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1 - Introduction

This section contains some background material on gases for the following pre-
sentation, including references to more complete introductions for each separate
topic.

In physics, gases were in the beginning mainly treated from a gas dynamic
perspective as continua in space, and later by Newtonian dynamics as interacting
systems of particles. In the middle stands gas kinetics with its gases modelled in a
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probabilistic way with respect to velocity. Here the Boltzmann equation is the ori-
ginal paradigm with its evolution driven by pair-interactions. When on the other
hand the kinetic evolution is dominated by collective influences on one particle from
all the other particles, then the Vlasov equation takes central stage.

The Boltzmann equation can formally and in a few notable cases rigorously, be
derived from particle mechanics via the so called BBGKY hierarchy ([L], [IP] and
others). With an n-particle Hamiltonian for pair-interactions in a container £,

Hy _sz+ Z (gi - q;)—l—Zu (g), u? =0in Q, = co outside Q,
i<j=1
the Hamiltonian system for the n-particle evolution becomes
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This is the Liouville equation for the evolution of the phase space density fy.
Integrating away all but s particles gives a hierarchy of equations, the BBGKY
hierarchy, with the equation for the s-particle density

d

g s = —Hfs+ (K, Jdoc]fsﬂ).

Here[, ] denotes a certain commutator of operators. For finite N the hierarchy is
equivalent to the Liouville equation, but letting N tend to infinity and s run from one to
infinity, it can also be used for a coarse grained description of states of systems with
infinitely many particles. In particular, s = 1 gives the Boltzmann equation under the
hypothesis of molecular chaos (or factorization of f; into one-particle products) in the
so-called Boltzmann Grad limit with the radius of the molecules and the size of the
vessel appropriately scaled when N — oo. (For a broad discussion of this topic, see
[CGP], [CIP].)
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The n-particle evolution is reversible, whereas the limiting coarse-grained
Boltzmann equation has an inbuilt arrow of time given by its negative entropy dis-
sipation rate.

Velocities in the pair collisions of the Boltzmann equation in R" — (v, v,) (before)
— (v, v) (after) — are connected by

V,:v—i—v*+|v—v*|

2 2 7
Vv _v—&—v*_|v—v*|(7
T2 2 ’

where ¢ € §"71, the unit sphere in R" . The density of a kinetic gas is as usual
modelled by nonnegative functions f(x, v) with a the position and v the velocity. With
respect to the velocities of the two particles before collision (v, v,) and the ones after
collision (v/, ), we shall write

f =f,fw.) =f,f@)=f,fW,)=f.

The x-domain Q will in our main example be the position space between two
coaxial cylinders with inner normal n(x). On the ingoing boundary
02" = {(x,v) € 02 x R";v - n(x) > 0} indata f, may be given, and a reflection
operator R can be defined for diffuse reflection, e.g. the Maxwellian type

flx,v) = cM(w) J [V - ()| f(x, v ),
v n(x)<0

where the Maxwellian M is a Gaussian distribution. Combining these two boundary
conditions leads to the so called mixed boundary conditions,

(1.1) f=0Rf+ 1A -0)f, 0<Oe<l1.
The stationary Boltzmann equation in the domain Q is
(12) v vufle,v) = QU . ),v) = Q" (x,v) — Q™ (x,v) = Q" (x,v) — fu(f)(x,v)

= J JB(v — v, ' — fldodv,, x <€ QveR",
RS 82

where Q" — @ is the splitting into gain and loss parts of the collision operator @, and
v is the collision frequency. In this equation v - 7, f (&, v)dxdv is the transport term,
i.e. represents the net variation per unit time due to the free flow in and out of the
volume element daxdv centered at (x, v) in phase space; @~ (x, v)dxdv represents the
decrease per unit time of the number of particles in the same volume element by
collisions with all other particles that are at the position x at the same time; and
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Q™" (x, v)dxdv represents the increase per unit time of the number of particles in the
volume element as the result of collisions involving all particles at position & with
velocities (v, v,). The kernel B describes the specific collision process under study. A
discussion of how to compute B in particular cases can be found in [Lali] Section 18.
E.g. for interactions inversely proportional to some power of the distance, this
function B has a non-integrable singularity in the angular variable at grazing colli-
sions. To remove such singularities, the Grad cut-off assumption is usually added,
replacing the divergent angular dependence by an integrable one, thereby guar-
anteeing separately convergent gain and loss terms.

Multiplying Q(f,f) with a function w(v), integrating with respect to velocity and
changing variables, formally gives

1

j QYW = 3 j BUf — )+ v, — v — ' dvdv.doo,

R? R*x R % S?
In particular this integral vanishes for y = 1, v, |[v[®. In the cases of interest in these
lectures, the formal calculations can be rigorously justified. Taking v = Inf, we
obtain the entropy dissipation rate

()= | B~ FIn J{?} dadvdy,dw.

The entropy dissipation rate is strictly negative except for Maxwell distributions

2
p (v —u)
M, = exp(—
pyu,0 (271:0)%, P ( 20
vanishes. For additional general introductory material on kinetic theory, you may

consult [C] or [CIP] and their references.

), i.e. the equilibria for which the entropy dissipation

Asymptotic studies of the Boltzmann equation like this work, require scalings for
collision terms, for variables, and for boundary values. The variables are first re-
scaled to make the equation non-dimensional. Physically motivated additional scal-
ings in some parameter like the mean free path, may then be introduced for parti-
cular situations to obtain formal comparison between the kinetic models at leading
order and corresponding gas dynamic ones. To go from the kinetic microscopic to the
macroscopic fluid dynamic descriptions, the conserved fields have to be slowly
varying on the kinetic scale and have reasonable space variations over macroscopic
distances. To expose these fluid fields, power series expansions in the scaling vari-
able are inserted into the kinetic equations and coupled with formal truncations. A
rest term is added to the truncated expansion for questions of rigorous kinetic ex-
istence, and likewise for convergence issues when the mean free path tends to zero.
Let us consider some examples.
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In the incompressible case, the expansions and the limit-takings may be carried
out starting from a normalized global (i.e. space independent) Maxwellian equili-
brium distribution function M = (27‘5)_%6_%, and with the scaling F = MG, > 0. A
useful parameter is the Knudsen number, the ratio between the microscopic and
macroscopic space units, such as the molecular mean free path (in ordinary air 10~°
cm) to a typical length scale for the flow, often based on the gradients occuring in the
flows. With &/ the Knudsen number or the mean free path, we get a Boltzmann

equation in G,,
1
gatG;: +v- V@“Ga = QJ(GM Gz:)-
Here J is the rescaled quadratic Boltzmann collision operator,

J(@,¥)(v) := % J B — v., )M (@)Y V) + ®W )P )
R3xS2

— ()P (v) — D) ,))dv.dw.

Also its linearization around 1 is an important operator in kinetic theory;

LD = j B@ — v,, )M )X DW) + BW.) — D(o.)
R xS2

— P())dv.dw = K(P) — vd.

With G, = 1 + &"g,, the term of order ¢" denoted by g., determines the hydro-
dynamic fields (p,u, 0) representing the leading order density, velocity, and tem-
perature fluctuations. The equation for the g, perturbation becomes

1 .
gatgx +v- Vax0e + S_JLg{ = gmijJ(gﬁgz:)
= (formally when ¢— 0)
1, 3
Je —>p+u-v+9(§v _é)
Ve - % =0 (incompressibility), <v.(p+0) =0 (Boussinesq relation)
together with
J>1m=1: Ou+uJau+vup=0 00+u-yv,0=0 EE.
j=1m>1: O+ Vep = udyu, 0:0=rd,0 (Stokes eqn.)
I=1m=1: Ou+u. Jeu+ Vpp = udsru, 00+ u-<7,0=r4,0 N.S.E.

More generally we may start from a local Maxwellian

CER0S

_p
M/L,M,H = (2750)% 69029( 20 )7
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and be interested in solutions f; to the Boltzmann equation

1
8tﬁ;‘ +v- V’ﬂf; = EQ(ﬁnfg)a

where f; is a perturbation of a Maxwellian M, ,, o, which corresponds to the solution of
some equations in compressible gas dynamics. Also f; is an approximate solution of
order p if

Ofs 4 Taf, = QU + OGD)

Write f; as an asymptotic expansion plus a rest term,
i _
fi=>_&fi+&"R.

=0

This may be inserted into the Boltzmann equation and followed by a formal identi-
fication as equations of one order at a time (the Hilbert expansion), either just ending
at some suitable order j;, or ending by rigorously solving the rest term problem. The
procedure in its simplest form is

order —1: Q(fO»fO) =0 = ﬁ] = Mp(x),u(ﬁc),(:‘(m)(v)

1.3
(13) order 0: Oifo+v-vaufo = QUfo,f1)+ QUf1,/0)

i
The expansion ) &/f; is of course not by itself a density solution of the Boltzmann

equation, since {‘E gatisfies the Boltzmann equation only up to some order, and may by
its essentially polynomial character become negative, whereas a real density should
be everywhere positive.

As basis for the kernel of L in LJZW(RS) (i.e. L? in velocity with Maxwellian weight

. 1 .
function), we take y, = 1,wy = vg, ¥, = Uy, W, = Vo, 0y = —6(1)2 —3). The right hand

side in the zero order equation of (1.3) is orthogonal to the fluid dynamic w -mo-
ments, which span the kernel of L.. A corresponding fluid dynamic projection gives
the Euler equations of compressible gas dynamics

Op+ Ve - (pu) =0,
3t(/m)+Vx'(Pu®%)+Vx(/79):0a

1, 3 1o, 56
at(p(éu +§0))+vx-(pu(§u +§0))—0.

Also mathematically and physically interesting, but not implied by the formal
asymptotics, is in what sense the leading order gas dynamics equations are limits of
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the kinetic ones. The Euler equations obviously do not depend on any detailed in-
formation about the Boltzmann equation, not even the cross section of the collisions.
They describe what happens at microscopic times of order ¢ 1. Composite molecules
on the other hand, require additional terms for unavoidable rotational and vibra-
tional modes of interaction.

To reach instead the compressible Navier-Stokes equations, one could perform
the Chapman-Enskog variant of the Hilbert expansion, adding a kind of equation
expansion. Low orders are then of most interest for obtaining/improving/varying
fluid dynamic models. Up to the Navier-Stokes level all is simple. We may start from

(14) ﬁ =M ,,,u;,,(/e(l + efls + 82f21:)7

and assume that p,, u,, 6, solve the compressible Navier-Stokes system

atpé,‘ + V- (,D;ut) = 0,
/78(875 + U ng)’l/tg + Vx(/);,ﬂa) =&V ‘(,UH(DMS)),

3 1
) POk + g - J2)0: + p0: Vo U = € 2 u, D) « D(ug) + & 7 [, 72 0c].

Inserting (1.4) into the Boltzmann equation, gives fi., fo, such that (1.4) becomes an
approximative solution of the Boltzmann equation of order two (see [BGL]). The
transport coefficients, u, (viscosity) and x, (thermal conductivity), are in physics
usually taken as experimentally known. However, this is not always possible. From a
kinetic perspective, on the other hand, they are always given by the equations,
namely the collison operator dependent term fi, which contains the main contribu-
tion to the momentum and heat flow dissipation. The first order microscopic term is
thus the main responsible for the conversion of mechanical work to heat and the
transport of heat to the boundary. Adding a rest term, a true solution can be obtained
for the Boltzmann equation. Conversely a solution to the Boltzmann equation may
sometimes be used to derive rigorously a Navier-Stokes description from the
Boltzmann one, that describes what happens for microscopic time s of order & 2.
After mild changes in the set-up, extra terms may appear in the Navier-Stokes
system (called ghost terms when their origin is not from leading order but comes
from higher order terms). For a more extended introduction to such asymptotics, see
Chapter 2 in [BGP] with references.

Proceeding beyond the Navier-Stokes level in the Chapman-Enskog procedure
introduces undesired effects; well-posedness and the monotone entropy property
may e.g. disappear. Among the many efforts to ameliorate this higher order situa-
tion, we mention two recent approaches, by M. Slemrod [S] using certain rational
approximations, and A. Bobylev’s operator calculus with projections [B], both deli-
vering well-posed alternative equations.
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This work will focus on stationary aspects. Stationary solutions are of importance
in their own right, but also as time-asymptotics, and in rarefied gas dynamics. The
latter deals with gas flows, where Navier Stokes type equations are not valid in some
significant region of the flow field. The broad picture is one of normal regions where
the gas flow follows the macroscopic fluid equations, plus thin shock layers, boundary
layers, and initial layers, where matching conditions are sought between different
fluid regions or between fluid regions and boundaries.

We shall here concentrate on the boundary layer case and present in detail some
situations where the gas is contained between two concentric rotating cylinders, also
considering the scaling limit for vanishing Knudsen number. The two-rolls set-up is
classical on the fluid dynamics side with a surprisingly varied bifurcation behaviour,
when the rotation rates of the cylinders change, which is well demonstrated in the
experimental work of Andereck, Liu and Swinney [ALS]. An interesting question is
how much of the bifurcations survive on the kinetic side. One may crudely expect
that, as soon as there is a rigorous enough mathematical analysis of the fluid be-
havior, then those results should in a provable way carry over to the kinetic side.
That is so in the the situations discussed in the present work. It is demonstrated how
the leading order fluid terms dominate the higher order behaviour, when the solu-
tions are close to equilibrium.

Systematic asymptotic studies close to equilibrium started already in the 1960-
ies with Grad [G], Kogan [K], and Guiraud [Gu] among the pioneers, and with the
main arguments based on fixed points and contraction mapping techniques. Two
main approaches are presently in use, one based on energy methods in Sobolev
spaces (i.e. involving LP-estimates of derivatives). The other employs a setting of
mixed weighted LP-spaces, where precise spectral aspects are readily available.
We shall here use the latter approach to study certain fully nonlinear stationary
kinetic problems between rotating cylinders, including fluid limits when in-
stabilities (bifurcations) arise. Part of the results were first published in [AN2]
and [AN3].

The plan of the paper is as follows. In Section 2 weak type existence theory is first
compared to the asymptotic approach, the latter being more accessible to numerical
studies and also able to give detailed information on many questions of physical
importance. The specific asymptotic set-up for the paper is introduced and further
analysed in three specific situations with different scaling behaviour, including bi-
furcations.

The third section studies a priori estimates for the three cases, in the process
introducing various technical approaches. Based on the previous asymptotic ex-
pansions and a priori estimates, Section 4 proves existence results for stationary
solutions in the three cases and considers their fluid limits.
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The results in Section 5 are new. There nonlinear stability of the solutions in the
laminar case is proved in detail. The other two cases are briefly discussed.

Section 6 proves positivity of the earlier obtained stationary solutions, a result
which is new for hard forces, extended from the case of Maxwellian molecules in
[AN3].

2 - A kinetic gas between two coaxial cylinders

In this section asymptotic expansions are introduced and discussed for three
archetypical two-rolls situations.

Consider the stationary Boltzmann equation in the space Q between two coaxial
cylinders with radii 4 < rp. Denote by (r, 8, 2) and (v,, vy, v;) respectively, the cy-
lindrical spatial coordinates and the corresponding velocity coordinates. Let us start
with parameter ranges where the system stays axially and rotationally uniform, the
interesting solutions then being positive functions f(r,v,,vy,v,). In these co-
ordinates the Boltzmann equation may be written

2.

+- Nf = —Q(f ),
(2.1) 3
r € (ra,r), (,,vp,0;) € R?,
Here
0 0
Nf = vgaf Vv ’62]:

In the collision term @ the kernel B = |v — v*|/’) b(0), where b L1+(SZ), and0 < f <1
in the hard force setting of these lectures.

The Knudsen number k = ¢/ will be considered for various j’s. As boundary
conditions, functions f, are given on the ingoing cylinder boundary 9Q*, i.e.
{(ra,v);v, > 0} and {(rp,v); v, < 0}. For the axially homogeneous case we may as-
sume that the solutions are even in the v,-variable. The most general we are then
able to say about the solvability of the problem is

Theorem 2.1 [AN1]. Let f be the power of the relative velocity in the

Boltzmann collision kernel. Given m = J" ] A+ ) fdaedv and ingoing bound-
(9 3
ary values f with finite flow of mass, eﬁe;igy and entropy, then there exists a

weak L'-solution to the Boltzmann equation for hard forces in the two-rolls
domain with -moment m and the indata profile kfy for some k depending on m.
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Thus for mere existence it is enough to require that the flows of mass, energy
and entropy are finite for f;. Also the mixed boundary conditions (1.1) can be
handled. Results in this generality are based on weak L' compactness coming
from the entropy dissipation control. It gives on the other hand no information
about uniqueness, isolated solutions, fluid limits with extra terms, or possible
ghost effects. Such results have instead to be based on the asymptotic methods
inititated by Grad [G], Kogan [K] and Guiraud [Gu] a full generation ago. But still
today many, if not most, important problems are open when it comes to rigorous
mathematical analysis. The 1993 monograph by Maslova [M] is probably still the
best introduction to the rigorous mathematics in the area. The present frontiers
reached by rigorous mathematics unfortunately lag far behind what has been
obtained in the approach by formal asymptotics and scientific computing. There
two recent monographs by Sone, [S1] and [S2] give a good picture of the state of
the art. In [S1] one also finds a thorough discussion about the asymptotic ex-
pansions for the two-rolls problems of this lecture series, including many aspects
not covered here.

For the asymptotic problems in the domain between the two rotating cylinders,
our main concern in this work will be with (multiple) isolated solutions, bifurcations
and striet positivity, when the boundary indata are given as Maxwellians M, with
known boundary pressure P,, temperature T, and rotation rate vy,, where a = A for
the inner and B for the outer cylinder. Split the solution to the BE (2.1) as
f=MQ1+ ¢ +&"R) = M(1+ &) with ¢ an asymptotic expansion,

J1 2
NP M — (90 _v
(2.2) 0 21:8 &', M = 2n) 2exp( 5 ),

and with R, the rest term, in turn split into
R =PyR + U — Py)R ZRH +R,.

The projection Py represents the fluid dynamic part. The asymptotic expansion (2.2)
has boundary values equal the corresponding terms up to a suitable order in the &-
expansions of the boundary Maxwellians M,. The remaining part of the boundary
values are taken care of by the rest term.

As orthonormal basis for Py in LJZVI(R3) (i.e. L? with weight function M), we take
wo =1Ly =09y, =V, y, =02,y = %(UZ —3).

The new unknown @(r, 2, v,, vy, v,) should solve

.22 0.9 ne Yo 4 g, ).
or oz r e
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Here J is the rescaled quadratic Boltzmann collision operator,

J(@,y)(©) := % J B — v., )M . )@ )y (@,) + O, )y ()
R3xS2
— D, )y(v) — Py (v.))dv.dw,
and L is this operator linearized around 1,
(LD)(v) := J B — v,, )M . )(@W) + D)) — D(v,)

R xS2
—PW)dv,.dw = K(D) — vd.

By a change of variables
(0, Lf) = JMfL(pd'u . JMLfgodv
1
_ _ZJ@; 0 — g — O+ —f. — f)BMM.dvdv.do.

In particular we notice that ¢ = f gives (f, L) < 0. Taking ¢ as a fluid moment y;,
implies that (y;, Lf) = 0 for all f, hence that the fluid dynamic functions are in the
kernel of L. There are no others since the only solutions to the equation of Cauchy
typef + f. —f' — f! = 0 are the fluid moments, as first shown already by Boltzmann.
Hence the kernel of L is spanned by the fluid moments. Moreover,

Lemma 2.2. There exists a positive constant ¢ such that

- (f,Lf)>c J (v — Po)f ¥’ Mdw.

Proof of Lemma 2.2. We give the proof from [M]. Set

rol—

1,
=v K 2,

J=sup{LKf =)f with Povif = O,J(D—%f)szv =1}

=i

The compactness of K (cf proof of Lemma 3.2 below) together with (f, Lf) < 0 imply
that with 1 < 1

(I — Po)f. KU — Py)f) < 7 J (I — Po)f oM,

and so
(f,Lf) <(— 1)J((1 — Po)f ¥oMdv. O
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Lengthy elementary computations show that L(vyv,.B) = vgv,, L(v,A) = v,(v*> — 5)
for some functions B(|v|) and A(|v|), with vyv,.B(|v|) and v, A(|v|) bounded in the L2,
norm (cf. [BGP] Lemma 2.2.3).

Our basic Case 1 will be this two-rolls set-up with j =1 in (2.1) and jo =1,

J1 =2 in (2.2) with given Maxwellian ingoing, axially uniform boundary data,
modelling for instance when the cylinder surfaces are of ice in the form of the
solid phase of the gas between them. We assume that (no essential restriction)
the inner cylinder is rotating with velocity sug4, the outer cylinder is not rotating
and the temperature and saturated pressure are the same at the two cylinders.
Then

Y f(ra,z,0) = %e—%(vﬁ-r(vg—sum)zﬁ-vf)’ v, > 0,
(2.3)

v f(rg,z,v) = Lﬁe 2 . <.

We shall keep the same boundary values in the following Case 2-3. To simplify the
exposition in these lectures, we shall take ugs = Uga(rp — 7r4) with Uy, fixed. This
will allow for additional conditions on the size of rg — 4 when needed in the con-
vergence studies. An alternative would be to have rg — r4 fixed (even large) and
introduce more extended asymptotic expansions.

An axially homogeneous solution M (1 + @) will be determined for (2.1), (2.3), with
in Case 1 an approximate asymptotic expansion ¢ of order 2 with boundary values of
first and second orders being @4;, Ppi( =0),1 <1 < 2,

Dy1 = eUgavy
&2

2 MZQA( -1+ v(%);

Dyp2 =

plus a rest term eR,

D(r,v) = p(r,v) + eR(r,v),

and

r—r r—r
A 0) + Dyap( B ).

24)  o(r,v) = e®pi(r,v) + E(D@pa(r, v) + Pgoa( p

Here the Hilbert expansion term @y, cannot by itself satisfy all boundary conditions.
To remedy that, second order additional Knudsen boundary layer terms @, are
inserted.

In the asymptotic expansion the Hilbert terms @y and &g satisfy

L&y = LOge + J(Py1, Pr1) — v - VP = 0.
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Here L&y = 0 implies that @7, = a;() + di(r)v? + by(1)vg + c1(r)v,.. The v,-term
is zero due to the symmetry imposed. For compatibility reasons the hydrodynamic
moments of the second equation are zero (cf. also (2.21), (2.41) below). In particular
the 1-moment gives for @y, that

C1
/
Cl+7:0,

hence ¢1(r) = ;, where due to the boundary conditions ¢ = 0.

Set wy = [v2v2BMdv, we = [v2AMdv, w3 = [v20*AMdv. 1t is also consistent
(and implied by the fluid dynamic projection equations) to take a; = d; = 0, giving

(2.5) Pp1(r,v) = b1(r)vy.

Then similarly

1 1 _
(2.6) Dpa(r,v) = ag + dav® + bavy + c20, + 5 b3vE + (0] — ~b1)vB,

where by fluid dynamic projections and after some computations,

UpA 72 / 1 %
(2.7) bl(r):%ﬁqi(f_m, (az +5d2) +bidy =B =0, ex(r) =,
L1, 1 1 1
(28) bzl +;b/2 — 7'—2b2 = —w_l(b/l +1—ﬁb1)62;

1 1, S _
(29) (w5 — Bup)(d; +—dy) = (b0 —~bp) JMw(vz — )L @J vy, vvB)
— (0% — D)dv + (b1 — %b?) JM(vz — BN(L1(2J (v, v,v9B) — (v,(v2 — 1))dw,

for some constant y,. With the term (b — %bl)wv(;B, the function @ys of (2.6) cannot
satisfy the boundary conditions ®@4o (resp. ®@pgs) at 74 (resp. v ). That is instead
handled by adding Knudsen boundary layers as will be discussed in next lemma.
Inserting 1 + @ into the rescaled Boltzmann equation gives the pure g-part

(2.10) = %(Lw +J(p, ) — &v - Tup),
which is of e-order two, provided the Knudsen terms satisfy

L®goy = vy ad;IfA , L®gop = Urad;#~
Denotebyn:T_VA and,u:T_VB.

& &



14 L. ARKERYD and A. NOURI [14]

Lemma 2.3. There exist a second-order Hilbert term ®yo defined by (2.6) with
ag, dg, by, co satisfying (2.7-9), and Knudsen terms ®@gon(n,v), @gop(u, v) such that

Uy OPrea = L®go4,
on
(2.11) DPgo4(0,v) = Pp2(v) — Ppa(ra,v), v, >0,

lim QSKZA(’% ,U) = Oa
n—-+00

and
Vp OPuzs _ L®ksp,
o
(2.12) Dr2p(0,v) = Ppa(v) — Ppa(rp,v), v <0,

lim @gop(u,v) = 0.
H——00

To prove this lemma, we need some properties of the Milne half-space problem:

Oy
r e — L ’ 0,
v o v, 1>
(2.18) p0,v) =g, v >0,

JM’UM//(H, vdv=m, n>0.

Set Ri =R3n {v, > 0} and take b, = (a(r), b(r), c(r),d(r)) as the coefficients of the
fluid dynamic moments of i (the v,-moment in our present setting is identically zero
by symmetry). The following results about the Milne problem were proved in [BCN]
and [GP].

Theorem 2.4. Letm € Randg € L%r M(Ri). There exists a unique solution w
to (2.18), which belongs to L>(r>0;L% \ NLH)NLA>r>0) and has
b, € L*(Ry). If M%qo =0(v|™) for all n >0, then b, = }Lrgc b, exists, and
by, — bss| = O(r™") for any n > 0.

Proof of Lemma 2.3. It follows from Theorem 2.4, that there are unique
solutions y, ws, and wop to

0
vra_l/’;:l/llfa

w(0,v) =0, wv.>0,
JMW//(iy, v)dv =1,
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Moreover,
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Opou
v"" 877 = LI//ZA )

1 _
wou(0,0) = — (b — ;bl)(m)wvoB, v, > 0,
JMvrl//zA(n, v)dv = 0,

0
(%% g}zyB = LW237

1 _
wop(0,v) = — (b — ;bl)(""B)'Ur'U()Ba v >0,

JMW//ZB(iy, v)dv = 0.

qlir+n ‘1//(;7, V) = Uoo + ¥ + by + s,
lim V/ZA(’77 V) = 24,00 T dgA‘oc/UZ + bZA,ooW);
n—+0o0 ]

. 2
”EEIOO Wap(1,v) = Q2B + d2p V™ + bap 5o Vp,

for some constants oo, oo, Doy A24.005 24,005 024,005 2B 005 A2B 00 a0 b2p oc. Choose

(2.14)

(2.15)

and

1
a2(ra) = Poling + A24 00 — é(uaA)Z,

V2
az(rg) = — o T 2B,
B

da(ra) = yodoo + d2a oo,
do(rg) = — 2y + o e,
B

bZ(TA) = Vzboc + bZA,om

ba(rp) = %boo — b2B -

Droa = 7o — Qoo — doo¥® — by — ;)

2
+ Wos — 024,00 — 24 50V — 24 00V,

Drop(pt,v) = — %(v/( — 1, =) — Goo, — AoV + bogy + V;)

+ Wop( — 1, —V) — A2B 0o — 2BV + b2B ooy,
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satisfy (2.11-12). The first equation in (2.7) defines ag + 5d; if and only if

1 T

(ag + 5da)(rp) — (az + 5dp)(ra) = sub, + | = b3(s)ds,
2 S
ra
ie.
B 1
_ B _ _ e

(220) 9= s + D(aw 1 5d) (G/ZB,oo 24,00 + 5B o — 524 o J . bl(S)dS>.

TA

This fixes 7y, hence ¢z and ag + 5dg. Finally the second-order differential equations

(2.8-9) together with the boundary conditions (2.16-19) define b and d.

O

Case 2. If the Knudsen number is decreased by choosing j = 4 in (2.1), but still
keeping the rotation velocity of the inner cylinder of order ¢, then the boundary layer
depth (of order &) is no longer of the same order as the Knudsen number (i.e. £*). That
gives rise to additional technical difficulties. In particular we now have to introduce

an additional so-called suction boundary layer from first order in &, and then from
third order on also retain the previous Knudsen terms. For convenience we take

r4 = 1 below in Case 2-3.

An asymptotic expansion ¢ of order 4 will thus be determined,

(221) o(r,v) = 8((15111(7”, V) + ¢W1(T —

& &

r —

r r—1 r—r
Ba'l))+@K3A(F—4,'U)+¢K3B( Bﬂ)))

+6 (fPHS(V, ) + Py3( o

&

r —

7 r—1 r—r
+é (¢H4(7"7 ) + Pyy( v+ @KM(T,U) + Pgap( " £ 71)))

&

The successive asymptotic computations order by order, allow us to require
(hydrodynamic) orthogonality that

(2.22) qum(., (1, vy, PIM@)d = Jcbm(., o)1, vy, PIM @)y

= JCDHQ(., /U)/UTM(/U)d’U = 07

r—17B

r=rp

— 2% ——00

_1 _
@24)  lim om0 =0, lm by’ "

——,v)=0, 3<i<4.
’S;4~>+oo 84 ,,T_>_OO 54 7?)) ) STsS

& ,v)) + & ((DHz(V, V) + Bya(—— L ,v))

by
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Here (e@p; + EPpgs + 3 Pps + e ®py)(r,v) denotes the Hilbert terms up to fourth
r—17rp

order. The sum (ePy; + & Pya)( ,v) consists of correction terms allowing the

boundary conditions to be satisfied to first and second order. They correspond to
suction boundary layer terms at rp. At third and fourth orders, supplementary
boundary layers of Knudsen type described by

r

p— /}/‘ p—
& (Pga( o

=7 B
;0)),

1
, ) + Dg3p(

r—1
,0) + 84(@K4A(8—4 , ) + Drap(

et el

are also required in order to get all the boundary conditions satisfied.

Let w(n,v) be the solution to the half-space problem

wa—W:Lx//, n>0, veR?,
on

(2.25) w(0,v) =0, v,>0,
JMmWwM@Msz n>0.

From Theorem 2.4 about the Milne problem, it follows that there are constants A,
D, and E, such that
(2.26) liin v(n,v) =A+ Dv* + Evy +v,.

f—+00

Let the nondimensional density, perturbed temperature and saturated pressure at
rg be

wp = 1—(PSBz — ), =&, Psp=&Psp
+ 1B

We may here in Case 2 couple the angular velocity to the Knudsen number through

r3, — 1
PSBQ_ B22
B

2
Upaq = 4e.

The boundary condition at »p in (2.3) is replaced by

1 __ 2
Y f(rg,z,v) = (271)7gl83 e T . < 0.

1+ p)

For the third order asymptotic term that will lead to a bifurcation of the radial
velocity — see (2.40) below — if A + 5D < 0.

Lemma 2.5. Assume that

(A+45D) <0,
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and set
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rg+1 3
Ay = —<2w1 B @A+ 5D)(3u3A1)) .

i

For A4 > Ay, there is mo solution ¢ to the family defined in (2.21-24).

For A = Ayy, there is a unique solution ¢ to the family defined in (2.21-24).

For 4 < Ay, there are two solutions ¢ to the family defined in (2.21-24).

Proof of Lemma 2.5. Define Y :=

B, and let the expansions DL (r, v)

Z k=1
and Y & (Dp(rp + €Y, v) + Oy (Y, v)) formally satisfy the Boltzmann equation

k>1

order by order. Then,

(2.27)

(2.28)

and

(2.29)

(2.30)

L&y = Loy + J(@y1, Pry) = LPys + 2J (P, Prz)
= L®yy + 2J(Pp1, Ps) + J (Prz, Prz) = 0

3@Hk 4 =
Y Tr NCI’Hk 4—L¢Hk+ZJ(¢H]>¢Hk i), k>5,

Jj=1

Loy, = Ly + J(Pw1, 2@ (15, ) + Pwi1)
= L®ys + 2J (@1 (rp, ) + Pwi, Pwz) + 2J (P, Pra(rp, ) + Y Py (rp, )
= L®wy + 2J(Dws, D1 (g, ) + Pw1) + J (Pwz, Pwe + 2Pp2(rp, )
+ 2Y @y (rp, ) + 2J (Pyy, Pps(rp,.) + Y Ppy(rp, )

0Dw1

Yz /!
+ ?éHl(’VB, )) - 7)787 == 0,

ODyr_3 152 Y .
vr au;c : +E;( - l)Z(E)ZN(QsHk%—i(?”B, D)+ Pyteai)

k-1
= L®yy, + ZJ@@H_;'(?”B, )+ Pwj, Pyi—j), Kk >5.
Jj=1

Similarly to (2.5), by (2.27) &g1(r,v) = b1(r)vy for some function by, and dy;, 7 > 2
split into a fluid dynamical part a;(*) + d;(r)v® + b;(r)vy + ¢;(r)v, and a non-fluid-
dynamic part involving Hilbert terms of lower order than i. In particular for
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1<j<4weget
Dp1(r,v) = bi(r)vy,

Do = ag + dot® + bovy + lb%v?,,

Dy = ag + dgv® + b3vy + c3v, + bidavgt® + blbz?}g + = blvg,

Dy = @y + dg® + byvy + cqvy + (byrds + bads) vyv® + (bibs + ébi - %b?ag)v?)
+ bicsv,vp + %b?bgv?g + %d% blve +5 b%dz?}%ﬂ}z

Equations (2.28) have solutions if and only if the following compatibility conditions
hold,

J( 8§H1+1N@H1)(1 ¥ -5 00, V)M@)dv =0, 1> 1.

They provide first-order differential equations for the functions a;(r), b;(r), ¢;(r) and
d;(r), 1 > 1. In particular,

(2.31) (rby) =0, (10dz + b3 =0,
(2.32) (rPesbe) = wi () — Loy 4 @ - we)r (b} — Lo,
r r
1,, 1
(ag + 5dz + éb%) = ;b?,
2

(2.33) (a3 + 5d3 + b1be) = UL
(2.34) (reg) =0,
(2.35) (aq + 5dy + b1bs + 1b2 - 16?&2 438 dg +5 bzdg)

2 1
= ;(5153 + 553 b? az) +a b4 + = bde,
(rey) = 0.

Together with the boundary condition at 4 of first and second orders, this fixes
uz,

u
i 0A(l——>v+ S U,

Py (r,v) = 71)0, Pz =—5 5+ 2,2

and c3(r) = %, for some constant ug # 0. Moreover, (2.22) and (2.29-30) give that
Oy1(Y,v) = zl(Y)vg, for some function z;, and that @y;,7 > 2 split into a fluid dy-
namical part x;(Y) + y;(Y)v? 4+ 2;(Y)vy + t;(Y)v, and a non-fluid-dynamic part in-
volving Hilbert terms of lower order than ¢. Notice that @y, is the sum of 2{ vpv,.B and



20 L. ARKERYD and A. NOURI [20]

a polynomial in the v-variable with bounded coefficients in the r-variable. More
precisely,

1
By = i3 + Y20 + 2209 + (01(rp)21 + 529002,

2
Dz = a3+ Y31? + 2309 + 130 + (D1(rB)Y2 + 212 + 21d2(rp)) ver*
+ (b1(rp)22 + 2122 + 21b2(rp) + YO (rp)21) 5

1,
+(me+—Mwm+ m%

Dy = X4 + Ya¥® + 2409 + L0 + Z0,09BW) + ...

Equations (2.29) have solutions if and only if the following compatibility (ortho-
gonality) conditions hold,

by, 3 142 i Y ,
(2.36) J(v AL +E;<—1)(E)N(¢Hk_4_l<r3,.)
+ Pupa) 02 = 5 o)M@dv =0, k=5,
and
O3 1 &R i Y ,
(2.37) J(v L +Ei§<—1><ﬁ>N(¢Hk_4_Z(rB,.)

+ P ) (Lv)M@)dy =0, k> 5.

Equations (2.36) (resp. (2.37)) provide second-order (resp. first-order) differential
equations for y; and z; (resp. x; + 5y; and t;). In particular,

wlzl — gzl O
(@2 + by2 + bi(rp)zr + < zl) =0,
10
WelYy +—1Ys +A1 =0, wizg — %2’2 +A; =0,
TB /}/'B
4 =0,
1
(2.38) (w3 + bys + b1(1p)2a + 2122 + 21b2(rp) + Y (rp)z1) = E(Zbl(TB)zl +25),
10
woyly +—1yh + Az = 0,
B
U, I
iz = 22k (0a0r) + 20)(estrs) 1) + Az =0,

1
+—(t3 + c3(rp)) + c5(rg) = 0,
B
(2.39) (g + 5?/4)/ + A3 =0.
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Here A;,1 <1 <3, denote terms involving Hilbert and suction coefficients up to
order i. Together with the boundary conditions at first and second orders, and the
conditions (2.23), this fixes

Uga1 s¥
Dy (Y, 0) = g O

as well as @yyp in terms of ug, and implies that t3 = ¢4 = 0. Then, giving the value 0 to
any coefficient of order bigger than 5 in the second-order differential equations
satisfied by y; and z;, 3 < 7 < 4 and taking into account (2.21-24) fixes the functions ¥;
and z;,3 < 7 < 4in terms of #;. A Knudsen analysis at third and fourth orders makes
the first-order differential equations satisfied by a3 + 5y3 and x4 + 5y4 compatible
with (2.23) at third and fourth orders. Finally ug must solve the equation

rp+1 w1

— dug +
rg 3 212

(2.40) u3(A + 5D) (—3uZyy) = 0.

A study of the positive roots u3 to (2.40) leads to the three cases described in the
theorem for 4 with respect to 4y . That proof requires a non-degeneracy in the
Milne asymptotics (2.26),

(2.41) A+5D <0.

The condition is expected to hold on physical grounds and has been verified nu-
merically for hard spheres and Maxwellian molecules. A mathematical proof of (2.41)
related to the numerical approach seems feasible, but has not been undertaken. [

Case 3. The techniques developed for the previous particular two-rolls situa-
tions, also hold the key to resolving other and sometimes more famous problems.
This third example is such a generalization. The density f will now be allowed to
depend on the axial variable z, assuming periodicity in the axial direction. The
previous transport term in (2.1) is then extended to include also a z-derivative term

of

Ve We consider the Knudsen number ¢/ for j = 1 in (2.1), and keep the earlier

ingoing Maxwellian data. For small enough parameters, there is an axially uniform
solution as in the Case 1. This axially homogeneous cylindrical Couette flow of
Case 1 will bifurcate into axially periodic ones — Taylor rolls — when the rotation of
the inner cylinder is started from rest and then is being sufficiently increased. The
equations for the successive terms in the asymptotic expansions are now no longer
ordinary but partial differential equations, which here may be solved by elemen-
tary and explicit Fourier methods. We shall only allow bifurcations to a fixed axial
period, for convenience taken as c(rg — 74), and carry out the computations when
¢ = 1. Denote the first (lowest) bifurcation velocity value by ug4s, and require that
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all functions have the symmetry f(»,z,v,,v9,v,) =f(r, —2,v,,v9, —v,). The first
order a symptotic expansion term @y, should satisfy L@y, = 0, i.e. belong to the
kernel of L, hence

(2.42) D1 (r,v) = a1 (r,2) + dy(r, 2)V* 4 by(r,2) v + c1(r, 2) v, + e1(r, 2)v,.

The fluid dynamic orthogonality arguments leading to (2.5) in Case 1, here imply
that in a one-sided neighbourhood of ug4;, the first order coefficients may satisfy a
steady (secondary) Taylor Couette fluid flow problem ((4.9) below) with corre-
sponding boundary values. This fluid bifurcation problem was first rigorously
studied in [V] using topological Leray Schauder degree, to be followed over the
years by a number of alternative treatments and expansions - see [CI] for prop-
erties, references and an overview. It follows from that theory that the coefficients
in (2.42) are smooth functions with uniform bounds in a neighbourhood of #g4p.

Denote by the index b when an axially homogeneous term @y; is evaluated at the
first bifurcation velocity ugq = ugap, and let &% denote the deviation from this bi-
furcation value. With @y; = ®yj; + (5@}, and (15} given by the smooth perturbation to
the fluid Taylor Couette problem, we can successively construct higher order terms
in the asymptotic expansion. E.g. for j = 2,3, the perturbations ®i(x,v,d) and
®}(x,v, 5) should satisfy

. oP! OP!
(2.43) L¢%+91L_vva—7}_vza—zl_z\ml =0,
- oD} oD}
(2.44) L&+ g2, — v,.a—f —, a—; — Nhs =0,
with
. - 1
g11 :2J(¢H1ba¢%)+5f](¢%;¢%)a h’l :;QSL

- - 1
g21 = 2J(Dyy, DY) + 20 (Ppzp, D)), hp = ;‘1%-

The locally uniform smoothness of @y (for small 9), implies by (2.43) spacewise
smoothness for qbé | uniformly for small 6. We may also prove by Fourier techniques,
that the fluid dynamic moments of @} and its derivatives are uniformly bounded in
L™ in a 6*-neighbourhood of the bifurcation point g, for small enough ¢ The
procedure may be repeated for the ®3-term.

To provide the correct boundary values for the problem, we add boundary layer
corrections to @} and @} of Knudsen type. Our previous boundary layer analysis
based on [GP] applies, when the equations are taken in Fourier space for the periodic
z-variable. This is so since at the crucial steps in the decay study for the Milne
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problem in [GP], the relevant squared L2-integrals in velocity space of the Fourier
coefficients can be added to give (by Parseval’s identity) analogous estimates for the
corresponding squared L?-norms with respect to z of (1% and Qﬁé. This also holds for
their z-derivatives, which in turn via Sobolev embedding leads to uniform bounds
with respect to z for the Knudsen layer terms.

For the interested reader we end this section with a proof of the appearance of
this Taylor bifurcation in the present context. Extend the asymptotic expansion of
Case 1 by third and fourth order terms @3(r,v) and &*(r,v), and denote it by

eb1vg + & (93, + Praa(,V) + Prop(it, v))
+ & (93, + Prsa(,v) + Prap(t, V) + & (9, + Praa(,v) + Prap(u, v)),
where ¢,,, = @p2 of Case 1. This expansion is uniform with respect to the variable z,

r—1 r—1rp
ananT,uZ

. Consider the following z-periodic perturbation ¢(r, z, v) of

the z-homogeneous expansion,

(1, 2,v) = &(b1vy + J cos az(Uvy + Vv,) + d(sin az)Wo, + 6*Usgvy)
+ & (g, + Proa + Drop + 5(cos a2)(pF; + Pgo1a(n,v) + Pro1p(, v))
+ 3(sin a2)W2;, 4 Wioia + Wiraip) + 0°(0% + Przoa + Pr20p)

+ 0%(c0s 202)(¢3, + Praza + Prazp)

+ 0%(sin 202) (W5 + Wkaza + Vioop))

+ & (03, + Prsa + Prsp + 5(cos a2)(gF] + Px3ia + Pksip)

+ d(sin az)(l//% + Vi34 + WKSlB))

+ e by, + Praa + Prup).

Here all coefficient functions are taken with respect to space as functions of r only.
Look for boundary conditions where the rotational velocity of first order in ¢,
b1 + (cosaz)U + 6*Usy, at 14 = 1 deviates from by by a 8%-order term Augy,. All the

unknowns U, V, W, ... should then vanish at r4 and rg, except Usy, for which
Uso(ra) = Auga, Uso(rg) = 0.

Lemma 2.6. Let
1
l= E(L¢+J(¢’ 9) — &V - /).

If 6 < eand if (U,V) are solutions to
Ly(U) —qpV =0, L.(V)+qU=0,

(2.45)
U) = V) = V') = 0 at v = 4, = 15,
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where

Ly(U)=U" + Ly (l2 +dU, L(V)=V% 4 Zye _ (% + 262V
r 7 r 7

3 24 3 24
G-V (- 2 S Y,
r r r T

Zu(;A 2a2u0A (1”% _

(I()Zm» (Ir——mr—z )

then the function ¢ can be taken z-dependent, and so that | = 1, is of ovder &* in L.

The function ¢ is the asymptotic expansion for an axially periodic solution bi-
furcating from the axially homogeneous one at ugs = ugap.

Proof of Lemma 2.6. Replacing in [, ¢ by its expansion implies that

= edcos az(Lig, — biUvE — by Voey) — (U' - % U)oy

1 0P 0D
(V0 + Vo + aWod) + Lbgora — v, 2 - Ly — v, 22 )
r on ou

+-edsinaz (L(n//%l — biWogv,) + aUvgv, + (aV — W,

oy oy
+Lygo1a — Or g ;M + Lygo1p — Vr 8](518 )

1 1 1 1
+20* (Lo} - U — VA2 = S UVog — £ W22 — biUad?)

1 Y Y
—(Ugy — = Uz0)vyv9 + LDPgopa — v K204 | Logaos — %ﬂ)
P on ou
1 1 1 1

+ed? cos 2az (L(¢§2 — F UM — VA — S UV + W)

0D 0D
L Dgoss — v, —Z | LD — v, —28 )

on au
+£0% sin 20z (L(l//%2 —UWogv, — VWo,v,) + Ly gooq — ¥ &//g’jm + Ly goop — vy %}523)
2 3 2 a(”%l 1o 2
+&“0cosaz (L(/)H + 2J(b1vy, 971) + 2J (s, Uvy + V) — (v, B + ;N(pn + ayi;vz)
oD
+L®gs14 + 2J (b1vg, Prora) + 2J(Uvy + Vo, Pgoa) — NDgoja — vr %}73114
1 0D

+L®Pgz18 + 2J (b1vg, Pro1p) + 2J(Uvg + Vv, Pgop) — ENQKZIB -V %)
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. o3 1
0 sinaz Lyl +2J(bywg, vy + 20y, Wo.) — (@, % + Ny — aghv.)

w314

+Lyggia + 2J (0109, Wka1a) + 2J(Wo,, @koa) — Nwgoiq — Or n

1 0
+Lygsip + 2J(b1vg, Yga1p) + 2J (W, Pkap) — gN Wk — Ur %) + 0.

The compatiblity conditions in the &d cos az term write
(2.46) aW = -V’ — %V.
And so ¢%; can be taken as
02 = a3, + A3 07 + B3 v 4 By + €3y, + biUVE + b Vg
+ (U - % U)v,v9B + %V(vg — 9B + aW (@ — 5B,
for some functions a2, d2,, b%,, ¢4, and ¢3,. Moreover,
pa = a2+ 0P + BEvp + A0 + 11 : + DiWogv, — allvgu,B
— aVv,v.B + W,v.B,

25

for some functions o2;, 93, f%,, 7%, and #%,. Then, the compatibility conditions of the

€20 cos az-term of [ are

1
(247) (&) + - (&) + arf, =0,

(2.48) i(ai +5d3, + b U) = aW' L2 By (32 +d®V +ib1U,
w1 r r 7 wr

2 1., 2 1
(249)  B:VY +5bV 0@ -0 + %(U' =~ U)+ ab W — a*un U =0,
(2.50) % +555, =0.

Taking (2.46) into account in (2.49) implies that

LoU + qpV = 0.
The compatibility conditions of the 25 sin az-term of [ are
;1
(2.51) O JF;(V%) —aefy =0,
(2.52) (02, +55%) =0,

1 1 1
(2.53) w—(‘ﬁl +5d5; + 0 U) =W + ;W’ —20*W — a(V' + ;V).
1
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Differentiating (2.53) with respect to the variable r and taking (2.48) and (2.46) into
account, implies that

LrpV + qfrU = O.

It follows that the coefficients 3, %, ¥as, ¢3,, ¥3;, as well as the Knudsen terms can
be defined so that [ be of order 4 provided (2.45) holds. |

Lemma 2.7. Let a > 0 be given. There are nonnegative functions u; and vy,
and uga = ugap > 0, such that for rg — ro small enough, the problem (2.45) has the
solutions {(U,V) = x(uy,v1);x¢ € R}.

Proofof Lemma2.7. Theequation LyU = 0is disconjugate on[1, rg] for any

rg > 1 since
B

J ry”® + (% + a2yP)dr
1

is nonneggative ([Co]). Hence there is a continuous Green function G such that for
any continuous founction f, the problem

LHU :f7 U(l) = U(TB) = 07

has the unique solution

Ulr) = J G(r,s)f(s)ds.

1

Moreover,

G(r,s)r —1)(r—rp) >0, (r,s)e[l,7p],

so that G is non positive. It also satisfies
1G(r,s) = sG(s,r), (r,s) € [1, 75T,

since

J rLo(U)Xdr = J rLo(X)Udr.
1 1

By [Co] the equation
L(V)=0, VQ)=V(@rp)=V'1)=V'(rp) =0,
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is disconjugate on [1,7g] for 7z — 1 small enough. Hence there is a C? Green function
H such that for any continuous function f, the problem

LV =f VQ)=Vp)=VQ2)=Vp =0,

has the unique solution

B

Vir) = JH(T‘, s)f(s)ds.

1
Moreover,
H(r,s)r = 1%0r—rp* > 0, (r,5) € [1,7F,
so that H is nonnegative. It also satisfies
rH(r,s) = sH(s,r), (r,s) € [1,r5],

since

B B
J rL,(V)Ydr = J rL,(Y)Vdr.
1 1

And so, solving (2.45) comes back to finding ugap := Ugap(rg — 1) and V' > 0 such that

wi (% — 1) )2V
daugap ’

(2.54) KV = (

where K is the operator defined by

KV(r) = — J JH(T, S)(Z—% — 1DG(s, )V (@)dtds.
11

K is compact in L2(1, 7). It maps the cone of the nonneggative functions of L? into its
interior, since G is nonpositive, H is nonnegative, and neither G nor H are identically
zero. And so the Krein-Rutman theorem applies. There is an eigenvector v; > 0
wi (1% — 1))2 _ (wl("'B + 1))2 with
2(m9Ab 20U, 0Ab
algebraic and geometric multiplicity equal to one. Denote by

corresponding to a positive eigenvalue of K, (

B

() = —qo J Gr,9)n(s)ds. e [1,75].
1

Then any (xu;,xv1), € € R, is solution to (2.45). O
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3 - Fluid dynamic and non-fluid-dynamic estimates

This section discusses a priori estimates for the two-rolls cases introduced in
Section 2.
We recall that the orthonormal basis w, =1, wy=vy, v, =2, W, =7,

Wy :7_(1) —3) for the kernel of L in L2 (RS) was introduced in Section 2

together with an orthogonal splitting of functions f € L%, ([ra, 5] X RR?) into
f=fi+fL=Pof + U~ Pof, where for the fluid dynamic part

S, v) = fo(r) — gfm') +for)ve + fr(r) v, + f.(r) v, + ?fm')vz,

JM(?})(I,U,?]Z)]‘L(T, z,v)dv =0,
My of (r,v)dv = fo(r), JM!//J(?", v)dv = fy(r),
Myuf(r.o)do = fie), | M £ oo = £,0)

My f(r,v)dv = f,(r).
Set Df .= v,ﬂ—f( + v, f) + = Nf with N defined in (2.1). In Case 1 due to the sym-
metries, the pos1t10n space may be changed from the two-cylinder domain Q C R3
with measure dzx, to [r4,75] C RT with measure »dr. All functions considered are
even in v, giving in particular f, = 0. The relevant ingoing boundary space becomes

= {fi)f] = ( J 0 M) | fra,v) [ dv)%

>0

([ romonses vfan) <+ ooh

<0

Set,
L= {f;|fl, = (JM(v)(J\ f(ac,v)rfdgc)%ow)Z < + 00},
W ([, 7] x R®) = W™ = {f;8f € LY, v Df € L9, y*f € L'},

Lemma 3.1. Let ufég € fﬂ, Fy,eLt, 2<q< oo be given. There exists a
unique solution F' € W1~ to

(3.1) DF = —(LF+2ZeJJ(F D) +9), Flg =F,
j=1
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where the terms @7 of the axially homogeneous asymptotic expansion were in-
troduced in (2.2), and the boundary data Fy, are given on the ingoing boundary 6Q7.

Notice first that the a priori estimates (3.2), (3.4) below imply uniqueness in L2.
Then use the solution formula F = WF, + Ug + UKF from the proof of Lemma 3.2
below in the case ¢ of (2.2) equals zero. Here UK is compact in L? (e.g by first proving
the compactness of UE for EF := [ MFdv and then using the splitting K = K’ + K"
below), so the L? case follows from Fredholm’s alternative. The L™ case then follows
from (3.3), and the intermediate cases hold similarly. Finally the addition of the small
perturbation J(F, p) does not change the result.

To obtain uniform control of the final non-linear Boltzmann equation all the
way to the fluid dynamic limit, we shall use this section to secure sufficiently
strong a priori estimates in L? for the linear problem (3.1). With regard to the
shortest, the most transparent or the most elegant method of proof, various ap-
proaches are the best suited depending on the situation. We shall varyingly be
using straight forward direct computations, dual estimates, ODE methods or
Fourier techniques.

For the non-fluid-dynamic part F';, of the solution and for the comparison of
the solution in different Li-spaces, in the simplest Case 1 we may use quite
explicit computations. Define a specular reflection operator S at » =74, rp as
Sf(r,v) = f(r, —v,, V9, v,).

Lemma 3.2. Let ¢ = 2,00, and let F' be a solution in Wi~ to (3.1) for g = ¢g..
The following estimates hold for small enough & > 0;
(3.2) E|SF |+ |F, [s<c(|vigls+& | Fy .
+e([Frlly + [1Follz + 1 Follz + [[Fall2),

(33) |F | e[ 07hg oo +270 [0BF |y + | Fy |2).

The estimate (3.3) also holds in this form, when g has a non-vanishing fluid dy-
naMic component gi.

Proof of Lemma 3.2. We first turn to the estimate (3.3). To prove it, we shall
need some estimates which are suitably discussed in the original coordinates of (1.2).
Consider the exponential form of (3.1) with ¢ of (2.2) equal zero;

4(KF + g)
&

%(F(ac + sv,v)e%) = (x + sv,0),
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or integrated

s 4(KF8+ 9 (@ + sv,v)ds

0
F(x,v) = e % F)(x — sov,v) + J e
—80

—: WF, + UKF + Ug.

Here sy denotes the time to reach the ingoing boundary along the characteristic.

Split the kernel k of K into k,, = signk min (||, n) and the remaining part k — k,,
and denote the corresponding operators by K’ and K”. The operator norm of
K — K' = K" tends to zero, and K is compact in L2,. It immediately follows that F can
be written as

F = (UK'?F + (UK"UK + UK'UK")F + (UKU + U)g + (UKW + W)F,
=: (UK')’F + Z1F + Z> g + ZsF),

The K"-factor makes the operator norm of Z; in L™ tend to zero (uniformly in &)
when the cut-off n — oco. Also by straight forward computations

1 _1 1
| V2220 [0o<C|lU2G |00y |2 Z3F} |oo<cC|F}p|~ .

It remains the term UK'UK'. The first U is (uniformly in ¢) bounded in I~1°°, soitis
enough to consider K'UK'. Setting EF(x) = jF(ac, v)M(w)dv, we can estimate
K'UK' by a cut-off dependent multiple of EUFE in the operator norm. For fixed ¢
the operator EUFE is bounded from L? into LY for p > d, ¢ = oo, d > 1, as well as
for 1<p<d, g<dpd—p)?",d>1. Here d is the dimension of the x-space.
For the proof of this estimate of EUE we follow [M] Chapter 6. Let us first con-
sider the case e =1, d = 2, our main concern being the domain £ equal an open
annulus between the radii r4 and 7z.

Let v' = (vg,vy) for v = (vy, vy, ;) and let g be a function from LP(Q) where we let
glx — sv',v) for & € Q take the value zero after x — sv has for the first time left Q.
This gives

Ug(x,v) = J gl — sv',v)e "9 s,
0

Set G(x) = Eg(x,v). Then
EUG®x) = J e "G (x — sv)M(v)dvds
R3%(0,00)

< J e G(x — sv)M(v)dvds,

R3x(0,00)
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where vy = inf v(v) > 0. It follows that the v,-integral can be added after concluding
the estimate of the dv'ds-integral. We continue the discussion for ' € R? using the
notation v = v. A change of variables (s,v) — (r,y) with » = |[v|, y = — sv gives
EUG < G x ¢ with
o) = cily L Jk(r, wdr, ¢ >0,
0
k(r,y) = M(r)e™" i,

Since M(v) < coe~ %"l we get

cgr cgr volyl

k(r,y) <cqe Ze z o
—car 1
S 047_16%6_65@‘2.

It follows that ¢ € L’ if p < 2. If 1 < p < 2 the result now follows from Young’s in-
equality (ie. from xp:LP — L7 for ¢! =p~1— p/™). By Holder's inequality
EUG € L™ if p > 2. The proof for Q € R? is analogous whereas the case d = 1 re-
quires a slightly different estimate of k.

For the desired estimate of the solution in L> by L?-terms for d = 2 we have to
apply the estimate of UK'UK' twice (also the solution formula). Including the e-
dependence in the above estimate of EUE gives the factor .

With this estimate of FUE and choosing the cut-off n large enough, (3.3) follows
when ¢ = 0. Recalling that ¢ is of order ¢, and taking ¢ small enough, it follows that
the addition of J(#', p) to g does not change the result in this part of the proof, neither
does the addition of a fluid component to g.

Consider next the mapping from v—2L¢ x L* into W9~ given by (¢, F,) — F, with
F asolution to (3.1) for ¢ = 0. Green’s formula and the spectral inequality of Lemma
2.2 for the linearized collision operator L, i.e.

—JMfodecJvafdv,
give
1 C 1 1
e| SF |2+ [vFy 3<5|vg f+0 | Fy |5+ | Fy|Z .

This completes the estimate (3.2) when ¢ = 0. The inclusion of J(¥, ¢) to g, adds
ce | v F |2, which is incorporated in the left hand side, and a term

ce(([Frlly + [[Folly + [1Folly + [1Fally)- O

The control of the fluid part /| of the solution, i.e. the kernel of L, is less efficient.
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In particular Case 2 requires a careful analysis. For this we have chosen a direct
computation of each moment in order to obtain sharp estimates. The method is here
illustrated in some detail in the following lemmas for the simpler Case 1.

Lemma 3.3. Letg =g +g. (i.e. with a possible fluid dynamic part g in g),
and let F be a solution in W2~ to (3.1). For ¢ > 0 and small enough,

(3.4) IFrlls+ 11 Folly + [[Follz + [Fally < cC[ Fo |
1 1 1
+ [v72g |2 +8§\9\| 2+ | Fp |~ ).

Proof of Lemma 3.3. Define

fy,i(r) = JMvgv-j fir,v)dv, i+j>2,
and f};;,(r) correspondingly, when there is an extra factor | v ? in the integrand.
A multiplication of (3.1) with vgM (resp. v>M) and integration over ]Ri leads to

r

Fmﬂ(l) + 1 JS2%dS7

72 2
1

Fo(r) =

c 1 M
Foo(r) = %2 + %JS(\/égzl — 2g0)ds.
1

Multiply equation (3.1) with A(|v|)v¢»M and integrate over Ri,

(3.5) (Jvﬁ AMde)' = (kePy+ Py A)' - % (Fiea—Frea)

L1 (%24 1 J 5(v/Bga — 2g0)ds + J?},AJ(FL s0)Mdv)
& r re
1

o B ) B
+) &t J v, AJ(F, &)Mdv + % J g, AMdv.
j=2

Using the spectral inequality of Lemma 2.2, we notice that

ky = Jv%wAMdv = \/i(_ajwvzv,uledv

1 - 1 - -
=7 J%(vz —5)v,AMdv = 78 JL(wA)wAMdv < - CJ v, AP Mdv < 0.
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Set f‘4 = k4F'y + F 25 and regroup the terms in (3.5) as

= Cr 1
Fy=""+ {;(F()ZA_FTZA)

re

,
= J (VB ga — 2g0)ds + JvTAJ(FL, 0 )Mdv)
& \7r¢
1

i
+y & Jv, AJ(F, ®)Mdv + - J gwAMdv}
j=2

Denoting the expression within {...} by G4 gives
Fa =2 4 Gu,
re

which integrates to give

Futrs) ~ Fatra) =2 (g — npp) + j Ga(s)ds,

ra

F4(7‘) = F4(rg) + C%Z(lnr — Inrg) + J Ga(s)ds.

Eliminating c,, it follows that

B B
Inr — In» ~ ~
(3.6) Fu(r) = Fy(rp) + 413 (F4(7"B) — Fylry) + J G4(s)ds) — J Ga(s)ds.
B — Inry
ra r
Fy Fy F,.zn
With w; = (v* v,z)B 1), an analogous solution formula for 7 = Zy 4 0B

33

can be

obtained in the same way. Namely, multiply the equation (3.1) with Mv,v,B(|v|) and

integrate over R‘o’. It follows that
(_) 3F 0r2B
,

1
%+7§JS —s—ZJwvgBJ(wF -I-FL,Z-ICDI)MOZU)
1

12 Z g1 vagBJ(F, &HMdv
=2

1 = c
+ EJwvgBMgdv = % + Gy.
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And so

Folrg)_Fotrw) 200 1 1), J Go(s)ds,

B A & TA ’l"B

A

Fo(r)  Fy(rp) _ 20(%«( 1 12) + J Gy(s)ds.

P rB gqﬂ%r

B

Eliminating ¢y, gives

B

Fo)  Folrg) 02— 0% (Fure)  Fylra) 0

a7 =T R ( o J Go(s)ds) + J Go(s)ds.
A rB
Multiplying the equation (3.1) with M and integrating over Ri, leads to (rF,) =7 ‘%,
ie.
(38) F.(r)= w + 1 J s@ds
r r) e
1

By definition of F',.(1),

1

| Fy(1) | =| Jv,,Fu,v)Mdv < C(J o, | Fz(l,v)Mdv)z <c¢(|SF|.+|Fy|o).
And so by (3.8)
1
(3.9) HFr”zSC(E\gH l2+ [ SF |2+ | Fy [~ ).

Multiply the equation (3.1) with v,.M and integrate with respect to v. It follows that

s —F
<Jv§F<m>Mdv>’ = (Fo+ \/gm +Fw), S kL L

r &

2
Multiply this with 2 (Fo + \/; Fy+ F,,z) and integrate with respect to » on (v, rp),
then on (74, ), to obtain
2 1 9
1Fo+ ) 5Falls < e | Fule +Z llgillyt | | 2P, 0)Mdv | ).
But

| JUEF(TB,U)Mdv |< C(JM | v, | F2(rg, v)dv) < ¢( | SF | + | Fy ).
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Hence

2 1
(310)  [[Fo+ \/;F4II2 <e( 1Pl +llgrllyt | SF I~ +| Byl )
It follows from (3.6) and (3.7) that
1 1
1Pl + I1Folly < (| Folz+5 19y lo+5 190 o+ | SF |+ | Fy - +2 | Fy I )-
This together with (3.9-10) gives (3.4). O

Analogous estimates hold in the axially homogeneous Case 2. Care is here needed
to remove terms of low ¢-order in the proof of the fluid dynamic estimates. This
complication has its origin in the fact that the boundary scalings (of order ¢) here are
larger than the Knudsen number (¢*). For upcoming negative order terms in F | the
example a = [ MdvJ(F | ,vp)v,A will suffice to clarify the technique. That moment
can obviously be written as [MdvF y for some non-fluid-dynamic function y.
Projecting the whole equation along L'y, increases the epsilon order of the term a
by one. This can be repeated until all appearing moments of F'; are of non-negative
order. A corresponding raising of order for the fluid dynamic estimates is more
involved (see [AN2]). The resulting a priori estimates are

Lemma 3.4. If 0 < ¢ is small enough and g = g, then for small enough
& > 0 the following estimates hold for a solution of (3.1) in W2

(811)  [FL < o(e o by s+ | By ) ),
(812)  I1Folly + 1ol + I Pally + Folly < e(s7® [o7tgu 2+ [ Fy | ).

If F is a solution of (3.1) in W™>~, then the following estimate holds for small
enough & > 0;

(3.13) | o< e(|02g oo +&70 | 0FF |g + | Fy o), ¢ < oo

A fluid dynamic component in g does not change the results in (3.14-15).

In Case 3 the partial differential nature of the problem requires more work than
the ordinary differential equations appearing in Cases 1 and 2. But the two-roll
domain is bounded and has a simple geometry that allows the use of a direct ap-
proach involving orthogonal (Fourier) expansions. For more complicated geome-
tries in other bounded domains one may first by similar Fourier based methods
study the dual problem in say a box containing the domain in question, and then via
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dual estimates and trace theorems obtain corresponding results for more arbitrary

bounded domains (cf. [M]).

732—1 "1y 2) €

1
, we will be interested in the case when the new
g+ 1

(—m, n)2 and with ;7:7.3_

unknown F(s, Z,v) := F(ys + ——— , nZ,v) solves

oF  OF
(3.14) vygwtvz 8Z+17;¢(S)NF —(LF+g)
where u(s) = . The control of the fluid dynamic moments will be

2ns+1rp+1
obtained by Fourier series expansions. Write (in the new variables) the Fourier

expanded density function F as

F(sz’ ’U) _ Z anj(v)ei(’ﬂerjZ).
(n,j)eZ?

The fluid dynamic moments Fo, Fy, F,, Fy, and F, become

F()(S,Z) Zmn] 7(179+7Z) F4(S,Z) Zm”fbj ’L(7IS+7Z)
(n,) ()

Z 7) T j ins+iZ
F (S 7) = Z uﬂ] ez(nﬁ] ) F@(S 7) = Z um i(ns+j ) FZ(S, 7) = Z u;’b] el(ns+j )7
(n,5) (n,5) (n,7)

where

my = (", 1), my =@,y

njo._

no.__ (M nj
w! =@, y,), wus =@

(a 7l//9)7 u;l] = (anjv l//z)

Recall that (a, §) denotes the scalar product [ a(v)f(v)M (v)dv, and notice that u’;o =0
due to the symmetry F(s, Z, 05,09, 0;) = F (s, —Z, vy, vy, — V). Notice that the
Fourier coefficients of the first »-derivative contain a multiple of the boundary value
difference,

a"ﬂ'(%) = ina(F) +

whereas for the first z-derivative no such term is present. Set

=F(n—0)—F(—n+0) % with & its j’th Fourier coefficient in the Z-direction.
Denote by 4 := (1?4, y,), w1 = (¥v2B, 1), and by @ = I — Py, and write

CD ez,
2

e(Z,v) = % (P = 0,Z,v) = (WF)(— 7+ 0,Z,0) =Y _ @e”.
Jez
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Set )
A= — % (9", v) = 3j(g", v0.B) + n(g”-" ,@v% = —HB)
— ine( — 1)“0&; e 31— V' = 3~ D',
— isnz(Qw@vT — vg — vf)B, Qa'¥) — wnj(sz(%f — vzg — vi)E, Qa')
— 3ienj(Qu}v.B, Q") — igj*(Qu,v2B, Q')
nj nj

=\ Lo~ . ~
- Sm(ﬂF)v,,(Zv%—’?v‘f}—vf)B - 387”(/1]?)(1);2_1}3)3 + 3“7(/'{F) 7

2.2
V=Y

) 3 o _ . _
A= —— ") + g, @2 — v —v)B) + 3n(g" , v,v,B)

=i~ D' dy, 5~ G~ V'd, 5 o+ 3i(— D",

— 3ien®(Quv*v, B, Qa") — Signj(vafB, Qa™)
— ienj(Quy (207 — 12 —12)B, Qa") — igj?(Qu.(2v? — 1?2 —12)B, Qa™)
— Bemm(uk )@7 — enj(uF )v (Cooen T in(uF )vaz.

Lemma 3.5. Let F be a solution to (3.14). Denote by e = f. For(n,7) # (0,0),

nd, +j/1

m
302 1 )+ w(F)

' 4 ; 4 <
(3815)  my = —gwi(g", D+ (- 1"d) +

2 1 1 nj 2 . nj 7L] — n
RTE L\ 2 - —g¥ 4+ 2 A j
Jr\/;},(nz +j2)(8§(g U 5)+1819vrA+81(g ,VA) — (ug)

1 . .
- ) d:;(vz 5 (_l)n"dyv%A i - 1)"](1{} pa T= l)nei%A

+ nz(QvVA, Qa) + jZ(QUSA, Qa) + 2nj(v,v.A, Qu)

nj

— il )Zﬁ — i), + i)Y

—PG2RYY, +mnwF>"f W)ﬂgf),

n __ 1 (i _ M, o
316) = ( 26" =5 —igl, - (g I 0A) + (ug)
—1" ) ; . ;
( ) d’v gy T (= 1)”’nd]vgl21 + (- 1)”062 oa 1= 1)"671)%;1
2(Qv7,A, Qa") — FH@QVEA, Qa") — 2nj(w,v,A, Q™)

nj

GG o+ i, — G, PG

- mmm B, ),
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(38]
nj 1 nj [ nj o, " 7,
61wl = (- 6 ],Uo)*g(g],wvoB)* (g o)~ 2 LG, 5
(71) d7 +in( — '

vsz+Zj(_1)d7z;va+2}7( )né

v2vyB
- nz(vaoB, Qa") — j*(Quev:B, Qa") — 2nj(v,vev.B, Qa)
UGNy o0+ A GE)) 20,
2 FYY, + 2GR )
rY0B

vv9B )’

. ) . _.2 n] . ’VL]
(3.18) w :ﬁ(,ﬁ(gm 1) 4 A+ md

- 1" il F nj
3e1w1 (n2 + 52) + (= 1)"d). + mlu )v,’,)y

(319) at =" (

J i njAY — n2AY
z 7n2+j2 -—9%,D

R e 71 " ] F?Z]
. i +J2>“( 'd -+ njb)y).
Proof of Lemma 3.5.

This is proved by moment projections and direct
computations from the Fourier expanded (3.14), see [AN3]

O
Lemma 3.6. Let F be a solution to (3.14). Then for n small enough.

|mg” |+ | mg® |+ [ug |+ | |+ | |

<c<|9u |2+|0_%9le - | F

Fy |~ 7
SF |, +— Fl, ).
ot ISE Ll L)
Proof of Lemma 3.6. For (n,)) =

(0,0), it holds that
(3.20) a® = J dZ[ Fa—0)+F(—n+0)=Y ae"]=4-> a"%",

n#£0 n#£0

where 4= | dZ(F(z — 0) + F(— n 4 0)). First

ag;gA 7%“4 J ZAMdv—l-amzA

A multiplication of (3.20) with Mv2A and v-integration gives

ZA —AUZA Zava 1)”.

n#0
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To proceed, take the scalar product of (3.14) with v,A and identify the Fourier
coefficients,

(3.21) (— 1)”d{} 2 T in(v,zfl, a") + ij(w,v.A, a) + n(uF v%,vg)"j

_ 1 9 wi i _
= ((vr(v —5),a") + (g %wA)).

Also take the scalar product of (3.16) with v? — 5, and identify the Fourier coeffi-
cients,

(3.22) — (= D" 5 + 0@, (0" — 5),a") + j(0.0* — 5),a)
7: i NN
- ((g U 4 B) 4 sl;y(ﬂF)vf(vLE))).
Moreover, (3.14) writes
8 =~ 6 = /1 2 - ]- T
Vp o= (WF) + 0, = (WF) — 0l F + quNF = — (L(uF) + ug),
0s YA &1
so that
100, + Jo )" + (= 1)"0,6/ (v) — v, (W F)"Y
e~ 1 TN\1] nj
+ (W ENFYY = o LuF)" + (ug)™),
where

e(Z,v) == % ((ﬂﬁ’)(n —0,Z,0)— WF)(—7+0,Z, v)) — Z ¢l (v)e?.
Jjez

Taking the scalar product with v, A leads to
(323) (= D"e,, + @A, b)) + {jww.A, Wb — WA, (W F)Y)
- . 1 o ~ y
+ ”(ﬂsz;Z.—v(z))nj - g ((’1)1»(7)2 — B), (W) + (v, A, (ﬂg)n])).

By (3.21-23) for n # 0,

. n
anOf — 1 gné) 7 i 10 (=1 0 s
2A 8%%2 25 & v A 61n2 v, (v2—5)
+ 7,( - 1)771 dO o n ( F)’I’LO + Zﬁ(‘uﬁv)’ﬂo
T AT gz s T g

_ 10 i n0 n n0
= — 321—n2 92_5— ggw;l + W(ﬂg)wg
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( _ 1)?7/
81%2

(—1)"

(-D"
o5+ 7 e g

n2 evEA
+ Z—(ﬂF)"O =i (#F)

Ui

n AN 2 71\n0
+ W(M/F)Zgg - ﬁ(ﬂ F)fov‘f,'
From here, using

~ 1
0 00 1 g
Ay 25y T W)y 025 = ag(vzﬁs)»

it follows that
1
0l2+194 |2 2+ |02 |2 £ = = =
| o< c('g | 5 193]z nlgv] 8'1 9ol2 |\ F 4 |SFI. 1| Fy a1 Fy1).
1
Since
0_ 0 V6 0 o 00
My = G2 — g O, Up = _(av%f;B Lv UHB)
A - Z( 774 ”0 ug (avsz vaB)
n#0
similar inequalities can be obtained for m{°, u)’, u%°, and u?* and the lemma
follows. O

Lemma3.7. Let u%ﬂ e L™ be given. Then there is ny > 0 such that forn < 1y, a
solution F in W? to

oF  OF _ . N 3
(3.24) O S+ Vi + UNF = (LF +eJ(FLp) + g), Flog = Fy,
satisfies
(3.25) | VBF" Jp< c(flgn o+ vty +\/7—7|Fb )
—\g e e

Proof of Lemma 3.7 Consider first the case where f = 0. As in the axially
homogeneous situation, Green’s formula and Lemma 2.2 imply that

(3.26) el | SF 2+ | vtFy 3<e(|v gy 2 —i—J(gH,FH) +e | Fy2).

Then Parseval’s identity, Lemma 3.6 for (n,7) = (0,0), and an estimate of the
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Fourier coefficients (n,j) # (0,0) as given in Lemma 3.5, imply that

&1 NGY

And so (3.25) holds in the f = 0 case, since | F|| [z~ U%FH |2,- The case f # 0 can
be handled as the case f =0 with ¢ in the right hand side, by taking instead
g + &/ (F, ) in the right hand side. This gives

L -
~ V2 ol 1~ ~
|FH‘2§C(|98H2|2+” QL||2+| b| +|DéFL|2+i7|FH|2).
1

- Loyl v ig+eJEBDIy | 1 -
Fy o< — | Fy |~
| le_C( o+ o +\/Z:I| b )
gl | v*%gL l2 1 = 1 1
< — | Fp |~ 2F 2B oo ).
<o(Fgt R e Bl b [ I L )
Thus the lemma holds for # small enough. O

Remark. If we had access to the estimates in this section of the non-hydro-
dynamic part with respect to L1 for (large) q > 2, then the actual asymptotic ex-
pansions required in the existence proofs of the following Section 4 would be con-
siderably shortened in the Cases 2 and 3.

4 - Existence theorems and fluid dynamic limits

Based on the discussions about asymptotic expansions and a priori estimates in
Sections 2-3, this section studies existence results and fluid dynamie limits for our
three choices of archetypical two-rolls behaviour.

Given the asymptotic expansion ¢ of (2.4), the aim for Case 1is to prove the existence
of a rest term R, so that

(4.1) f=MQ1+¢p+eR)

is a solution to (2.1), (2.3) in Case 1 with M~1f ¢ L. This corresponds to the function
R being a solution to

DR = % (LR +2J(R, )+ &J (R, R) + 1),

where [ was defined in (2.10). Recall that the asymptotic expansion ¢ is of order two in
e with correct boundary values up to order two and that [ of (2.10) - the pure ¢- part of
the equation - is of e-order two and #-order one in L4, where n = rg — r4. Notice that
@/, j=1,2, may be constructed so that “practically” D@’ = (I — Py)D®d’, hence
l =1,. This holds modulo a possible higher order fluid dynamic component, ne-
glected in this section, that does not change the line of reasoning or its results.
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Let the sequences (R"),cx be defined by R? = 0, and

1 2 ,
(4.2) DR" =~ (LR" +2 IR, #) +¢").
=
(4.3) R™(1,v) = Ra), v, >0, R"(rg,v) = Rp(), v, <O0.
In (4.2-3)

g% = EJ(Rn,Rn) + l,

2
) 22 L.
eRA() = MoV 3%a 1 — E gD (rq,v), v, >0,
=1

2
eRp() := =Y &l d(rg,v), v, <0,
j=1

with R4, Rp of ¢-order two.
For the rest term iteration scheme (4.2-3) the following holds.

Lemma4.1. For0 <g 0 <rg— 14 small enough, there is a unique sequence
(R™) of solutions to (4.2-3) in the set X := {R;| 2R l¢< C} for some constant C. The
sequence converges in L1 for 2 < q < oo, to an isolated solution of

L
&

(4.5) R(1,v) =Rsw), v, >0, R(rg,v) =RpWw), v, <O0.

(4.4) DR = (LR +eJ(R,R) +2J(R,p) + l),

Proof of Lemma 4.1 Denote by # = rg — r4. The existence result of Lemma
3.1 holds for the boundary value problem

1
DF = E (LF + 2J(F,9) +9),
F(l,’l}) - RA(,U)7 ,UT > 07 F(TBav) - RB(v)a v?" < O

Here g = g, and by Lemma 3.2-3

1
[F ke (v g o+ Byl ),
(4.6) ‘

1
[P < er([07hg |+ [0 F |+ [ Ry | ).

We note the obvious L?-norm equivalence | F| [o~| v F | l2, and the Grad type in-
equality

(4.7) |02 J(g,h) ;< C | V3 g |wo] vPh |,
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which follows by an easy, direct computation. This will next be used to show by in-
duction that

(4.8) | MR —R") |2< en | PR —R" V) |o, | *R" |o< en,m € N, > 0.

For n = 0, R! is the solution to

DR! = %(LRI +2J(p,RY) + 1),
Rl(l,/l)) - RA(,U)v,UT > 07 RI(TBa/U) = RB(/U)a/UT < 07

so that by (4.6-7) | v*R! |2< cre, | 2R | < ci, where 5y = 15 — 4. Also, R"2 — R"*1
is a solution to

D(R7L+2 _ Rn-&-l) _ l(L(Rn+2 _ Rn+1) + 2J(¢ R"2 _ Rn+l)
&
+ SJ(R%Jrl + R Rn+1 _ Rn)) R7L+2 _ R7L+1 -0 00"

which by (4.6-7) and the induction hypothesis (4.8) leads to

| H(R"2 — R™) p< ¢ | v B JR™ + R",R" —R") |5
<e(| pER™HL oo + | VER" o) | (R — R™) o
< 2% | AR" —R") |2 .

Moreover,

| U%Rn+2 |oo < | U%(R%JrZ _Rn+1) |oo 4o+ | D%(RZ _Rl) |oo + | U%Rl |oo§ en,

for sufficiently small # > 0. And so (R") converges to some R, solution to (4.4-5) in L4
for ¢ < co. The contraction mapping construction guarantees that the solution is
isolated. O

The existence of isolated solutions to (2.1), (2.3) is an immediate consequence
of Lemma 4.1. It also follows that, when ¢ tends to zero the fluid dynamic mo-
ments converge to the (Hilbert type) corresponding leading (first) order limiting
fluid solution given by (2.5). This is obvious in L? from the estimate of R! in
Lemma 4.1, and holds in L™ for the following reason. If the asymptotic expan-
sion were carried out to third order, then R! would be of order ¢ also in L™.
Grouping it together with the new third order term from the asymptotic ex-
pansion, shows that the R! of our present Lemma 4.1 also is of order &. We have
thus proved
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Theorem 4.2. For 0<g 0<rg—1y small enough and j =1, there is an
isolated axially homogeneous solution of (2.1), (2.3). When ¢ tends to zero, the
corresponding fluid dynamic moments of ¢ converge to solutions of the limiting
fluid equations at the leading order e.

In Case 1 the (incompressible) fluid dynamics behaviour is given by the limiting
. . u()A’I’%—W‘z UOAT%—TZ
first order (angular) velocity — 5 =— .
rorg—rd r vp+71a
Using similar arguments but more extended asymptotic expansions, the same
type of results can be proved in the other cases. In Case 2 our present estimates give

(see [AN2])

Theorem 4.3. Assume that rg — r4 is small enough and that (A + 5D) < 0.
There is a megative value Ayy of the parameter 4, such that for the quantity
Apir — 4 positive and small enough, there are for & positive and small enough,
two isolated, non-negative L -solutions f{;, 7 =12 0of (2.1), (2.3) coexisting with
M-l e L™,

JM‘lsupess,,e(TNB) |f-i(7', V) |2 dv < +oo.

The two solutions have different outward radial bulk velocities of order &. For fixed
& they converge to the same solution, when A increases to Ayy. Their fluid dynamic
moments converge to solutions of the corresponding limiting fluid equations at
leading order, when ¢ — 0.

Here the leading order (in ¢) fluid dynamics behaviour is given by the first

ugY
order angular velocity @ — %eﬁ and the two possible third order radial
B
velocities %, where ug solves (2.40).

Finally in Case 3 one obtains

Theorem 4.4. Forj=10<g¢ 0<rg— 14 small enough, there is a smallest
bifurcation value ugap > 0, such that the axially homogeneous solution to the
problem (2.1), (2.3) bifurcates at ugap with a steady secondary solution appearing
locally forugap < uga, which is axially symmetric and axially (rg — r4)—periodic.
When ¢ tends to zero, the corresponding fluid dynamic moments converge to so-
lutions of the limiting fluid equations at the leading order ¢ (bifurcated solution of
Taylor-Couette type).
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In this case the limiting fluid Taylor-Couette equations of incompressible Navier-
Stokes type are

Ouy ouy ui  10P; Uy
(4.9) ey gt == =g B =),

u, O(rug) ) U
X %0 S — 22
r  Ouy + % 0z 'u( Yo 72)’

ou, ou,  10P,
Uy T oy T o e A
1 r 2
Low) | o

r or 0z

where u depends on the molecular model, and P; is the next order term in ¢ of the
perturbed relative pressure.

Proof of Theorem 4.4 Given the asymptotic expansion (4.1) in Case 3 and its
bifurcation point, the aim is to prove the existence of a rest term R, so that for the
parameters near the bifurcation point, there is an axially periodic solution

f=MQd+¢+eR)

to (2.1) with an added %—term and boundary values (2.3) with M~1f ¢ L>. This

corresponds to the rest term R being a solution of the same type to
1 .
DR = A (LR +2J(R,p) + eJ(R,R) +1).

In Section 2 a third order asymptotic expansion in & was constructed in a 6*>-neigh-
bourhood of the bifurcation velocity w4, with correct boundary values up to e-order
three, and so that [ - the p-part of the equation - is smooth in r, z and of order & in L.
Notice that @/ can be constructed so that D@ = (I — Py)D®’, hence that I =1,.
Let the sequences (R"),.cx be defined as in the earlier Couette case by R® =0, and

1 3, ; :
(410) DR = (LR™ 42 GIR™, ) +g"),
J=1
(4.11) R"™(1,v) = R4w), v, >0, R""(rg,v) = Rp®), v, <0.
In (4.10-11)

9" :=&JR",R") +1,
3
2 .
eRAW) 1= €M — 13" DI, 0), v >0,
j=1

eRpw) :=0, v, <0,
with R = (R4, Rp) of e-order three.
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For the rest term iteration scheme (4.10-11) the following proposition holds and
with it the proof of Theorem 4.4 is complete.

Proposition 4.5. For ¢ > 0 and small enough together with n=rg—ra,
there 1is a wunique sequence (R") of solutions to (4.10-11) in the set
X := {R;| R |,< Ke} for some constant K. The sequence converges in L? for
2 < q < o0, to an isolated solution of

(4.12) DR = % (LR +&J(R,R) + 2J(R, p) + 1),
(4.13) R(1,v) = R4(), v, >0, R(rg,v) = Rp®), v, < 0.

Proof of Proposition 4.5. The existence result of Lemma 3.1 holds for the
boundary value problem

3
Df :%(Lf+223j,](f,¢j)+g>,
=1
f@,v) =RaW), v, >0, f(rg,v)=Rp®), v, <O0.

Rescale in space to ( — =, 7)% and consider the approximation (4.10-11) in the case
n = 0 with ¢° = I. As discussed before (4.10), this ¢° = ¢ is of order & in L, and

|08 | + | Ry o< 61,
for some constant c¢;. By (3.25) and (3.3) it holds that for some constant c
(4.14) | viR! ]2< crcome®, | v*R! lo < 2¢1 0276,
for n and ¢ small enough. Let us prove by induction that
| U%Rn |Oo§ 4cqc06,
(4.15) ) .
| 2(R™ — R™) |o< 2¢1c06 | 2(R" — R" V) |5, n > 1.

For n =1, R? — R! satisfies

3
D(R?—RY) =T (LR~ R) +2) ¢/ J(R* — R', @) + eJ(R', R ).

=1
(R? — RY(ra,2,v) =0,v, >0, (R*—RYrg,2,v)=0,v,. <0,

so that, by (3.25),
| v¥(R% — RY) [o< con | v 2 J(RL,RY) |5 .

Recall that for any g € L™ (resp. h € LY,
(4.16) |02 I0) lg < e | 0P g |ec| 3l | -
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Hence
| H(R2 — RY) o< crfe | oARY — R) |2,
for n small enough. If (4.15) holds until n, then
| R | < R = R™) |oo +...+ | AR = R) |
< S HRT =R fp o | MR - RO o)
< 4ercoe,

for 5 small enough. Then R"2 — R"*! satisfies
3
D(Rn+2 _ R?’H—l) _ 1 (L(Rn+2 _ Rn+1) +2 Z ng(Rn+2 _ Rn+1, c257)
& -
J=1

+ 8J(Rn+1 —&-Rn,Rn-H _ Rn)>
(R71+2 o RHJFI)(’VA,Z,'U) _ 0’ vy > 0, (Rn+2 o R%+1)(7,.B’ 2’,1)) = O’ v < 0,

so that by (3.25) and the bound on | v2R" |, and | vzR™! |,

| U%(RnJrZ _R7L+1) o< e | U%Rn+1 oo + | U%R% o) | U%(Rwrl —R" l2

1
< 2cic0¢ | AR — R") |g,

for ¢ and # small enough.

And so (R"™) converges for sufficiently small # > 0 to some R, solution to (4.12-13)
in LY for ¢ < oc. The contraction mapping construction guarantees that this solution
is isolated.

5 - Stability

We next come to the question of stability for the solutions obtained in the previous
sections. Only Case 1 will be discussed. It turns out that the well known fluid sta-
bility of the leading order term is the prime mover behind the kinetic stability, which
in a certain way is uniform down to the fluid level. More precisely we shall devote this
section to prove the following new result.

Theorem 5.1. The steady Couette problem for the Boltzmann equation in the
two rolls problem is stable. The stability is uniform in the following sense for small
enough mean free path . When the gap between the cylinders is small and the
angular, axial and energy moments are perturbed of order ¢ or &2, then uniformly
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m ¢ the perturbation vanishes asymptoticaly in time. Also an mitial perturbation
of order &3, with small but otherwise arbitrary fluid dynamic as well as non fluid
dynamic part, vanishes asymptotically in time.

This type of results is expected to carry over to the cases 2-3, where also the fluid
stability is well understood.

Among the few earlier rigorous non-linear kinetic stability results outside the
situation with global Maxwellian limits, are the studies in [UYY] dealing with sta-
bility of half-space Milne problems, and [UYZ] dealing with the Boltzmann equation
in full space with an external force.

With &, = 1 + &, the rescaled stationary solution, the stability problem consists
in proving that the distribution function @ tends to &, when t — co, where @ solves
the evolutionary problem

8(15 1
6t
o0, 7, v) = @y(r,v) + P(r,v), 1€ (ra,rg), ve R,
D, 14,0) = Dy(ra,v), t>0, v, >0,

D(t,rp,v) = Dy(rg,v), t>0, v, <0,

V7P = —(Lfl) +J(D, D)),

and P is a small perturbation of ;.
Denote by 7 = @ — ;. It should then be a solution to

oy 1 1 .
(6.1 v =5 L+ T ) + 2T, 8)).
(5.2) w0, 7, v) = P(r, v), re(rq,rg), ve Rg,
(5.3) w(t,rg,v) =0, t>0, v, >0, yt,rg,v)=0, t>0, v, <0,

and tend to zero when ¢ — co.
Here the following perturbations P are considered,

P(r,v) = ey (0® — 5) + Byvg + 710:) + £ (as@® — 5) + Bovy + 702) + Ep3(, v, 8),
where a;, f;, v;, 1 <1 < 2 are L™-functions of the space variable, and the function

ps(x,v, &) is measurable with ||ps| . » < ¢ uniformly in &, where

sl = C [ suppite. v. oM
reQ
R?
As in Section 4, the stationary solution @; is here determined by an approximate

asymptotic expansion @ of terms of up to third order in ¢ with boundary values
being those of the same order of eXti—®—au)) at {(r4,v), v, > 0} (resp. 0 at
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{(rg,v), v, <0}, plus a rest term &S,
@S(Tv v) = 1 + 438(7/'7 ,U) + SS(T) v)7
where [IS|| .o < clrp — rale, [IS|lpe < clrp — r4lé?, and

Dy(r,v) = ey (r,0) + Dy + £ D3,

r— r—17p

1
,) + Pgip(

D; = Dp;(7,v) + Pria( . Pt

v), 2<1<3.
The Hilbert terms @g;, 1 <1 < 3 satisfy
L®y = L®pz + I (Pp1, Prn) — v - Vo Pr1 = LPps + 2J (P, Pz) — v - Vo Pz = 0.
They are given by
D1 (r,v) = b1(r) vy,
Dpo(r,v) = ag + dov? + bovy + Covr + %b?vg +(b] — %bl)v,ﬂvgfs’,
Dp3(r,v) = ag + dsv? + bgvg + c3v, + dyv, A + bydevgv® + bybav
+m@ww+éﬁﬁ—wﬁm—%mm4u@mwwén
by~ BDL 00— D) L )
+ %(b; - %bl)L*I((vg — 3v209)B) + byv,vB.
We take r4 = 1 (implying rg > 1). For compatibility reasons

_ Uga @_
(5.4) bl(r)—%_l(y r),

a; + 5d; (resp. ¢;), 2 <1 < 3, satisfy first-order differential equations, whereas b;
(resp. d;), 2 <1 < 3, satisfy second-order differential equations. Knudsen terms
Pga; (resp. Pgp;), 2 <1 < 3 are added in order to satisfy the given zero ingoing
boundary conditions up to third order.

The solution i to the evolutionary problem (5.1-3) is determined as the sum of an
asymptotic expansion y and a rest term ¢R,

Y =y+eR,
where

w(t, r,v) = eyt r,v) + 821//2 + 331//3,

r—1 r—r .
v, =yt r,v) + ‘//KiA(thvv) + l//KiB(thBW% 2<1<3.

The initial values of y5 is taken as zero, those of g, 5 are the corresponding orders



50 L. ARKERYD and A. NOURI [560]

of P and finally Ry := ¢2p3 is taken as initial value for R. For (5.1) to be satisfied up to
zeroth order in ¢ included, it is required that

0=Lyy = Lygs +J Wy, v +2Pm1) — v VaeWm

0
= Lyys +2J(wy1, wys + Puz) + 2J (Wys, Pu1) — gfl -V Va¥po

O kaa N kop
= L — _— = L — Va
Wikea — Ur o Ve — Ur—p "

1 0
= Lygsa + 2w (ra), Wioa + Proa) + 2J (Wioa, Pr1(ra)) — ;NV/KZA — vy %17{73‘4

1 0
= Lyksp + 2J (Wi (rB), Wkop + Prop) + 2J (Wkop, Pr1 (1)) — ;N Ykop — VUr l/g)iSB .

The rest term R should then be a solution to

1 1 1 2
@—k—v -VeR=-LR+-J(R,R)+-HR) + qa,
ot ¢ & P F;
where
1
HR) = EJ(W + &, R)+J(S,R),
and
(9!//2 1
a = 28( — o U VaVm — ;(N‘//K?,A + Nygsp) +J (W, v5)
2T W+ P) + 2Ty, Po) + 2T (3, P )
0
+82(2J(W2aW3 + @3) + 2J (w3, P2) —%)

2
+ & (Jps, ) + 2 (5, B3)) + EEAZI)

The equations involving Ly, 1 < i < 3 give the v-dependence of vy,

V/Hl(t; ¥, 7)) = Al + Dlvz + Blvﬁ + CI/UT + Elvz»
Wt 7,v) = As + Dov® + Bovg + Cov, + Eov, + g2,
wys(t, 7, v) = As + Dsv? + Bavy + C3v, + Esv, + gs.

Here A;, B;, C;, D; and E;, 1 <1 < 3 denote functions in the (¢, ) variables. By the
compatibility conditions

Jv Va1, v)Mdv = 0,

and the initial and boundary conditions at first order, it holds that

Ay +5D;=C; =0.
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A(|v|) was introduced after Lemma 2.2 from the nonhydrodynamic solution to
L(,A) = v.(v* —5) together with B(|v|) from the corresponding solution to
L(,vyB) = v,vy. Further,

1

1 1
g2 = éD%v‘l + (§B§ + Bib) vy + 5

2
+ (B1 + b)Dywgt® + D1E1v,0” + (By + b)E1vv,

oD - OB 1 —  OF =
+ 20, A + (=2 - ZB)vwyB + —v,0,B,
or r or

or

and g3 is a similar expression depending on gy, We, @1 and @pe. By the com-
patibility conditions

2,2
Elvz

B)
J( gfl VW) Wo, ¥ — 5,v,)Mdv = 0,

the functions By, D; and E; are solutions to the parabolic equations

a_Bl+ (@4_18_&_1
ot b ot r or 1t
B1(0,7) = py(7),

Bi(t,r4) = B1(t,7vp) =0,

Bl) = 07

6D1 ws — 5?/02 8201 1 601
P10 Cor Trar
D1(0,7) = a1(7),

D(t,r4) = D:1(t,7) = 0,

) =0,

OEy w (82E’1 10E,
ot Yoz Ty or
E10,7) = y,(r),

E’l(tv TA) - El(t,""B) =0.
Here,

w = Jvaz(,BMdv, we = Jvf,AMdv, w3 = JvazAMdv.

The convergence to zero when ¢ — oo of wy is well known from the fluid dynamics
context (see e.g. [V]). Here the convergence follows from classical asymptotic
properties of the solutions to the above linear parabolic equations [LSU]J.

The compatibility conditions

W B
J ( ot T v“'//H2)(1, vy Mdv = 0,
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write
D
9 (wew + 2% — o,
(55) or 5 Or
' 0 35 , 1, 1 5\ Bi(Bi+2b)
5(A2+5D2+?D1 + 3B} +Biby +§E1> g

Let A, v), p4o(t, n,v) and pps(t, n,v) be the solutions of Theorem 2.4 to the half-space
problems

oA
7)7-8—’7 = Li,
AM0,v) =0, v, >0,

JUM(’% v)dv =1,

op,
Oy 6—22 = Lpaz,

pAz(ta 07 7}) - _lpHZ(t> ra, /U)a

JvaAZ(rlv U)d’l) = 07

v > 0,

and

0,
Uy g—ﬁz = Lpps,

pBQ(taoyv) = _[/7H2(t7 Tva)a Uy < 07

quanz(ﬂ7 'l))d’U =0.

As 7 (resp. 1) tends to 4+ oo (resp. —o0), 4 and py, (resp. ppe) tend to some
oo + 0oV + BV +0r +7..0; AN Goog + Foca¥? + B aV0 + Voca Ve XESP. Uoep + OoopV?
+ S5V + YoopV2)- Give as boundary conditions to Ag, B2, D2 and Ky,

As(t,74) = a5 Ca(t,74) + G0a (@),

Ba(t,14) = B, Caot,74) + fooa(®),

Ds(t,74) = 05 C2(t,74) + 650 (?),

E2(t,74) = 7, Co(t,74) + 7504 @),
with

Co(t,74) = rpCa(t, vp) + W2

5

As(t,rB) = a5 Ca(t,7B) + a50p(1),
Bs(t,1p) = B, Ca(t,78) + Bop(D),
Ds(t, 1) = 65cCa(t,7B) + dssp (D),
Es(t,rB) = 7,,Ca(t,78) + 705D,

0D,

0D,
(a5 ) = 521 ).

Then there is a solution Ag + 5Dy to (5.5) if and only if

rB

(A + BDa)(t, 1) — (As + 5D)(E, 7) — J BuB: + b))

A
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which fixes Cu(t,7p). Finally, the linear parabolic problems for Bz, Ds, and for Es
provided by the compatibility conditions

15;
J ( gfz aaCh Vﬁc‘/’HS)(vﬁan —5,v,)Mdv = 0,

have unique solutions;
@ + wl(@ l@ — i
ot o2 ror 2
By(0,7) = 5(r),
Bs(t,14) = B Ca(t,74) + Boca(®),
Bs(t,78) = B Cat, r4) + Bocp®),

BZ) :fl7

6D2 w3 — 5?/{)2 82D2 1 8D2 _ 7
o100 ‘a2 et
D3(0,7) = az(r),

Ds(t,74) = 05 Ca(t,74) + 650 (),

Ds(t,75) = 05xCa(t, 74) + 0s05(®),

9%z + wl(@ + 198,
ot oz oy or

E1(0,7) = y,(r),

Ex@,ra) = 7, Cat,74) 4 7504 (®),

Eo(t,vp) =y, Calt, 74) + 7oop®).

):f‘h

Here, fi, fi and f”l are given functions depending on w, b1 and cs.
Let wgo4 and yxop be defined by
Wioa = Colt,74) (A — Gy — 0u¥? — B Vg — Uy — Yo V2)

+ Poa — Gooa®) — Soea®V? — Boa®Vp — 700 a®V2,

WKZB(t7ﬂ7 V) = CZ(tv /VB)(/I( — MK _'U) — Oco — 5:)0/02 + ﬂoo/vl‘) + U+ yoo/UZ)
+ pop(t, =, =) — aocp®) — oo V? + PO vy + 7,5D) Vs

They satisfy

0
Uy Vg’(?ZA = LWgop,

I//HZ(t, Ta, v) + WKZA(t,O, /U) = 0, t> 0, Vy > 0,

lim w04t n,v) =0,
n——+00
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and

0
Vr lg;% = Lykop,

Wi, 18,0) + Wgos(€,0,2) =0, >0, v, <0,
lim ygop(t, i1, v) = 0.
=00

The convergence to zero of yys + Wxos + Wgop When ¢t — oo, follows from the con-
vergence of wy, and from the properties of the parabolic problems and of the
Knudsen terms.

The Knudsen terms w34 and yxsp are defined analogously, so that the boundary
conditions at third order be satisfied by w. The third order terms are constructed
similarly to the second order ones, and analogously converge to zero when ¢ — co.

For the a priori estimates of the rest term the following norms will be used,

t

1

[Rllot 22 = (J J R2(S,x,v)M(v)dsdxdv)2,
0

QxR?

||R||oo.22:511p( J Rz(t,x,v)M(v)dxdv)E,
" >0 ‘

QxR?

[

IRllc = sup ( [ sup Rt M)
o t>0 . reQ
R

1 sz = (i
+(

J v M) | f(s,74,0) |2 dvdsf
>0

Uy

[T

[SY S,

J | v, | M) | f(s,78,7) |2 dvds) < +o0.

<0

The rest term R can be split into R = R + Rz, where
1
(5.6) vk = ELRI + 2H(Ry),

1
Rl(t7 TA;/U) - __l//(t>/rA;7~))a t > 07 Vy > 07
&
(5.7) ‘
R, rp,v) = 7;1,”(15,7‘3,’1)), t>0, v <0,
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and

OR 1 1 1 2
2y VuR2 = 5 LRy +~J(R; + Rs, Ry + Ro) + —H(Rs) + a,
ot ¢ & e e

RZ(O; r, 'U) = RO(Ta 7))7
Ro(t,r4,v) =0, t>0, v, >0,

Ro(t,rg,v) =0, t>0, v,<0,

where a = a — % Notice that a can be taken non-hydrodynamiec modulo higher

order ({;;}%rms in ¢, which converge uniformly to zero when time tends to infinity. Hence
only =1 contributes to thg}?ydro—dynamics in a. A priori bounds on R; are first
derived, and also hold for 8_151 The ingoing boundary values as given by (5.7) are

subexponentially decreasing in ¢, and tend to zero when time tends to infinity.
Lemma 5.1. With R’i” (RY™) the ingoing (outgoing) boundary values of Ry,
any solution to (5.6-7) satisfies
VEIRY Ny, + 103U = PO)R1[lyy2 < eVEIRY |12,
[PoRAg129 < C||R§n||2t,2,~v

1 c i
HUZRlnoot,oo,Z < E”Rlln”oot,z,w :
Proof of Lemma 5.1. Denote by
%
By o= ( J MRt 00
QxR?

with ¢ acting as a parameter.
By (3.2-4)

VE| R [l = PRy < ¢ Ve B |- ve v HED | ).
| PoRy lo< o |0 HHR) 2 + | RY' |- ),
| VR | < c(s |V HR) | +% | Ry o+ | BY | )
Then,
| v H(RY) o< c( | vy + ewy + W) |

[ A(Dy + oDy + D) o + | 3S | ) | IRy |2 < o | BRy |,
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and
|V HRY) | < o | ¥Ry |,
where 1 = rp — 74.

Including the estimates in ¢, this ends the proof of the lemma. O

The a priori bounds on Ry are obtained by an approach adapted from [M], and
involve dual, space-periodic solutions discussed in the following two lemmas.

Lemma 5.2. Let na > rp. Let g be such that

(5.8) J 9@, x,v)de =0, a.a. 7el0,00), veR’
[0,27a]?

Let ¢z, x,v) be periodic of period (2rna)? in the space variable, solution to

op 1

— . ==L
(5.9) BTJFU V@ - »+9,
(0, 2,v) = 0.

Then,
00,2.2 2‘2,2 \/E 22.2

10 = Po)ollze < e(ello 4T = Polgllyss + 1Pogllyss )

1 1
1Popllzze < o074 = Polgllass + IPoglloas ).

Proof of Lemma 5.2. First, multiplying (5.9) by ¢ and integrating the re-
sulting equation on [0, T] x [0,271@]2 x R? leads to

1
(610)  lolires + 1T = Poollszs,

1 2 2 1 2
< ¢l = Po)gllar o2 + mllPovllsrss + " 1Pogll27.2.2)-

By (5.8) it holds that

0

T J Popz, 2, v)de =0, 7>0, ve R,

[0,27a]?
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so that

(5.11) J Pop(z,x,0)de =0, 7>0, veR>

[0,27a)?

Denote by (7, &, v), & € Z? the Fourier series of ¢ with respect to space, and define g
analogously. Then for & # (0, 0),
dp (1 . o
5 = (5L+zé-v)<p+g.
Let f be a truncation function belonging to C*(R) with support [0, oc], and such that
B) =1 for T > ¢ for some 6 > 0. Let ¢ = pp. Then

op

% 9%
o7

1 . ~ _
L= (ZL+iE-0p+op—+gp, ez
ot £

Let F be the Fourier transform in 7 with Fourier variable ¢. Denote by

p

& =Fp, Z =F L+ =

+9B), Z = Fe 'L+ gp), U = (io +i& - v) .
Let y be the indicatrix function of the set
{v; lo+¢-v|<al,

for some positive a to be chosen later. Let w,(v) = (1+ | v | )*. First,
1P < o | | 1000 & oMdv | 1]+ | | 2000002 Mdo | [
y J B0, & vy 6, Mdv | v, 5+ | J 1o & vyuMd | ugly)
< elly @l (vl + vzl )

a
<c,/ —|w_.P|y-
|é||| s ||H

Now & = flA]Z, and so

1Py — |7 < c(\lws(l — DU + w2 fX)Un?,) v 2|
4
_ Z Jt//j(l — ){)U}"(@%)Mdv( Jz//j(l — N(F@P) — UZ)Mdv)*
0
c 9 4 . op ) ) *
SHr w25 = ij(l — x)U]’((oE)Mdv(Jl//j(l — D(F@p) — UZ)Mdv)*.
0
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Choosing a = |jy_,®| 7 |lw_Z|; leads to

2
[ 1Po@lly < clly—s@llgllv_sZlly

4
1613 [t - pUFGEMdnt [y - pF@ - UMY
0

Hence,

&1l < (1ol + -y~ POBly) - Zln
4 ) P K
~ ¢ ZO:J%(I ~ DU I M (1~ (o) — UMb

Consequently,

| <1 [Pol < C( L1 w2+ v — Po)dﬁHHIwasZIIH)
4
—1ely] J w1 — pUF @%)Mdv( Ju/j(l — (F@p) — UZ)Mdv)".
0

And so,

52

2 2 _ 2
e Pl < (vl + -~ POl

op

Therefore, for s > g,

52

T Z] J (Po®)(a, &, v)Mdvdo

1
< o5 [Iv LW = Po@Xe.& o+ [l X - Pta. & )lfyde

+ J ly_gpG, &, ~>||§1df)

15§
1+ ¢

1 1
<5 |10kt = Pooto.& o+ [l gpte.c o 1fde)

|£|2 4

1+ ¢4

|é|2 4 ) ) ) R *
1+ ZO: J'/’j(l _X)Uf(ﬁﬂg)Mdv(‘[l//j(l — (F@P) — UZ)Mdv)*.

ijd (1 = 0 Lymant w0 - p(F@ap) - DzMdvy
0 o-ij ~0UFo vaj = 0F@p) - v

9 X
> [do [t~ e Lomtan vyt - F o) — U2

(58]
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Making ¢ tend to zero implies that

J J(Po(ﬁ)z(f, & v)Mdvdz
0

<ol | @~ Pogre,omtavde + [ v gPte, & ontaue).
0
Summing the former inequalities over all & € Z% with & # (0, 0) and taking (5.11) into
account, implies by Parseval that

[o.¢]

J J(POCD)Z(T, x, v)Mdvdxdz
0

< c(é J Jv(([ — P0)p)(G, &, v)Mduvdads + J Jv_lg2(%, 2, v)Mdvdxdf).
0 0
Together with (5.10) this ends the proof of the lemma. O

Lemma 5.3. Let na > rp. Let g be such that
(5.12) J 9@, x,v)dx =0, a.a. T€[0,00), vE R3.
[0,27a)?

Let p(z, 2, v) be periodic of period 2ra)® in the space variable x and solution to

a—?ﬂ) Vap = lL(/’ +9,
(5.13) It

(0(07 X, ’U) =0
Then,

J J J vrqyz(%,x,v)Mdvda(x)df—kJ J J | v | @ 2(z, ¢, v)Mdvdo(x)dz
0 0

|e|=rp v,>0 [|=r4 v,<0

oo

32 J Jg (z, 2, v)Mdvdadz).

0

(Here do(x) is the surface measure of the circles.)

Proof of Lemma 5.3. Let Cj ) be the set in the (x, y)-plane consisting of the
half with ¥ > 0 of the circle with radius g and center at the origin together with the
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rectangle given by |x| < g, —n < y < 0, where # > 0 taken small enough that any
rotation of the set C(g 1) around the origin stays within the square {|x|, |y| < na}. Let

Cl, v, be the set C( 1) rotated from the (0, 1)-direction to the (v, v,)-direction. Let
X(0.1) be defined and continuous in C(g 1), monotone and continuously differentiable in

the y-direction, equal zero at y = —g and equal one at y > 0. Define y, , \(@,¥)
correspondingly by rotation. Then

0
E(x?wy)(f) +0 - (LG, )07

2 2 2 2
- ;X(vmvy>¢L¢ + 2X(”x«ﬂy>(pg + 2(?) ' vxx(”ﬁwy));{(”rvvy)gp !

Hence,

T
J J O, o 045 0, OMdo@)dz < A, + B, +C,,
0

||=rp

where by Lemma 5.2

T
J Ay = % J J 72, o pLoMdvdudz
0

T
_ _C, 1 9
JBvdv = ZJ ){%%W(ogMdvdxdr < EHD 2g||2_2_2,
0

T
vadv = J (- Vx)((vx,yy>)X(vx,vy)§”2Mdvdxd%
0

12 Cy 1 2
< cllv2pll3725 < 8_2HU 29l5.20-

Here the C,-estimate was carried out for hard spheres, but holds also for hard forces
for the particular g appearing in the applications below. The r4-part is treated
similarly. |
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For the iteration procedure to obtain Re we shall be using systems of the type

Ry 1 1 1
(5.15) R»(0, 7, v) = Ry(r,v),

Ro(t,vq,v) =0, t>0, v, >0,

(5.16)
Ro(t,rg,v) =0, t>0, v,<0.

Multiply (5.14) with R.M, integrate over [0,t] x 2 x R® and use the spectral in-
equality, so that

IR2®)|I55 + = ||R0“t||2t22 +5 Lok Po)Rz 3,25

< C(HROsz + ||U_Z(I PO)G”zmz + ”PORZHZtZZ + |P0G||2t22)

for every n; > 0.

The a priori bounds on PRy are discussed in the following two lemmas. They are
based on dual techniques using the space periodie solutions introduced above.
Denote by

Wi, e, v) ;= PoRy — (PoRg), (f(t,v)) := Jf(t, x, v)da.
Q

Lemma 5.4. Forany 0 <5 <1theve s g, such that, for 0 < e <¢,,
B2 <  (IRolEz + IoH0 — POGIE sz + 3 IPoGIZo2) + 1l < PoRs > g

Proof of Lemma 5.4. In the variables (7, x,v) := (—,ac,v), the function R; is
solution to ¢
OR>

¥
Ro(z,rq,v)=0, 7>0, v, >0,

+ (s V'L‘RZ _LR2 + Ga RZ(Oa 7/'7 ,U) - RO(/Py v)7

Ro(z,rg,v) =0, 7>0, v.<0.
Let ¢ be the (27a)*-periodic ¢ function solution to

oy

1
a,Jrv V@¢f—L¢+h »0,2,v) =0

where 7 is taken as zero outside the gap between the cylinders and periodically
continued. Denote by

(f,9u = Jf W)g)Mw)dv.
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Then,
0 . 2
52 Bo, 0 + [ div,0Rag Mo == (LRo, (T = P + . + (. PRy
Integrating with respect to 7 and x gives
K _ 1 _
thém < 5 IRe o llos + g 9@ Ol
IR e + W“tn%
IIUZ(I Po)Rs (3,25 tor IIUZ(I Po)plez2
1A IIU’?(I Po)Gllmz tor ||02(1 Po)pll3: 22
+ 75 PGz + 2 ||Po¢||§f,2.z,

for any positive constants K;,j =1, ...,5.
It then follows from the preceeding estimates that

1 1, 1 1
110322 < e IR0ll3 + 107 = PG50 + 1 IPoG522) + 1l (PoRe) 355
This ends the proof of Lemma 5.4 when coming back to the ¢-variable. O

Lemma 5.5.

1 1
| < PoR > 322 < e | Roll3, + S 1PoGI3 )

Proof of Lemma5.5. Fort > 0let ¢(, x, v) be the solution to the (stationary)
problem

CRAVATES %L(ﬂ — &(PoRz),
pt,r4,v) =0, t>0, v, >0,
o, rp,v) =0, t>0, v, <O0.
By (3.24),
[T = Po)pllpz < el < PoRz > ||z,
(6.17) [1Pogllze < [l < PoR2 > |z,

||¢O7‘Llf||N S \/;:H < POR2 > ||272'
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Then

0 0 .
0 (Re, ) — e(Ra, O0) + dewaszdv

2
= E(LRZ, (I = Po)p)y + (G, )y — e( < PoRg >, Rs)y.
Hence for #; of order ¢

[(PoRe) 320 < (I1Rollsy + 07T = P)GI0 + ||P0G||2tzz

t
?
+ L |PoRelfy 2+ J JRz o (5,0, v)Mdodrds).
0

And so, by Lemma 5.4, and for #; of order ¢ and small enough,

(PoR=) B2z <  (IRolBs + IoH0 — PGIE s + 5 I1PoGIZs.)
t 0

+ J JRZ a_(i (s, 2, v)Mdvdads.
0

t
It remains to bound the term ng % (s, 2, v)Mdvdaxds from above. Differentiate the

0
equation satisfied by ¢ with respect to ¢. Similarly to (5.17),

OR,
HPo ||2t22— 1o —5 Mlar.22-

Taking the hydrodynamic part of the equation (5.14) leads to

OR
Py B P TR = PG
&

Moreover,

(Po(w - 72 Re) = (1P (v, Ralt, 75,0)) — raPov, Ra(t,7a,v))).
Hence,

OR; 1 1
1o S g < cll(Po 52 Brae < o 5 IRE g + 3 1PoGByce).

And so, Lemma 5.5 follows. O
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Lemma 5.6. Any solution Re to the system

satisfies

ORs 1 1 2 1
W‘F V- Vall2 S_ZLR2+EH(R2)+EG,
R2(0,7,v) = Ro(r,v),

Ro(t,vq,v) =0, t>0, wv.>0,

Ro(t,rg,v) =0, t>0, v.<0,

1 1 1
1Releas < ¢ 7 WRollas + oM = POGlasa + 5 I1PoGlza).

1Rz < L (IRollaz + 0740 ~ PGz + \fnPoanzz)

1Rl < €5 I1Rolkz + 1Rollaz + I7i0 — PGl

1
+ 7 PuGlzg + Gl )

Proof of Lemma 5.6. Consider first for H = 0 the solution R to

ORy 1 1 1
W_'— V-V Re _8_2LR2 —|—EG7
R3(0,7,v) = Ry(r,v),

Ro(t,ra,v) =0, t>0, v,>0,

Rot,rg,v)=0, t>0, v,<0.

It satisfies

1 1
sup [[Re@)|lz0 + = [v72I — Po)Rzl255
t>0 é

n 1
< ¢(I1Rollag + I = PoGllozz + - NP2l + - PG os).

for any 5 > 0. Moreover, it follows from Lemmas 5.4-5 that

Choosing n = /¢ leads to the first inequality of Lemma 5.6, and choosing 7 = ¢ leads
to the second one with a /¢ improvement of the order in the lemma. Then, by some

1 1 1
[PoRz|lz22 < C<75||R0||2,2 JF% [o72(I — Po)Gll222 JFE*Q ||P0G||2,2,2)~

additional computations similar to what we have done in previous sections,

1
1Rz < € 2 1Rell oo+ IRollz + &G
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which leads to the last inequality of Lemma 5.6 again with some /¢ improvement. A
1
more careful computation shows that adding the small perturbation EH (R2) only

changes the previous orders to those of the lemma. O

Proof of Theorem 5.1. The convergence to zero when ¢ — oo of the
asymptotic expansion y for the difference @ — @, was discussed at the beginning of
this section. The corresponding rest term eR was split into eR; + ¢Ra, where by
Lemma 5.1 and by the boundary conditions being satisfied by w up to third orderin e,

1 in i C pin
HU‘R1||2,2,2 <c|R{"|2~, ||U‘R1Hoo,oo,2 < E|R1 |oo,~7
i.e. subexponential decrease in ¢ and convergence to zero when time tends to infinity.

So it only remains to show the existence of Rz and its convergence to zero when

t — —+oo0. We shall prove that Ry can be obtained as the limit of an approximating
sequence and that
2

This in turn implies the L2-convergence to zero of R when time tends to infinity, i.e.
lim [ Ry(t,w,v)*Mdawdv = 0.

Let the approximating sequence (R%) be defined by R} = 0, and

(5.18)

s

J (R2)*(t, 2, V)M )dtdady < cé.
§3

I

ORyT 1 1
o, Rn+1 —
ot + g Valtt2 &

R0, 7,0) = Ry(r,v),
Ryt ra,v) =0, t>0, v,>0,
Ryt rp,v) =0, t>0, v.<0,

2 1
LRy + ;H(Rg“) + ;J(Rl + Ry, R+ RY) +a,

where Ry is of ¢-order two and
_9R
5

a=a

The function R} is solution to

872524_51) . V@RQ = 8—2LR2 —‘,—EH(RZ)—FEJ(RLRI)"'G:

R%(O, v, ’U) — RO(/rv 'U),
Ré(t,m,v) =0, t>0, v.>0,
R%(t,rg,v) =0, t>0, v.<0,
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so that by Lemma 5.6 and the subexponential decrease of R™ together with the
orders 2 of Rg and 1 of a; and 2 of a,

1
||RéH < 61, ||R%||2,2,2 < e,

00,00,2

for some constant c;. A closer inspection shows that ¢; = O(rg — r4) when the
coefficients in the perturbation P are O(rg — r4).
By induction, for vz — 74 small enough

IR < 2eolrp —ralet, j<m,

00,00,2 =
IRy — sll2ss < c3v/TB —Ta|Ry — 372171”2,2,2’ n>1,
for some constants ¢z, c3. Namely, if this holds up to n* order, then
0 n+2 n+1 1 n+2 n+1
a(R2 — R )+Ev~ Vo™ — Ry
1 2 1
— F_ZL(R721+2 _ R127,+1) + ;H(R;HQ _ R;H—l) =+ ;Gn-ﬂ’
(Rg+2 - R72Z+1)(0; r, /U) = 07
(Ry™2 — Ry ™Mt ra,0) =0, t>0, wv,>0,
(Ry™2 — Ry ™Dt rp,0) =0, t>0, v, <0,
with
G = (I — Py)G"*! = 2J(R1,R§”1 —Ry) + J(R;Hl + R’z@,RéHl —R3),
and where by Lemma 5.6
<
Ve

¢ 1 1
< T (1R IS M IS ) IS — R

< C2\TB — 7”A||Rg+1 - R;LHZ,Z,Z'

1B = By lpp0 < —2[1G" |2,

This ends the first induction step, and also implies that
||R’2”2||2,2’2 < ||Ry*™ — R72L+1H2,2,2 + .t |IRS - R%Hz,z,z + ||Ré||2,2,2 < 2c1¢,

for rp — r4 small enough. Similarly ||I~2’2”2||0070Q2 < 2¢s|rg — r4]e. In particular (R3)
is a Cauchy sequence in L2([0, +oo[ x Q x R3)). The existence of Ry follows, and the
estimate (5.18) holds. This completes the study of the Rs-term and Theorem 5.1

follows. O
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The dependence on a small enough rz — r4 was introduced to be able to use a
short e-expansion. With an ¢-expansion of higher order the same proof shows that the
existence of Ry and the stability result of Theorem 5.1 hold for an arbitrary fixed
1R — 74, When ¢ is small enough.

6 - Positivity

We shall in this final section discuss the positivity of the earlier solutions.

In the time-dependent small data case, positivity of sufficiently regular solutions
can be proved by Gronwall based ideas, see [LLZ]. But in the stationary small data
case the question whether certain solutions are positive remains an interesting open
problem. For general time-dependent problems, positivity is usually introduced at
the beginning of the approximation procedure and then kept throughout, so the
solutions constructed are positive, but not necessarily other solutions. When there is
uniqueness around, time-dependent positivity may alternatively be obtained by
comparison with some other equation already known to have only positive solutions
(see [A]). That turns out to be a possible approach also here for our stationary so-
lutions using a new type of comparison equation.

The proof starts by considering a variant of the stationary Boltzmann equa-
tion with a particular extra term depending only on the negative part of the
solution. This new equation is then proved only to have positive solutions, the
extra term disappears and the solutions solve the BE. The proof goes on to
construct a solution to the new equation of the type we already discussed for the
original problem, and to show that this new solution coincides with the original
solution. There is the following technical problem. In one step of the proof,
growth estimates are needed for terms like v,v9B = L~1v,vy. For Maxwellian
molecules such estimates are provided in [C]. For the strictly hard force case,
suitable types of growth estimates - also of interest in other contexts -have been
studied by C. Mouhot [Mo].

Write f =f —f~ with f* = max(f,0) and f/~ = max(—f,0) . Suppose f sa-
tisfies the related problem (6.1-2) below. Then f~ = 0 by Theorem 6.1 below, and
f =/f" is a non-negative solution also to (2.1), (2.3). If the contraction mapping ap-
proach used above can be extended to the construction of suitable solutions for the
problem (6.1-2), then as a consequence, any solution from the previous sections would
coincide with such a non-negative solution.

Theorem 6.1. Let Q be a bounded set in R" with smooth boundary, and f, a
nonnegative function defined on 9Q*. If M~'f € L=(Q x R®) and f solves the
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boundary value problem

(6.1) v-Vaf = QU = MLIMTYf),  (@,0) € @ x R?,
(6.2) =t 09,

then f~ =0, and f = fT solves the corresponding boundary value problem for the
Boltzmann equation,

v vuf =QU.f), QxR
f=f o0Qr.

Proof of Theorem 6.1 The function F = M~'f satisfies
vy =JFNFYH-LWEF), F=M71f, 02"

Define J* and J~ by J(p, ¢) = J (9, 9) — J (¢, p), where

T (0, 0)) = J 0= . ' KOM. ' dv.do,

T 00 i= 90 [ [0~ v. | HOM.p,dv.do
Also, F'~ satisfies
(6.3) v F T = gp T EFEFY) — LFT), F- =0, 0Q*.
Multiplying (6.3) with —MF'~, integrating on Q x RR? and using that

- JMF* 22l (F )i = — JMF*L(F*)dv > CJMU | (I — POF~ 2 do,

implies that

% J |v-n| MF Y +c J My | (I - Py)F~ ’< — JMF‘;{F,#OJ+(F+,F+) <0.
0Q OxR3
It follows that
F-=00n0Q", LF)=0.
And so, F'~ satisfies
F~=0,0Q0 udQ", v-y.F <0.

This implies that F~ is identically zero. O

Corollary 6.2. If there is a solution f to (6.1-2) in a ball of contraction
from the proofs of Theorem 4.2-4, then f~ =0 and f =f" is the unique and
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strictly positive solution in that ball of the corresponding boundary value
problem (2.1), (2.3).

Theorem 6.3. The solutions obtained in Theorem 4.2-4 are strictly positive.

Proof of Theorem 6.3. For the case of Maxwellian molecules there is indeed
in all three cases a solution to (6.1-2), i.e. the hypothesis of the corollary holds. We
start with the axially homogeneous situation of Case 1. Set 7 = Lpjceh and denote

again by ¢ the previous asymptotic expansion of order two,
2
o(r,v) = Zsid)i.
i=1

If the terms in @', 1 <i <2 are polynomially bounded in the v-variable, with
bounded coefficients in the r-variable, then for ¢ and % small enough and positive, it
would hold that

2
(6.4) 1+z¢:1+z(zgi¢i) > 0.
=1

The required bounds follow from the previous discussion of the terms in ¢ except the
B-term in @* (and also some A-terms in Case 2-3). But it is well known that also such
A and B terms are polynomially bounded in the Maxwellian case (cf [C]). Notice that
the L4-norm of (1 — %)@ for any ¢ s of arbitrarily high order in ¢ because of the factor
M in the v-integrand.

Using the approach of Section 4, the positivity under the cut-off 7 in (6.4), and the
corresponding splitting

[ =M1+ xp +eR),

lead to a nonnegative solution of (6.1-2) with M —1f € L* as follows. Namely, the rest
term R should be a solution to

(6.5) DR — % (LR +2J(R,70) + eJ(R,R) + Z),

where
-1
l= " (L(Z(ﬂ) +J G, xp) — SD(pr)),

and
2
R(r,v) = R(r,v) when eR(r,v) > — (1 +2) ddir, v)),

1=1

2
R(r,v) = — % (1 +7 Z i (r, 1))) otherwise.
=1
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Here [ can be decomposed as [, as in Section 4, and [ which in L is of arbitrarily high
order in e. The approximating sequences (R"),cn and (R™),c~ are defined by
R =R =0, and

2
(66) DR"1 — % (LRn+l ) Z8jJ(Rn+1,)Z¢j) + gn))
=
(6.7) R (1,v) = R4(), v, >0, R"(rp,v) = RpW), v, <0,
with

9" =eJR",R") +1,
eRA(W) := P 7P(rg,v), v >0,
SRB(U) = 7)7{@(7‘371))7 Uy < 03

and

2
R"(r,v) = R"(r,v) when eR"(r,v) > — (1 +2> ddir, v)),
i=1
_ 1 2.
n _ = = iR .
R"(r,v) = . (1 +)(iz:1:8 D(r, 1))) otherwise.

From here the only difference with respect to the contraction mapping analysis of
Section 4, is related to the appearance of factors R" instead of the previous R" in J.
The existence result in Lemma 3.1 is not changed by the replacements R. Arguing
similarly to the previous cases, the contribution to the a priori non fluid dynamic
estimate (3.2) due to g gives rise to an extra term | g |5 &', hence

&|SF |+ | 02F, [p<c( |0 2g, o+ | ff%gu l2 +e | F) |2 +e | Fy ).

The proof of the fluid dynamic Lemma 3.3 is essentially unchanged in the present
situation (with the R-terms included in g, ), and its estimate (3.4) follows.

We turn to the existence proof for (6.5), (6.7). In the new situation the contraction
mapping arguments from the proof of Theorem 4.2 still hold. That leads to an iso-
lated solution for (6.5), (6.7) which defines the positive solution of Corollary 6.2. The
solution lies in the same ball of contraction as the solution constructed in Section 4, so
they coincide and the solution of Section 4 is positive. That completes the proof of
Theorem 6.3 in the axially homogeneous case. The other cases for Maxwellian mo-
lecules are similarly proved.

Extending the above approach to hard forces, requires suitable growth estimates
for some terms in the asymptotic expansion ¢, like the terms v,A and vyv,.B. The
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following growth estimates are due to C.Mouhot (personal communication). Case 1
follows from

Lemma 6.4. The preimage for L of the polynomials in (I — Pg)L3, is con-
tained in L3, for 0 < s < 1, with in particular | vyv.B |< CsM~5(v).

Proof of Lemma 6.4. The proof is based on an extension of well known Grad
estimates [G] for the linearized collision operator L. Set

M; = M%a

voor Ky

= vv,B = —
g ! v v

Write K = —K; + Ky where

Kigw) = Jg(v*)M (v.)B(w, — v, O)dwdv,.

For 0 < s < 1 the pointwise estimate

| MoKig@) |< Ciy ¢ /J(Msg(v*))z

holds. Grad’s arguments also give for K, that pointwise

| M Kag) |< Cay J (M.g(0.))
-1
| UHUTB ‘Sl vf?:T | +% J(Ms?)g?)y-B)z,

where Cs; = Cis + Css. The square root integral term is finite. Namely, the

It follows that

mapping > is continuous and injective on the non-hydrodynamic space (I — PO)LIQW
intersected with lewz in which 1 compact. So by the Fredholm theory % is also

surjective there, in particular the preimage for L of the polynomials in (I — Py)L%,
is contained in L2,,. O

Using this lemma we can complete the proof of positivity in Case 1 for hard forces.
By Section 4 it is enough to make the previous y-splitting so that [ of (6.5) is of e-order
two, i.e. so that the exterior part under the splitting of ¢ is of ¢-order three.
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- K
Write in the second order asymptotic term, vyv,B = — Ue_lj)r + Tg, and treat all

other first and second order terms as well as @ as in the previous Maxwellian case.
. K 1 _
There remains Tg Choose s < - and v, so that | vyv,.B |< C;M~5(w,) := ¢! for

4
| v |< v,. Then vgv,.B << 1 for |v| < v,, and

| vgv,B P M < SZJ | M¥vgv,B |* .

[v]>v,

Hence a cutoff y, for vyv, B at v, gives an exterior term &2 Xevgv,B of e-order three.
Case 2 and 3 for hard forces are treated analogously. O
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Abstract

The problems discussed in this work concern asymptotic techniques and detailed quan-
titative properties close to global equilibrium in classical kinetic theory. The discussion is
mainly centered on a particular two-rolls model problem for the Boltzmann equation and
hard forces, with the understanding that such a program can be applied in many other
contexts for single and multi-component gases. The topics include asymptotic expansions, a
priori estimates, existence and positivity results, fluid dynamic limits, bifurcations and
stability questions.



