
1+ (k1 +ke+hs+ky)+mi =5
and we proved in Lemma 7 (see Remark 3) that (k; + k2 + k3 + k4) > 3. Hence,
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m1 < 1. We have the following possibilities:
(a1) my =1=ky + ko + ks + kg = 3.

In this case, the last row has four non-zero elements on the last five free positions.
The above three rows have three non-zero elements in the last five free positions. We
cannot arrange the non-zero elements such that, in two different rows, there are not
two columns with non-zero elements (in both rows). Hence, we get two vertices in
common in two different independent rectangles.

(OLz) my = 0=ky + ko + k3 + ky = 4.

In each of last four rows there are three non-zero elements, arranged in the last
five free positions of the rows. All possibilities to arrange the non-zero elements lead
to contradictions of our supposition. Hence, the lemma is true for n = 9.

(b) n.=10: similar proof as in the case n = 9 (see for details [22]) [ |

Lemma 8 and Lemma 10 imply that, for the cases » € {8,9,10}, in the system
(83) the vector x5 = (x,%) can be taken as a vertex in a rectangle, neighbour to the
initial rectangle (with vertices (0,0), (1,0),(1,0), (0,6)), such that it has as first
common vertex (0,0) and as a second common vertex

(7) (0, 6):in this case x5 = (y,0) = (1, 0) (the model contains a 6-velocity model of
type ());

(i2) (1, 6): in this case x5 = (—y0,y) = (—ub, 1) (the model contains a 6-velocity
model of type (b)).

If we take as the second common vertex (1, 0), then x; = (0,%), and we obtain an
equivalent model to the one in case (%), due to the invariance under rotation and
scaling. The point x; fulfills in both cases the condition (82).

The system (83) will now have the following two forms

Case (7):
= (0,0)
(17 0) =
=(1,0)
=(0,0) = fey,0 € R,
= (1, 0)
(85) = (1,0),p € R\{0,1}

X, fake1+bk0ez+ck(ﬂ,0), k=17,....n

AX =0, X = (x1,...,%,), X, € R% k=1,....n
(@2 — ar) + 0 — bO? + (2 — cp)i® + 2apcpp = 0,
foral k=17,...,n
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Case (i7) :
x; = (0,0)
X9 = (1,0) =€
x3 = (1,0)
x4 = (0,0) = fez,0 € R
x5 = (1 —p0,0+ pn) ¢ {x;,i < 6}

5
Xg = —,MO,,U)¢ {xi7i < 5}’/1 € R\{O}
k

ZX:O7 X:(xl,...,xn)7xkeR2, k=1,...,n

forallk="17,...,n.

(@ — ap) + (3 — bpO* + (3 — cp)rB( + 07) + 2¢,(by — ag)ud = 0,

[40]

Trying to implement the algorithm, using the above systems, we realize that it is

easier to use the systems (85) and (86) in the equivalent forms given below.

Case (7) :
X1 = (0,0)
Xo = (1,0) =€
x3 = (1,0)
x4 = (0,0) = Oez,0 € R,
(87) X5 = (u, 0)

Xg = (lu’o))lu € R\{Ovl}
x, = (ay,b) ,k="T7,...,n

AX =0, X = (Ixi%, ..., |x]).

AX =0, X = (x1,...,%,) ,x, €R% k=1,....n

Case (1) : system (87) with modified x5 = (1 — 10,0+ 1), x6 = (—pb, 1), 1 €

R\{0}.

Since for » € {7,8,9,10} all normal models have a corresponding ((n —4) x n)
matrix A which contains a 6-velocity model (of type (a) or type (b)), and since by
interchanging rows or columns, we get an equivalent matrix to the initial one, we can

state that all matrices corresponding to normal models of order » have one of the

following two forms
1 -1 1 -10 0
~ 1 0 0 -1 1 -10
(88) A=

* %

* %
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or
1 -1 1 -1 0 0 0
(89) 71: 1 -1 0 1 -1 0 0 7
* . *
* . *

“,”
*

where the rows with contain vectors of type

0@]':/@[:(...,]'.,...,—1,.‘.,1,...7—1,...)ER”,
) k 7J l

such that rank 4 =n — 4 (dots stand for zeros).

Note also that a matrix (88) corresponds to the above case (i) and a matrix (89)
corresponds to the above case (i7).

Lemma 10 for n € {8,9,10} allows us to consider only matrices of the forms (88)
and (89), having the first two rows fixed. This is a big advantage in the process of
generating the matrices (the number decreases considerable) and also in the im-
plementation of the algorithm, for small number of velocities.

The algorithm follows the next steps

Step 1. Generate all ((n —4) x n) A matrices (of type (88) and (89)), with
rank A =n — 4, fulfilling the “3 corners rule” (in two different rows there are not
three columns having non-zero elements in both rows) since three vertices define
completely a rectangle. Moreover, by adding to A a new row, containing one element
1, one element ( — 1) and the rest of elements zero (all possible combinations), we
should obtain new matrices having rank equal to (n — 3) (then A is well-defined). The
sets @1 = {711, ... ,;IN} of all generated matrices of type (88) and @2 = {71/1, . ,71;”}
of all generated matrices of type (89) , will be finite.

Step 2. Consider first the set ©;. For j =1,..., N, take A= Zj in the system
(87) and check if the system is solvable. In the affirmative case, save the matrix and
use the non-trivial solution (0, u, @, by, : k > 7) to compute the phase set

V={x1,...,x,} C R?
and construct the normal model by plotting the phase points. In the negative case,
simply reject the matrix Zj.

Step 3. Repeat Step 2, for the set Oz, by checking, this time, the solvability of the
system from case (7).

294 - Computer results for the cases n=8and n=9

For the particular cases n = 8 and n = 9, we obtained in advance all 1-extension
normal models (see above). We also proved analytically that all normal models with
n = 8 are “reducible” (results of 1-extension scheme), but it is still not answered
what happens in the case n = 9. Are all 9-velocity normal models “reducible”, like all
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normal models with » < 97 An analytieal approach is almost impossible in this case
and the only solution is to use the above algorithm and the help of computer.

A necessary condition for a model to be “irreducible” is that its corresponding
matrix of reactions A contains in all its columns at least two non-zero elements
(otherwise, one can remove the column and the row corresponding to the non-zero
element and obtain a normal model). We denote this condition with (x), so we can
refer to it later. Condition (x) is not sufficient, in general.

We modify Step 1 in the above algorithm and generate instead all matrices
A having in all columns at least two non-zero elements and fulfilling all initial con-
ditions of Stepl. Then we follow Step 2 and Step 3 and check all these matrices.

In the case n = 8, the result is the expected one: the algorithm rejects all gen-
erated matrices. Hence, the property that all 8-velocity normal models are 1-ex-
tentions, is verified. As we proved analytically, in this case, the condition (x) is not
only necessary, but also sufficient.

We are going to describe how we implemented the algorithm for the case n = 9
and present the results. We split the problem in two cases (by M (i : j, k : [) we mean
the matrix containing the rows from i to j and the columns from k to [ of a matrix M):

(1) det AB :5,7:9) # 0

(2) det AB: 5,7:9) =

By generating the matrices, we get |0(1)| = 7779 and |@z)| = 4271, where by |A|
we denote the number of elements in the set A.

Denote by 6 ;) the set of all matrices belonging to the above cases (j) where
j = 1,2, and (k), k= i, ’L'L, from (88) and (89). We have ‘@(i)(l)’ = 3486, ’@(i)(Z)‘ = 1806,
|G 0)| = 4293, [€4ii2)| = 2465.

We start to study the case (1).

To check the matrices in ©;)(1), we use the system (87) in the equivalent form

)
=(0,0); x2 = (1, ) =(1,0)
= (0,0),0 € (0, ]

= (1, 0); 6:( ) € R\{0,1}
xk_(ak, b k= 789

X =(xq,...,Xo); X1 =X(1:6,1:2)
A=A8:57:9;N=A8:51:6);
B=A"'Y=-B-N-Xi;

(90) x7 = (Y (1,1),Y( 2));
xg = (Y(2,1),Y(2,2));
xg = (Y(3,1),Y(3, 2))
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where x! is the transposed vector x and Y (¢,j) is the element in row ¢ and column j of
matrix Y. The vector 4 € R®, but because of the form of xi, ..., Xg, the first two compo-
nents are zero and just the last three components are interesting for us. The initial system

AB) =0
(90) has a solutionifthe new formed system of equations (perhaps non-linear) { 2(4) =0
with unknowns 0, i has solution. AB) =0

The restrictions on 6 and g are: 8 € (0,1], u¢ {0,1} ,because § = tant,t € (0,%} ,

where ¢ is the free parameter in 6-velocity models (Section 5.3.1) and x¢ ¢ {x1, X2}.

We checked all 3486 matrices in ©;);) and we obtained three different models (all
known from before, as 1-extensions, from models of type (iv), (v) and (vi)). We found,
in this way, our first examples of matrices / for which the condition (+) is not sufficient.

To check the matrices in ;1) we use the system (90), with the corresponding
changes for x5, X¢: X5 = (1 — u0, 0 + 1) and x¢ = (—ub, 1) (see case (it) above). We
have the restrictions 0 € (0, 1] (as before) and ¢ {0}, from x4 # x;. We checked all
4293 matrices in 6;1) and we found 7 different models (one already known, re-
presenting the 1-extension normal model (7v)). The other six normal models are new
and more important they are “irreducible”.

We present the models in Fig. 6. If we denote by ¢; the angle 213 for Model

1 1 T
;=1,...,6, th have: = — = - ==
1 yee.,0, \/t_ en\/_we ave: 1 1auﬂctan (2 \/§>, to = arctan ( \/7)’ t3 6
t, = arctan (v/3 — V/2), t5 = arctan (W),ta = arctan (ﬁ)

Mod-el 1

Model 4 Model 5 Model 6

Fig. 6. All 9-velocity normal models: not 1-extensions.
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Model 1 and Model 6 are 3-extensions of a 6-velocity normal model of type (b);
Model 2 and Model 3 are 2-extensions of a 7-velocity normal model of type (2); Model
4 and Model 5 are 2-extensions of a 7-velocity normal model of type (3).

We checked, by now, only matrices belonging to the case (1). We can now proceed
with the case (2), in a similar way.

To check the matrices in 6;)2) we use the system (87) in the equivalent form (as
above). We checked all 1806 matrices in @ ;)2) and all 2464 matrices in ©;;(2). None of
these matrices lead to a solvable system, and hence, to a normal model. The con-
clusion is that we have six different 9-velocity models that are not 1-extentions (ir-
reducible) and all of them contain a 6-velocity model of type (b).

Many of the normal DVMs constructed in above appear to be axially symmetric.
In section 3, we prove that by symmetric transformations, one can obtain new normal
DVMs with greater numbers of velocities.

3 - Symmetric extensions of normal discrete velocity models

It is remarkable that many of our normal DVMs (section 2) appear to be axially
symmetric. We consider now a connection between elementary symmetric trans-
formations and normal DVMs. We try to find, with the help of symmetric trans-
formations, a new method that can lead from a given normal DVM to an extended
normal DVM. The main result is given in Theorem 3, where conditions under which
an extended model is normal, are stated. This method can produce many new normal
DVMs. We give, for illustration, some concrete examples, in the end of this section.

3.1 - More geometry of plane DVMs

Definition 14. Singular lines in R® are straight lines or circles defined by
the equation

(91) #(x) =a+b-x+cx*=0,

where a,c € R and b € R? are constants.
The set X, = {x1,...,Xy} C R? of n > 4 points is said to be non-degenerate if
not all its points lie on a singular line. Otherwise, the set is degenerate.

Remark 4. All points x1,...,X, € R? are assumed to be distinct (X; # X if
1 # k). We omit below the word “distinct” for brevity.

We can easily prove the following
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Lemma 11. (i) Any three points X1,Xz2,X3 € R? lie on a singular line and
uniquely define the line.

(it) The set Xy, n > 4, is non-degenerate if and only if it contains a 4-point non-
degenerate set.

Proof. Part () is a well-known fact of elementary plane geometry. Part (i)
follows directly from (7) and Definition 14. [ |

Definition 15. A plane DVM {X, A(X)} is a non-degenerate set X C R? of
n > 4 points and a corresponding set of vectors of reactions A(X) (it is always
assumed below that A(X) # ).

We choose any numeration of the points xy,...,x, and vectors of reactions
01,...,0,, (m >4, m > 1). Then the corresponding (m x n) A -matrix of reactions-
reads
(92) AX) ={0;(k);i=1,...,mand k=1,...,n},

where (i, k) correspond to the rows and columns, respectively.
It is convenient to consider A4(X) as an % -vector of columns

(93) AX) = (P(x1) ... P(x,)),

where
01 (k)

(94) X ={x1,...,X,} and P(x;) = ; Jk=1,....n.
O (k)

It was already shown in Lemma 2 that

(95) S 6(xP(x) = ¢(xe)P(xe) = 0,
k=1

xeX
for any $(x) =a + b - x + c[x[*.

Let us consider any singular line
(96) C={xeR®:¢.(x)=0}

that contains some points of X,i.e. XN C # ).
We denote

(97) Xc=XnC.
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Then the identity
(98) > $(x)P(x) =0

XEX\XC

follows directly from Eqs.(95), (96).

Definition 16. A set Xo = X NC, where C is a singular line, is called a
singular subset of X (the trivial case when X¢ = (), is also included).

It is now easy to prove some properties of the columns of the matrix of reactions
A(X) (93), corresponding to the DVM {X, A(X)}.

Let us choose any numeration of the points of X, such that the set

Q = {x1,X2,X3,X4} is non-degenerate (such set exists for any plane DVM, see
Definition 15 ). We define four singular lines Cyj,, 1 <@ <j < k < 4, such that

(99) {xi,xj, %} C Cie.
The equation of the singular line Cj. reads
(100) Pijie(X) = 0, 5.(xi) = ¢53.(x)) = fy.(xi) = 0.

Moreover ¢, (x;) # 0 for the fourth point x;, ¢ {4,j, k}, of the set S.
Hence, Eq. (98) leads to the following equations

P(xl) + iyl234(xa)P(Xa) =0
P(XZ) + i 5(/134()(01)P(Xa) =0
(101) =

P(x3) + Z;y’m(xa)P(Xa) =0

a=9

P(xq) + 25 W 105 (x0)P(x4) = 0,

where
o G (X)

(102) W (x) = iy 1Sl d i< <k 1¢ {i,j,k}.
i

If the points x1, Xs, X3 are fixed, then x4 can be changed to any point x € X \ X¢,,,,
and the last equality in (101) can be written as

(103) Px)+ Y Pisx)PKX) =0,

!
X\X,
XEX\Xp g
x’#x
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where

n_ Pim(X)
Vis(x) = ¢123(X) » X € X\Xclzs'

The identities (101) — (103) will be used below for the construection of extended
normal models.

We note that, for any plane DVM without isolated points (i.e. each point parti-
cipates in at least one reaction), its maximal singular subset X contains not more
than (n — 2) points. Otherwise the identity (103) with P(x) # 0 cannot be satisfied.

It follows from Eqs.(101) that for any plane DVM, {X, A(X)}, and for any non-
degenerate subset Q = {x1,Xs,X3,X4} C X, there exist four linearly independent
vectors

U, = (’M/a(Xl), cee ;ua(xn)) S Rna a = 1a273a 47

such that
n
(104) > a(x)Pxi) = 0
k=1
and

ua(xﬁ) = 5af)'a aaﬂ = 1727374;

(such vectors are constructed above, in explicit form: u;(x) = Po34(x), u2(X)
= ¥134(X), u3(X) = P124(X) , ug(x) = P123(x)).

If the model is normal, then any other vector u =W ),...,u X)) satisfying
Eqs.(104) is a linear combination of u,, a = 1,2,3,4. By taking u' = (1,...,1) (u
satisfies Eqs.(104), see Eqs.(95)), we therefore obtain the identity

(105) Vosa(Xi) + Pr1za(Xi) + Pr2a(Xp) + Przs(xx) =1, 5 < k <,

(with the notation from (102)) for any normal DVM.

3.2 - Symmetric extensions of normal models

Our aim in this section is to introduce another inductive procedure, similar, in
some sense, to the 1-extension method [5], that can lead from a given normal DVM to
an extended normal DVM.

We assume that we have given anormal DVM {X, A(X)} (as in Definition 4) with
fixed numeration, such that

(106) X ={xy,...,X,} C R?,
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and the corresponding A(X) matrix of reactions reads
(107) AX)={0;(k);i=1,....n—4;k=1,... 0}, r(AX)) =n—4,

where we denote by 7(A) the rank of any matrix A.
We shall use the following simple idea of a symmetric extension: suppose that we
transform the set X to another set

(108) X ={x},...,x,} C R%,

in such a way that any rectangle with vertices {x;, X;, X, X;} from the initial model, is
transformed to a rectangle with vertices {Xli, x_;-, x}c, x'l}.

Obvious examples of such transformations are rotations, translations and re-
flections in R? (the group of motions of the plane).

The extended model is defined as the pair {X;, 4;(X;)}, where X; = X UX . The
new model includes all reactions (rectangles) from its components {X, A(X)} and
{X', A(X)} and perhaps some new reactions between points from X and X .

Let us, for the moment, forget about the new reactions and consider just the old
ones. We try, in this way, to answer the key question: How many new (independent)
reactions do we need in order to make the extended model to be normal?

If X N X = () (the simplest case) then the new phase set

!

(109) X;={X1,..., X3 X}, ..., X, }

iy (%

contains 2n points. The extended matrix, without the possible new reactions, A, (X1),
obviously reads

~ (Z(X) O(n4)><n)
(110) A.(Xy) = .
O(n—4) XN A(X,)

where O, is the null-matrix with a rows and § columns. All the rows of A,(Xy) are
linearly independent and therefore 'r(;l* (X)) = 2n — 8. Hence, such model, with
N = 2n velocities, can be normal if we can find four new independent reactions (this
does not look promising).

The situation, however, becomes much better, if we assume that X N X' # (). Let
us assume that there exists a set of p points in X which is invariant under the above
transformation. Without loss of generality, we can assume that the maximal in-
variant set consists of the points {x;;7=1,...,p}.

The case p = n means that the model is invariant under our transformation and
therefore its extension is trivial: X; = X, with accuracy up to numeration. Therefore,
we assume below that 1 <p <n — 1.
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We now represent the matrix of reactions A(X) in the following form
(111) A(X) :(\R; S ),
P np

where the (m x p)-matrix R consists of the first p columns of A(X), corresponding to
the maximal invariant set (here m = n — 4).

It should be pointed out that the invariance of {x,...,X,} does not mean that
x; =Xy, a =1,...,p. It means instead that x; =Xx,,a=1,...,p, where {1,....p}
is any permutation of the numbers {1,...,p}. Having this in mind, we can easily

construct the extended matrix, without the possible new reactions, 4, (X1), in the
following form

~ R S Omx(nfp)
(112) A,(Xy) = ) ,m=mn—4,
R Omx(nfp) S

where R’ is obtained from R by a permutation of its columns, R and S are the
(m x p)-matrix and the (m x (n — p))-matrix from (111), respectively. The matrix
A, (X7) in (112), is a matrix of reactions, perhaps with some linearly dependent and
some missing new independent reactions, of a DVM with (2n — p) points (velocities)
in R2. Therefore

(113) r(A,(X1) <20 —p — 4.

Our goal now is to obtain a lower estimate for 7”(;1* (X1)).
The following statement holds for any matrix 4(X) of the form (111) with n > m
(we do not assume that m = n — 4, as in (111) and (112)).

Lemma 12. If ’V'(;I(X)) = m then for any decomposition (111) of Z(X) with
1 <p <n -1, the following inequality holds for the extended matrix A.(X;):
(114) r(A.(X1)) > m +7(S).

Proof. From the assumptions of the lemma we have #(A(X)) = m, where A(X)
is of the form (111). Using the form (112) for the matrix 4, (X;), we obtain

r(A4,(X,)) > r(A(X)) +7(S),

since the rank is given by the number of linearly independent rows. This completes
the proof. ]

We note that
(A, (X1)) < min (2m, 2n — p)
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since the rank of a matrix is always less than or equal to its number of rows (columns).
Therefore,

(115) m+7(S) < r(A,(X1)) <min@m,2n —p), 1 <p<n—1,m<n.
In particular,
r(A.(Xy)) = 2m if »(S) = m.

In the next section, we are going to apply these inequalities to the matrix (112) of
the extended model.

3.3 - Rank of the extended matrix

Let us consider a matrix of reactions 71(X ) (107) (and its equivalent forms (93),
(94)) of a normal DVM {X, A(X)}. We decompose then the matrix A(X) in ac-
cordance with Eq. (112). We first try to answer the following question:

What can be said about r(S) in the general case 1 <p <n — 17

We recall the identities (101)-(103), from Section 11.1, and note that the model is
normal if and only if the columns {P(x5)...P(x,)} in Egs. (101) are linearly in-
dependent (otherwise 4”(71( X)) <n —5). On the other hand, the points {x1, Xy, X3}
can be chosen arbitrarily and then the point x4 can be replaced by any other point
x € X such that x¢ Cjo3 (see Eq. (103)).

Hence, any three columns of Z(X ) are linear combinations of the other columns,
and therefore

(116) rlS)=m=n—-4if 1 <p <3,

in the decomposition (111).

The case p > 4isless trivial. In such a case, we fix the points X1, X,, X5 and define a
corresponding singular line C = Cjp3. Two alternatives are possible:

(@) {xX4,...,x,} CC or

(b) there exists at least one point x;, 4 < k < p, such that x; ¢ C.

In the case (a) (for a degenerate set {xi,...,X,}, p > 4) there is exactly one
column, say, P(x;), p + 1 < k < n that can be represented as a linear combination of
the other columns of Z(X ). According to Eq. (103), x;¢ C and P(x) is a linear
combination of columns P(x;) with x; ¢ C. This means automatically that k,j > p + 1,
i.e. exactly one of the columns of the matrix S (in the decomposition (111)) is a linear
combination of the other columns of S. Therefore

(117) r(S)=n—-—p-—-1,

if the set {xy,...,X,} is degenerate.
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In the case (b) we can assume without loss of generality that k = 4, then the

columns {P(Xs),...,P(x,)} are linearly independent and therefore
T(S) =n-p,
ifthe set {xy, ..., X, } isnon-degenerate (we note that this automatically gives p > 4).

Finally we note that any set of 1 < p <3 points is degenerate and collect the
above results in the following statement (its proof is already given above).

Lemma 13. If;I(X) 1s a matrix of reactions of a normal DVM {X, A(X)},
decomposed in accordance with Eq. (111), then

[{] »(S) =min(n —4,n —p — 1) if the set {x1,...,Xp;1 <p <n—2} is degen-
erate;

[it] 7(S) =nm — p if the set {x1,...,X,;4 < p <n —1} is non-degenerate.

Now, we can combine Lemma 12 with Lemma 13 and estimate the rank of the
extended matrix (without new possible reactions) 4,(X7) (112). We recall that the
matrix 4, (X;) corresponds to the extended model with the phase set

/ !
Xi=XUuUX = {xl,...,xn;xpﬂ,...,xn

obtained under the assumption that the transformation X — X preserves the set
(118) II = {x1,...,Xp}.
We wonder how close our new model is to a normal one?

The new model contains 7y = 2n — p points. Its full matrix of reactions ;11 (X7)
contains the extended matrix A,(X;) (112). Therefore

(119) (A, (X1)) < r(4(X1)) < 20— p — 4,

where 7’(;1* (X71)) satisfies the inequality (114), with m = n — 4.
Hence,

(120) (n—4) +7r(S) < r(4(X1) <2n—p—A4.

We can now use Lemma 13.
We consider first, the case [¢] with a degenerate invariant set /7 (118) and obtain

min(2n—8,2n—p—5)gfr(;ll(Xl))§2n—p—4, ifl1<p<n-2

In the second case [7i] for a non-degenerate invariant set /7 (118), we obtain the
exact equality

(X)) =2n—p—4, if4<p<n—1.

Hence, the following statement is proved.
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Theorem 3. Let{X; =X UX, A;(X;)} be the extended DVM obtained from a
given normal DVM {X, A(X)} by the procedure described in the Section 11.2. Let IT
be the p-point maximal invariant set of the transformation X — X,1<p <mn— 1.
Then

11 < p < n — 2andthe set I is degenerate, then the following estimate holds
fortherank (4 (X1)) of the matrix of reactions corresponding to the extended DVM

(121) min(2n — 8,2n —p — 5) < r(;ll(Xl)) <2n-—p-—4;

[2] if4 < p <n—1and the set II is non-degenerate, then the extended DVM 1is
normal.

Corollary 2. Ifp > 3 and the set II is degenerate, then not more than one
linearly independent reaction (rectangle) between “old” and “new” points (velo-
cities) is needed to make sure that the extended model is normal.

Hence, such an extension with an invariant set of more than two points, leads
automatically to a normal, or at least, almost normal (just one more independent
reaction is needed) models with a greater number of velocities. We consider some
specific examples of such transformations in the next section.

3.4 - Invariant sets with three or four points

In the previous section we proved (see Theorem 3) that an extended DVM
{X; =X UX, 4;(X;)} obtained from a given normal DVM {X, 4(X)} by a sym-
metric transformation X — X', preserving a p -point set I7 (118), with1 < p < n — 1,
isnormal if4 < p < n — 1 and the set /T is non-degenerate. In the same theorem, we
also proved that, if p > 3 and the set /7 is degenerate, then the extended model is
normal if and only if there exists one independent reaction between “old” (belonging
to X) and “new” (belonging to X ") velocities (points).

By checking the normal DVMs constructed in section 2 we can find some models
that can be extended by symmetric transformations (reflection with respect to a
fixed axis is typical), preserving a p-point non-degenerate set 7, with p > 4, and
hence, leading directly to a new normal model, having more velocities. On the other
hand, some normal models also admit symmetric transformations that preserve a p-
point degenerate set 11, with p = 3 or p = 4, in the following way.

Case (a) p = 3: (with an invariant set of three colinear points)

The set X of velocities of the model contains three points that lie on the same
straight line (no other points of X are colinear with them or symmetric with respect
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to this straight line). Then the reflection with respect to this line preserves a 3-point
degenerate set I7 (see Fig. 7). The extended model {X; = X UX , 4;(X;)}, obtained
by this transformation, has N = 2n — 3 velocities and the extended matrix A, (X;)
contains M = 2n — 8 independent rows (reactions). The new model is normal if and
only if there exists a linearly independent reaction between old and new velocities,
ie. r(4(X1) =2n —T.

Case (b) p = 4 (with an invariant rectangle):

For any DVM, we can always choose the coordinate system and the numeration
such that the first rectangle with vertices {xi, X2, X3, X4} have the form as in Fig. 8.

We consider reflections with respect to the coordinate axes. The total number of
rectangles (7 — 4) of the initial normal model, multiplied by 2, yields the number of
such transformations (some of them can coincide, in some special cases, but this is not
typical).

We assume that the model has no other points (except the vertices of its first
rectangle) symmetric with respect to the axis chosen for reflection. Therefore, the
transformation has a 4-point degenerate set I7T = {x1,X2,X3,X4}. The extended
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model {X; =X UX , 4;(X;)} has N = 2n — 4 velocities and the extended matrix
A, (X1) contains M = 2n — 9 independent rows (the explanation is given below, when
we study in more detail the case (b)). The new model is normal if and only if there
exists a linearly independent reaction between old and new velocities, i.e.
(A1 (X1)) = 2n — 8.

More general estimates for the rank of the extended matrix Z*(Xl) are given
below.

Lemma 14. Ifp > 3 and the invariant set II is degenerate, then

(122) r(A.(X1) =2n—8if p=3
and
(123) 2n—p—b5<rA(Xy) <20 —p—4> if p>4.

Proof. Eq. (122) was already explained in the above case (@) . The second
result follows from the proof of Theorem 3, where Eq. (121) is valid not only for
A1(X1), but also for 4.(X;) (see Egs. (115), (119) and Lemma 13, [7]). Hence,

(124)  min@n —8,2n — p — 5) < 1(4,(X1)) < 2n — p — 4, if IT is degenerate.

For p >4 the relations (124) yield the inequalities (123), and the lemma is
proved. ]

Remark 5. In both cases (a) and (b), one needs to find out if there exists a
linearly independent reaction between old and new velocities. In the affirmative
case, the extended model is normal. A direct way would be to take all such possible
reactions and verify their linearly independence. But this is not an easy or eco-
nomic way. That is why we shall try below to find out more about these tramsfor-
mations, i order to decrease the number of new reactions (between old and new
velocities) that we need to check, when we verify the normality of an extended
model.

We start with the case (b), since this type of extension is possible for almost every
DVM from Section 1.

Case (b) for p = 4 (with an invariant rectangle, Fig. 8).
Let us choose, for example, to do a reflection with respect to the 21-axis. Then
the transformation X — X' reads (see Fig. 8)

(125) X = (mfcl),x,(f)) — X;C = (x,(cl), —x}cz)), k=1,...,n.
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The transformation X — X' has a 4-point degenerate set /T = {X1,X2,X3,X4} and
(see Fig. 8)
(126) X; = Xp, Xy = X1, X3 = X4 and X, = X3.
The extended matrix reads

p, P, P; P, P ... P, O
(@) P5 Pn ’

127 A,(Xy) =
(127) ) (Pz Py P, Ps

where O = O, _4yx(n-4), P € R™™* k =1,...,n,are the vector columns in the initial
matrix of reactions 4(X): P;, = P(X;) in the notations of Eq. (93) or, equivalently,
(128) P =01k),...,0,_4k), k=1,...,n,

in terms of the vectors of reactions of ;I(X )

(129) 0; = 0;1),....,0,n),i=1,...,n—4

(0] are rows of the matrix 71(X ).
The matrix 4,(X;) has 2(» — 4) rows and (2rn — 4) columns. In accordance with
Lemma 14, 2n — 9 < 7(4.(X1)) < 2n — 8. In this case, it is easy to see that

(130) T(Z*(Xl)) =2n— 95

since two rows of A, (X1),

(131) g/ =(1 -1 1 -1 0 ... 0)
g s=(-11 -110 ... 0)
are identical with accuracy up to the sign (we denote by g, i =1,...,2n — 8§, the

rows of the matrix A, (X1)).

Hence, the extended matrix A, (X71) has exactly (2n — 9) linearly independent
rows (reactions). Therefore the extended model can be normal if and only if it admits
one more independent reaction (between old and new velocities).

Let us consider a typical case when the initial model has, in addition to the rec-
tangle shown in Fig. 8, a pair of points, say x; and xg, such that x? = xg) asin Fig. 9
(not necessary symmetric with respect to the x®-axis; however, note that such
pairs, with @, =« andx; = —a; , always exist for models symmetric with respect
to the x@®-axis).

We obtain a new reaction for the extended model

(132) X5 + Xg = X + X5,
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where (see Fig. 9)
’ !
X; =Xy and x4 = Xy
The corresponding vector of reaction reads

(133) 0 =(0,0,0,0,1,-1,0,...,0,—1,1,0,...,0),

n n—4

and the matrix 711 (X7) reads

(134) ) - (4550),

We can prove the following result

Proposition 2. The vector of reaction 6 (133) is linearly independent of the
vectors of reactions corresponding to the rows of the extended matrix Z*(X 1), and
therefore r(A1(X1)) = 2n — 8 (i.e. the extended model {X, = X U X, 4,(X1)}, with
the corresponding matrix of reactions A, (X1) given in (134), is normal), if and only
if 2y +xg # 0 provided that |xs| # x| (see Fig. 9 ).

X5

Proof. Let us consider (2n — 7) numbers

(135) v diyt=1,...n—4pu,j=1,...,n—4
such that
n—4 n—4
(136) 2igi(6) + 3 pigu—aj(k) + vgana(k) =0,k =1,....2n — 4,

1

I
—

J=1
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where
(137) g =(g:(1) ... g:2n—4)),i=1,....2n -1,

are the rows of the matrix ;11 (X7) (134).

Our goal is to find necessary and sufficient conditions such that the system (136)
does not admit a non-trivial solution (135) with v # 0. In the contrary case,
r(Ay (X1)) = 2n — 9, and we need to replace (if possible) in (134) , the vector of re-
action 0 (133), with another vector of reaction between old and new velocities, such
that V(Zl(Xl)) = 2n — 8 (the extended model is normal).

We introduce the notations

(138) A=01, ) €ER"™ = (uy,... 1, o) € R

By using the standard scalar product in R"*, we transform (using the forms
(127) and (134) of the matrices 4.(X7) and 4;(X;)) Eqgs. (136) into
{l~P1+ﬂ-P2 =0,4-Po+u-PL=0

(139)
i Ps+u-Pi=0,A-Pi+u-P3=0,

A Ps+0v=0,4-Pg—v=0
(140) H-Ps—v=0,u-Ps+v=0
l-Pk :,u'P;c:O,k:'?,...,?’L
To simplify the computations we introduce an additional assumption (see Fig. 9)
(141) |x5| # [x1].
This means that the 4-point set Q = {x1,X2,X3,X5} is non-degenerate. Therefore
(see Eqs.(101) where x4 is replaced by x5) there exist numbers

A, B, C, {ak,bk,ck7dk; k= 6,...,%}

such that

(142) P1+AP4+<3,P>:0, P2+BP4+<b,P>:O
Py +CPy+ (¢,P) =0, Ps+ (d,P) = 0,

where

<aaP> = Zakpka
k=6

and similar notations for (b, P) , (¢, P), (d,P) are used.
From Eq. (105) we obtain that

(143) A+B+C=Lap+bp+cp,+dr=1;k=6,...,m,
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for any choice of the non-degenerate set Q = {xy, X2, X3, X5}, provided that the ex-
tended model is normal.

The column P, is separated from the other columns in (142), since the coefficients
A, B, C can be easily found. We recall the definition (128) of the column P}, and the
firstrow g/ of the matrix A (X1), given in (131). By writing the system (142) only for
the first components of the vectors, we obtain the new system

g1(1) + Agi(4) = 0
(144) 91(2) +Bg1(4) =0
913) +Cg1(4) =0,
with g1(1) =1, 01(2) = -1, g1(3) =1, g1(4) = —1, and therefore
(145) A=1,B=-1,C=1.
From Eqs.(140) it follows that

i-(a,P)=(a,1-P)=vas; u-(a,P) = —vas;
(146) 2 (b,P) =vbg; 4 (c,P) = vcg; 4-(d, P) = vdg;

#- (b, P) = —vbe; p- (¢, P) = —vcg; u-(d, P) = —vd.

We substitute Eq. (142) for P5 into Eqs.(140) and obtain
A-Ps+0=0<= —vdg+v=0;
H-Ps—0v=0< vdg —v=0.

Since we assume v # 0, we get
(147) ds=1,
and this is the first necessary condition for the solvability of Eqs.(139)-(140).

We assume that this condition is fulfilled and therefore Eqs.(140) can be reduced
to the equations

(148) A-Pp+ 00 =0, u-P,—vos=0,k=6,....n
We substitute Eqs.(145), (146) into Eqs.(142) and obtain

APy =—4-Py—vag ;
A Py =A-Py—vbg ;

A-P3g=—2-Py—uvcg ;
u-Pr=—p-Py+vas;
u- Py =p- Py + vbg;

n-P3=—pu-Py+vcg.
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Hence, Eqs.(139) are reduced to

(u—4) - Py +v(bs — ag) = 0;
(149) {(,u—i)~P4—l)C(;0.
These equations can be satisfied for v # 0 only if
(150) ag = bg + cg,

i.e. the second necessary condition for the solvability of Eqs. (139) -(140).
We now collect all conditions on ag, bg, cg and dg (Eqs. (143), (147), (150))

{%+%+%+%=1

(151) ds =1

ag = bg + cg .

Hence, we obtain
(152) ag=0,d¢ =1, bg+cg =0.

Let us recall that all coefficients in the expansion (142) for the normal extended
model, are uniquely defined by the functions ¥;;(x) (102). In particular, ag =0
means that Pa35(x) = 0, in the notations (101), (102) with x; instead of x4. In other
words, there exists a function

¢235(X) = a+/)’-x+y\x|2, a,y e R, ﬂ € Rz
such that
Bos5(X2) = Pog5(X3) = Gog5(X5) = 0 and ¢yg5(x6) = 0.

Geometrically (see Fig. 9 and the condition (141)), this means that xg lies on a
singular line through the points X, X3, X5.

On the other hand, the condition dg = 1 means (see (101), (102) with x5 instead of
X4) that ¢;55(X5) = ¢;95(X6). But (see Fig. 9) we have

2 2
$123(X) = [x|"—[x1]

which implies, in the condition (141), |x5| = |xg]-

Both conditions on x4 are automatically satisfied if xél) = —acél), i.e. the points x5,
X are symmetric with respect to the x®)-axis on Fig. 9.

The condition bg + c¢¢ = 0 is always satisfied if ag = 0, dg =1 (see (151)). From
Eqs.(149), (148) we obtain

(4 —p) - Py = vbg;
(153) /'{~Pk:705k6,k:6,...,%;
,u-Pk:vé;Cg, kZG,...,?’L.
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Hence,
(154) (l - ,u) =uu, u = (ula cee 7“%—4) S Rn74,
u-Py =bg, wP =05, k=6,...,0.
Thus we have (n — 4) equations for (n — 4) unknowns {u;, ..., u,_4}. All vector

columns {Py,Ps,P7...,P,} C R"* are linearly independent and therefore there
exists a unique non-zero solution u € R™™ of Eqs.(154).

If we denote 4 + u = w, then w-P;, = 0,k = 6, ..., n. Even the simplest choice of
w = 0 leads to non-trivial solutions

1 1
lzéuu and,uz—iuu

of the Eqs.(139)-(140).

Hence, the new reaction 6 (132) is independent if and only if xg) + xg) # 0 (X35, Xg
are not symmetric with respect to the #(?)-axis), provided |x5| # |x1|, and the proof is
completed. ]

The symmetric extension, discussed in the above case (b), is often possible for the
normal DVMs constructed in section 1. Many of the new reactions between old and
new velocities have, unfortunately, the form discussed in Proposition 2, with their
corresponding vertices, x5 and xg, symmetric with respect to the 2®-axis, and hence,
they are linearly dependent. Such reactions can be directly eliminated, because of
Proposition 2. Sometimes this leaves almost no “new” reactions to be checked, im-
plying that the extended model has small (often none) chances to be normal. Still,
there are examples of normal extended models with an invariant degenerate set with
p=4.

Similar studies can be done for the case of an invariant set with three elements
(see for details [22]).

One can do similar studies for other types of new reactions that appear in ex-
tended models (obtained by the symmetric transformations discussed in the above
cases (a) and (b)). We chose to analyse only some cases that seem to be typical for the
symmetric extensions with a degenerate invariant set. We use the above results to
eliminate the new reactions that are not linearly independent. We find, in this way,
that many extended models, obtained by symmetric transformations, are not nor-
mal. We also find examples of extensions that lead to normal models.

We present in Fig. 10 some of our results. Using the above discussed methods, we
extend the 9-velocity Model 5 (see section 2) and obtain the 11-velocity model (*) and
15-velocity model(*!). The process of extension is not finished (but we give here just
some examples). Similar extensions of the 9-velocity Model 6 lead us to the below
given models 14-velocity model (**) and 22-velocity model (**!). Finaly the 9-velocity
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model (iii) takes us to the 12-velocity model (***), 14-velocity model (***!!), 16-ve-
locity model (***!) and 20-velocity model (***!!!) (see Fig. 10). The steps we did in
order to obtain all these models are given in detail in [22]. We observe that by such
extensions the normal models become more and more symmetric.

4 - Supernormal discrete velocity models for gas mixtures

4.1 - Introduction and preliminaries

We consider below DVMs of the classical (elastic) Boltzmann equation for gas
mixtures. A systematic study of DVMs for mixtures began with the paper [4] in 1998.
It was shown in [4] that the known results from [3], [19] on approximation of the
Boltzmann equation for a single gas by DVMs, can be easily generalized to mixtures.
On the other hand, the two specific examples of symmetric DVMs for binary mix-
tures presented in [4] had (except for the special case of the mass ratio y = 2, [14])
spurious invariants (this fact was mentioned in papers like [21], [5]). The simplest
example of a binary mixture, with 6 + 5 = 11 velocities and arbitrary mass ratio, was
first constructed by Cercignani and Cornille [11].

The inductive method (1-extensions) of construection of normal DKMs [5] (see
section 2.3) was also applied in [5] to mixtures. Several examples constructed by this
method were presented in papers like [4], [12], [14], [15], [20]. It was also shown in
[12], that the method of 1-extensions allows the construction of normal models with
arbitrarily large number of velocities (“large size DVMs”) for some integer values of
mass ratio (y = 2,3,4,5).

All the above results for mixtures were, in fact, obtained for binary mixtures in
the planar (d = 2) case.

It is clear that the general methods of construction and classification of normal
DKMs with given invariants (section 2) can be applied without any changes to binary
mixtures. In this case, we have the same set 0 of pair reactions (with conservation of
number of particles of each kind) and p = d + 3 (d is the dimension of the model)
given invariants: momentum, kinetic energy, and two universal invariants corre-
sponding to the number of particles of each kind. On the other hand, the physical
meaning of a gas mixture suggests something more than the formal “normality” (in
the above discussed sense). Let us assume that the interaction between two species
of a binary mixture is very weak. Then, in the limit of zero interaction, we obtain two
separate DVMs (say with n and m velocities, respectively) for one-component gases.
Itis natural to demand that such DVMs must be also normal. Then the velocity space
of the binary DVM must be a union of velocity spaces of two normal DVMs for single
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gases, studied in 1.9. Such DVMs for binary mixtures (we call them supernormal)
are considered below. The supernormality obviously implies that n,m > 6.

4.2 - Geometrical interpretation of DVMs for mixtures. Definition and properties of
SNMs.

We consider a binary gas mixture of the gases A and B. We denote now the
corresponding sets of velocities as

V ={vi,...,v,} c R% and

155
(155) W:{W17...7wm}CRd.

We denote by y = Z—‘; the ratio of masses of the model.
In a binary mixture the possible reactions between particles are of the type
(@) (vi) + (v;) = (V&) + (V1) (collision between particles of gas A)
(b) (wi) + (W) — (Wi) + (w;) (collision between particles of gas B)
(¢) (vi) + (W) — (Vi) + (w;) (collision between particles of gasAandB)
such that the conservation laws
Vi +V; =V + v, and |Vi\2+}vj|2: |Vk|2+|Vl|2, 1<i,5,k1l<n

2 ..
(156) Wi+ Wi = Wi, + wp and Wi+ |wj|"= (Wi il 1<,k < m
MAV; + MpW; = MaVg + mpw; and

mA\Vi|2+mB|W7-|2: malvielP+mp|wi|?, 1 <i,k<noch1<jl<m

are satisfied.

Geometrically, the cases (a) and (b) are represented by rectangles (see DVMs
with mass, momentum and energy for a single gas, in 2.8) and the case (¢) by an
isosceles trapezoid.

The corresponding conservation laws (momentum and energy) for mixtures read

1 1
Vi+—Wj:Vk+—Wl
(157) 7 7

2 1 2 2 1 2
Vil +;\Wj| = |Vi| +;|Wl| .

By (157) the vectors (v; —v;) and (w; —w;) are parallel, |v; —v;| = 1 |w; —w;| and
(vi +vi) -a = (W, + w;) - a, with a = (v; — v;,). Then the vector (v; + v, — w; — w;)/2

which connects the middle points of the segments (v;, v;) and (w;, w;) is perpendicular
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m
Y

1 |Uk_"i|
B

v, ui| Yk

Fig. 11. Geometrical interpretation of a mixture reaction (c).

to the vector a and hence, the geometrical figure, having as vertices v;, vy, w;, w;, is an
isosceles trapezoid. Eqs.(157) are invariant under translation, rotation and scaling.
This implies that geometrically we can represent the reaction (c) as in Fig. 11.

Hence, an (n +m) DVM for a binary mixture is a set of points (velocities)
Viem = {V, W} such that each point belonging to V or W respectively, is a vertex of
one or several parallelograms whose other vertices also belong to V or W respec-
tively, or/and a vertex of one or several isosceles trapezoids having one more vertex
in the same set V or W respectively, and the other two vertices in W or V, respec-
tively (as in Fiig. 11). The ratio of parallel sides in the trapezoids must be the same for
all of them.

The set of reactions for an (n +m) DVM for mixtures contains vectors of the
following three types

)0 =C..,01,... 1, =1, =1,...,...)
(@) 6 @ 0 (k) () ~~
m
n
158 ByoOt = ..., ...01,...1,... —1,...,-1,..)
(158) () 03 ~ @ 0 (k) )
m
o= 1,... =1, ...,1,...,—-1,..)
(©) 03 @k () 0)

where dots denote zeros.

Definition 17. An (n +m) DVM for mixtures with the set of velocities in R
1s a normal model if it can be represented geometrically by (n +m — d — 3) line-
arly independent rectangles and isosceles trapezoids, in the way described above,
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1.e. the corresponding vectors of reactions are linearly independent and the rank of
the matrix of reactions is (n +m — d — 3).

The above given definition explains why we do not know by now so many normal
DVMs for mixtures. It is not so easy to construct sets of velocities with such geo-
metrical properties. But this geometrical construction can be simplified if we con-
sider an (n + m) mixture of the gases A and B having the set of velocities {V, W},
such that the corresponding DVMs for the single gases, (V,n) and (W,m), are
normal. Geometrically, we start with (» — d — 2) linearly independent rectangles
with vertices which are velocities in V' and (m — d — 2) linearly independent rec-
tangles with vertices which are velocities in W. The DVM for gas mixtures is normal
if we can find (d + 1) linearly independent isosceles trapezoids (i.e. vectors of reac-
tions of type (¢) Eq. (1568) with two vertices in V and the other two in W as in Fig. 11,
such that the rank of the matrix of reactions is (n +m — d — 3).

This idea gives a new method for the construction of a special type of normal
DVMs for mixtures that we shall call supernormal models (with the property that
by removing the linearly independent reactions corresponding to mixtures, i.e. re-
actions of type (c), we obtain two normal DVMs for the single gases involved in the
mixture).

Definition 18. An (n+ m) supernormal model (SNM) is a normal DVM
Sfor an (n + m) mixture of two gases A and B with the set of velocities {V, W} such
that the DVMs for the single gases, (V,n) and (W, m), are normal.

If we denote by N and M the matrices of reactions for the normal DVMs (V, n) for
the gas A and (W, m) for the gas B, respectively, then the matrix of reactions for the
SNM ({V,W},n + m) has the following form

N O(nfd72) XM
O(mfd72) XN M
(159) A= 0] ,
031

where O, is a null-matrix with a rows and f columns, 6, k = 1,2, 3, represent three
linearly independent vectors of type (c) in (158), M and N contain (n —d — 2) and
(m — d — 2) linearly independent rows corresponding to vectors of reactions of the
type (a) and (b) in (158), respectively,and

(160) rank A=n+m—d—3.
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Questions that arise now are: How to construct such SNMs? Is it possible to do
this for any combination of two given normal DVMs for single gases? For which
mass ratio is this possible to do? These are problems we are concerned with in the
next sections.

4.3 - General method for the construction of plane SNMs

We consider a mixture of n particles of a gas A and m particles of a gas B and
denote by y the mass ratio of the mixture. The particles from the gases A and B are
moving with velocities from V and W respectively, given in Eq. (155) with d = 2. We
assume that the DVMs for the single gases, (V, %) and (W, m), are normal models.

The DVM for the mixture is a SNM (as in Definition 18) if we can find three
linearly independent isosceles trapezoids with two vertices in V and the other two in
W, as in Fig. 11, such that Eq. (160) is fulfilled. Such a geometrical structure might
not exist and, in this case, the “combination” (mixture) of the two normal DVMs, for
the gases A and B, does not result into a normal DVM for mixtures.

We shall present an algorithm that allows us to tell if the combination is a good
one (has a SNM as result) and, in the affirmative cases, to find the spectrum for the
mass ratio y.

From now on we shall denote by v, (or w,) pre-collision velocities and by v; (or w;)
post-collision velocities corresponding to the particles of the gas A (or B).

The problem of construction of a SNM can be formulated as follows.

Given two DVMs, (V, %) and (W, m) (geometrically represented by (% — 4) and
(m — 4), linearly independent rectangles, respectively) for simple gases, find (f
possible) three linearly independent reactions of type (c), geometrically represented
by isosceles trapezoids of the form given in Fig. 12 (y fixed and ! = ||v,—v,||), such
that Eq. (160) is fulfilled.
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We shall denote these three reactions (if they exist) by (V(“V;|Wa7w;) and the

parallel vectors in the corresponding trapezoids by

(161) X, :V;—V,Z and y, :w;—wa, a=20,1,2.

By introducing the notations

(162) z
v _Wa +w,
¢ 2

. . . ! ’
we can rewrite the conservations laws (157) for the reaction (v,,v,|W4, W, ), on an
easier form

1
Xy + =¥, = 0 (conservation of momentum)
(163) “TyY

X, - (Y, — X,;) = 0 (conservation of energy).
In the process of finding a solution to the stated problem, we follow the next steps.
Step 1. Choose two pairs (vo,v,) and (wo, W), where vo = v;, € V, v, = vy, €V,

wo = wj, € W and w, = w;, € W, as candidate vertices for the first isosceles tra-
pezoid and change the scaling such that

¥ = ol denote [I%o
[wy = woll vl

(164) W — AW, where 4 =

It is obvious that vy # v, and wy # W, (they are velocities belonging to the phase
sets of normal models for a single gas) and therefore, Eq. (164) is well-defined.

Step 2. Perform the appropriate rotation and translation on the set V, such that
vo + v, = 0 and vy, = v,, = 0 as in the following figure.

We denote for this, d = @ and vn = (0, —d).

We first perform the translation

vi=vi+(m—vy),v,eV, i=1... n
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Denote

{a(i) =v;(1) )
,1=1,...,m.
b(t) =v;(2)+d

We now perform the rotation

v;(1) = a(7) cos 0 — b(7) sin 0 1
,i=1,...,m,
v;i(2) = a(i)sinf + b(i) cos 0 — d

where
arccos (%), if (x¢,0) x (u,0) >0, where u = (0,1)
9 =
<X07 ll> .
—arccos( od )’ otherwise .

Step3. Perform the appropriate rotation and translation on the set W such that
v'0 =wp and vy = w;), as in the following figure.

For this, we first perform the translation and scaling with / from Step 1,

W; :/IW,L-—l—V;,—},wO, w,eW,1=1,...,m.
We denote
{ a(i) = wi(1) —vy(1) |
) , ,1=1,....m
b(t) = wi(2) — v,y (2)
and compute the angle
1ol [[¥oll

Then we perform the rotation

{ w;i(1) = a(i) cos f — b(i) sin f§ + v, (1)

. ,t=1,...,m,
w;i(2) = a(t) sin f + b(t) cos f + v,(2)
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where

7, if (x9,0) x (y9,0) >0
B = .
—1, otherwise.

Step 4.  Construct two tables
X={xp=vp—vi:t#£ke{l,...,n}} and
Y={yy=wi—wj:j#lec{l,...,m}}

and find all possible indices (i,, k4;74, o), With a # 0, such that
(165) Xt + ¥y = 0.

We numerate by a = 1,...,7, the pairs of indices (i,,k,;74,ls) that satisfy the re-
lation (165). Then the vectors

! !
Vo =V, Vg =V, We =W, W, =W, a=0,...7

satisfy the equality
Vo + W, :V;—i—w;7 a=0,...r
or equivalently,
X, +y,=0,a=0,...7.

We can include here the case a = 0 because of Step 3.

Remark 6. In the steps 3 and 4, we try to find pairs of parallel vectors which
later on can be bases in the linearly independent isosceles trapezoids we are looking
for.

In Step 5 we shall find all possible triplets of such pairs of vectors (X,,y,), having
fixed the first pair (Xo,y,), with the property that the corresponding vectors of re-
actions are linearly independent and such that the matrix of reaction of the model
has the rank (n +m — 5). In this way, the isosceles trapezoids (if they exist) will be
linearly independent.

Step 5. (¢) If » < 2, then we reject the candidate pairs of velocities from Step 1,
pick up new ones and repeat the algorithm.
(22) If r2, then we construct the vectors
e=C..,1,...,-1,...)
(ia) (ka)

6,=C...,1,...,-1....),a=1,...7r
(Ja) ()
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We find all triplets (0, ,0), with 1 < f <rand1 < < r, such that

N

rank €0 =n—1and

€p
€5
M

40
rank =m — 1,
op

)

where N and M are the corresponding matrices of reactions for the DVMs (V,n) and
(W, m) for single gases, respectively.
Then the corresponding matrix of reactions for the DVM for mixtures,

N 0(1@—4) Xm

- O(mle) XN M

Ags = | € q) ;
€s op
€5 ()

has rank ;1/;(; =(m+mn)—>5.

o Ifthere are no triples with such property, then we reject the candidate pairs
of velocities from Step 1, pick up new ones and repeat the algorithm.

o Otherwise we take each case, one by one, and go to Step 6, where we check if
the vectors of reactions in the last three rows of the matrix 71, correspond to isosceles
trapezoids. In the affirmative cases we will find the spectrum for the mass ratio y and
the matrix /A will be accepted as the matrix of reactions of the SNM ({V, W}, % + m).
Obviously, the number of admissible (output of Step 5) matrices A is finite.

Step 6.  In this moment the matrix A is fixed. That is why we can refer to the
vectors in the last two rows by indices 1, 2 and skip the notations with  and 6. We
take the last three reactions (corresponding to mixtures) and try to find out if they
lead to isosceles trapezoids. For this, we follow the next steps.

B The velocities involved in these reactions, (va,v;|wa, w;), a =0,1,2 have the
property
X, +y,=0,a=0,1,2.

This means that the vectors x, = v, — v, and y, = w, — w,, are parallel and of op-
posite directions.



[71] CONSTRUCTION AND CLASSIFICATION OF DISCRETE KINETIC MODELS ETC. 71

B We consider a scaling transformation of the set W with a parameter y > 0
(which represents the mass ratio), and a parallel translation of the set V along the Ox
axis, with a parameter a € R, that read

(166) { W =W

V=V-aw o=(10),

hoping that these transformations will lead to a SNM (i.e., we obtain isosceles tra-
pezoids).

For a = 0these transformations can be illustrated geometrically by the following
isosceles trapezoid.

B After the transformations (166), the conservation of momentum (Eq. (163)) is
satisfied and reads

~ 1
X(l+;ya:0aa2071527

where X, = x, and y, = yy,, with x,, y, from Eq. (161).

B The problem now is to find the parameter a € R and the spectrum of possible
values y > 0 (mass ratio) such that the conservation of energy is also fulfilled, i.e.

%Y, —X,)=0,0a=0,12

where X, = X, )Nfa =X, — aw and 17(1 = yY,, with X,, Y, from Eqs.(162).
In the initial variables (x4, X,;¥,, Y,) we have

(167) X, (Y +ao—X,)=0,0a=0,1,2, o = (1,0).
The vector x (see the figure in Step 2),

X0 = Vo — Vo = 2||vo|lu, u = (0,1),
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is perpendicular to @ = (1,0). Moreover, Xy = Yy = 0. Therefore Eq. (167) is au-
tomatically fulfilled for a = 0.
What remains is a set of two equations

(168) MXq, Yo) + a{Xq, 0) = (X4, Xy), a = 1,2,

with unknowns {a, y}, where (-, ) is the usual scalar product.
The determinant of the system (168) reads

A= <X1, Y1><x2,w> — <X2,Y2><X1,(1)>.

We distinguish two cases.

Case 1. If 4 # 0 then there is a unique solution

0 =a, = (X2, Xp) (x1, Y1) ; (x1,X1) (X2, Ya) ]

L (x1,X0) (X9, 0) — (X2, X5) (X1, 0)
If y < 0, we reject the solutions. Otherwise, we accept the matrix /4 and we
construct the corresponding SNM ({V, W}, n + m).
Then we go back to Step 5 and pick the next matrix A. After checking all possi-
bilities, we obtain the hole spectrum for the mass ratio ;.
The spectrum is going to be finite, if all outputs are coming from the Case 1.

Case2. If 4=0,1i.e.
<X1, Y1><X2, w) = <X2, Y2><X1, a)), w = (1,0)
We have the following possibilities.
(1) (x1,0) = (X2, 0) = 0;
(1) (x1,w) # 0 and (x2, w) # 0;
(131) (x1,») = 0 and (X2, m) # 0;
) < 1,(O>

(w) (x # 0 and (x2, w) = 0.

The cases (727) and (iv) are equivalent because the equation is symmetric, so it is
enough to discuss only one of them.

Case 2(7). If (x1,0) = (x2,w) =0 then x; | @ and X2 | w, which implies that
vi; = vy, and vy, = v, . Moreover we have vq, = vy,.
Because of the momentum conservation we have

n 1 m -
ZNi(t)vi + ;ZNj(t)wi = const. € R?,
i=1 j=1
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where N; () (N ;(t) respectively) represents the number of particles moving with the
velocity v; (w; respectively) at time £.

But vg, v1, v2 (indices 1 and 2 stand for f and o from Step 5) are the only pre-
collision velocities from the normal DVM for the gas A, (V,n), involved in the
mixture and their corresponding post-collision velocities have the same x-compo-
nent. The geometrical interpretation is illustrated in the following figure.

v
VI .
'|I'; L
vl
Hi
In this case we have
1 0 vy viy v2 Vi
N On—a)xm 1 0 vy Vay v2 Vo
O(m—4)xw M
’ : 1 1 1
€y o) 01 —Wiz — Wiy —W% 0 =0
e, o1 y y y
€2 (] . .
1 1
0 1 —-wy, ;wmy ;w,zn 0
and (Vig, ..., Vue, 0,...,0)is a vector of conservation law for the model for gas mix-
N——
ture. m
This implies that

n

N;(t)vy, = const € R

=1

is a conservation law for the model. Moreover, it is linearly independent of the other
five conservation laws (mass, momentum, energy).

Hence we obtained a spurious conservation law and the model is not normal. We
reject the matrix 71, g0 back to Step 5 and pick up the next matrix A
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Case 2(it). We have (x3, w) # 0 and (x2, @) # 0. We can rewrite the system (168)

as

M_FG/ZM’ a:l,Z.
<Xaaw> <Xa’w>

From 4 = 0 we have that

(x1,Y1)  (x2,Y2)

= = const.
<X1’ w> <X2a w>
But x, +y, =0, a = 1,2; hence,
Y Y.
(y1, Y1) _ (2, Y2) — 1 = comst.

<Y17 w> <y27 w>
The system (167) is equivalent (since x, = —y,) with

Vo OY,+a0—-X,)=0,0a=0,1,2 v =(1,0)<

. <ya7Ya> + a = <Y(L7Xa> (: <Xa,Xa>):>
<Yaa w> <Ya7 (0> <Xm (z)>
N ——
"
<XaaXa> _ _ _
7<X{u o) uy +a = p = const.

Hence,
<XaaXa> _p<xaaw> =0=

%(Vf —Vi) —pw(v; —Va) =0=

(V;2 - Vi) — 2pav, + 2pov, = 0 <=

! 2 2
(Va —pa)) —(Vg —pw)=0,a=0,1,2.
But vy, vy, v; are the only pre-collision velocities from the normal DVM for the gas A,
(V,n), involved in the mixture. Therefore

((Vl - pw)zv sy (V% - ,0(1))2,0, )
——
m
is a vector of conservation laws linearly independent of the other five vectors of

conservation laws (mass, momentum, energy).
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This implies that

n
N;(t)(v; — po)* = const € R
i=1

is a spurious conservation law for the model. We reject the matrix A and go back to
Step 5 and pick up the next matrix A.

Case 2(7it). We have (x;, w) = 0 and (xz, ») # 0.
Since 4 = 0, we obtain that
<X1, Y1> = 0:>x1 L Y1

=Yoo= (w +W, w
Butxlj_w} u (1 1) |

=
But (—y;=x) Llo= (wi-w)Llo
— Wi, = w’m and wy, = —w/ly .

Moreover we have x2 +y, = 0 with (Xp, w) # 0. The geometrical interpretation is
given in the following figure.

v W,

By the scaling of the set W with any parameter y > 0 and the parallel translation
of the set V along the Ox axis with any parameter a, we obtain for sure two linearly
independent isosceles trapezoids (vmv;|wa, w:l), a = 0, 1. The problem is to find (if
possible) the right transformations such that (ve, V/2|W2, w’z) is also an isosceles tra-
pezoid.

The system (168) is replaced by the following equation with two unknowns (y, @)

(169) y<X27 Y2> + CL<X2,(U> = <X2,Xg>, y>0,acR.
We distinguish the following cases.

() If (x5, Y2) = 0 and (x2, X2) = 0, then (vz, vy|Wz, W,) is a rectangle before the
transformations. From Eq. (169) we obtain a = 0 and the only possible scaling is
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y = 1. This case is not of a big interest for us, since we are looking, in general, for
mixtures with y # 1.

(b) If (x9, Y2) = 0 and (x2,X2) # 0 then we have the solution
(X2, Xz)

a= ; Vy>0.
(e, 0) 7

(¢) If (x2, Ys) # 0 then
(x2, X) (%2, 73)

<X27 w> <X25 w>

y=t>0.

In the cases (b) and (c), after the translation and scaling, we obtain three linearly
independent isosceles trapezoids, as in the following figure.

/"‘W1 :“:
Wl‘ll ::' / ;‘I \\
-

1 K \\ —
;uT/ Hu‘}"f’gw"
.y
:Rw"l
wo| ¥

! ;.',,1
Fig. 13.

Moreover in the cases (b) and (c) we can construct the SNM for every mass ratio
y > 0. We shall call this type of model universal model.

After checking (in Step 6) all admissible matrices A (output in Step 5) we go back
in Step 1, pick up new pairs of velocities (vo, v,) and (wo, w,) as candidates, and repeat
the algorithm.

Step 1to Step 6 describe the general method of construction of SNMs: given two
DVMs (V,n) and (W, m) for simple gases, there are two possible situations

o there is no SNM that contains the two normal DVMs for simple gases,
or
owe obtain all possible SNMs ({V, W}, n + m) and the spectrum of the mass ratio.
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Td-valosity SHM wih imational mass rati Bvabocty madl () + -velocity madel (5]
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14-velocity SNM @y = 21/2

Wevedocities SHM (Madel "u( Meduihvy)
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05 ! ¥ ight "‘"-l"\
0 S ) o
[ N
Y Hy

a
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Fig. 14. Examples of SNMs.

Even though the cases 2(%i7) (b) — (c), in the above algorithm, give us hope that
we can construct normal DVMs for gas mixtures for every mass ratio, all the ex-
amples that we have managed to construct, do not belong to these cases. All our
results have a finite spectrum for the mass ratio and, except one model (see 14-ve-
locity SNM in Fig. 14), the spectrum has rational values.

4.4 - SNMs up to 20 velocities. Spectrum of the mass ratio

In [22] we present a computer algorithm for the construction of SNMs on the
basis of our results for normal DVMs for single gases and the general method for the
construction of plane SNMs given above. The detailed numerical results (i.e. all
SNMs with up to 20 velocities) are also presented in [22]. We also construct large
planar SNMs (see example in Fig. 14) and give (see [22]) the whole spectrum of the
mass ratio for SNMs with up to 20 velocities. We present below just some examples
of normal SNMs (the first model in Fig. 14 is with irrational mass ratio y = 2V/2).

It is clear that the class of SNMs is the most natural (from physical point of view)
subclass of the general class of normal DVMs for mixtures. We proved (details in
[22]) that there exists a large number of such SNMs for binary mixtures with various
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values of mass ratio y > 1, even for relatively small total number (n < 20) of velo-
cities. A non-trivial result of our computations is the following: for any (n; + ng) -
velocity SNM for binary mixture, with 8 < n; 2 < 9 (except for the case of 8-velocity
model (A) with one free parameter) there exists a finite number of admissible values
(spectrum) of mass ratio y > 1. All the values of y appear to be rational in this case. On
the other hand, the general method of construction of SNMs admits, in principle, the
existence of universal SNMs with arbitrary mass ratio. After applying our algo-
rithm, we can only say that universal models with 8 < n; 2 <9 (except for the case of
8-velocity model (A) with one free parameter) do not exist.

These facts clarify, to some extent, the problem of existence of normal DVMs for
binary mixtures with irrational mass ratio (rased in [4], where the authors questioned
the extension of DVMSs to mixtures when the ratio of masses is irrational). Such models
do exist, the universal normal model (though not a SNM) with 11 velocities from [11]is
the simplest example. The first example of a SNM with irrational mass ratioy = 2v/2is
14-velocity SNM presented in Fig. 14. From our results (see the complete spectrum
for mass ratio in [22]), we can deduce that irrational values of y for SNMs with ;2 <9
are possible only if at least one value of ; » is small enough (n; = 6, 7orng = 6,7). The
probable reason for this is that the normal DVMs with n = 6, 7 for a single gas contain
free parameters and one can play with these parameters in order to obtain any given
value of y (in some interval). This gives us a hope to construct universal SNMs with
small numbers of velocities. On the other hand, it may happen that SNMs with large
numbers of velocities 7; 2 > 9 and irrational y, do not exist.
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Abstract

We consider the general problem of the construction of discrete kinetic models (DKMs)
with given conservation laws. This problem was first stated by R. Gatignol in connection with
discrete models of the Boltzmann equation (BE), when it became clear that the velocity dis-
cretization can lead to equations with spurious conservation laws. The problem has been
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addressed in the last decade by several authors, in particular by Cercignani, Bobylev,
Vedenyapin, Orlov and Cornille. Even though a practical criterion for the non-existence of
spurious conservation laws has been devised, and a method for enlarging existing physical
models by new velocity points without adding non-physical invariants has been proposed, a
general algorithm for the construction of all normal (physical) discrete models with assigned
conservation laws, in any dimension and for any number of points, is still lacking in the
literature.

We introduce the most general class of discrete kinetic models and develop a general
method for the construction and classification of normal DKMs. In particular, it is proved
that for any given dimension d > 2 and for any sufficiently large number N of velocities (for
example, N > 6 for the planar case d = 2) there exists just a finite number of distinct classes
of DKMs. We apply the general method in the particular cases of discrete velocity models
(DVMs) of the inelastic BE and elastic BE. We also develop a new method that can lead, by
symmetric transformations, from a given normal DVM to extended normal DVMs. Using
our general approach to DKMs and our results on normal DVMs for a single gas, we develop a
method for the construction of the most natural (from physical point of view) subclass of
normal DVMs for binary gas mixtures. We call such models supernormal models (SNMs)
(they hawve the property that by isolating the velocities of single gases involved in the mixture,
we also obtain normal DVMs). We apply this method and obtain SNMs with up to 20 velo-
cities and their spectrum of mass ratio.



