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ANGELO MORRO (¥)

Entropy flux and Korteweg-type constitutive equations (**)

1 - Introduction

The modelling of phase transitions through a phase field is based on the de-
pendence of the constitutive functions on the gradient of the phase, the phase
being often identified with the concentration of a constituent. Such a dependence
is shown to be compatible with thermodynamics provided we cast it in an im-
proved model of continuum such as that with microforces [1], [2], [3] or that with a
more general balance of energy [4] or that with an extra entropy flux [5], [6], [7].
The modelling of constitutive properties through gradients of the phase of sui-
table order indicates that similar topics might arise for Korteweg-type materials
and then that a new inspection of such materials might provide new insights and
new results.

So as to model capillarity and replace a jump condition at a surface,
Korteweg proposed smooth constitutive equations for stresses arising in re-
sponse to temperature and (mass) density gradients. Next he dropped the de-
pendence on the temperature gradients and arrived at a representation of the
stress, for isotropic fluids, as a linear function in the first- and second-order
density gradients. Also, Korteweg suggested that the same constitutive equa-
tion, with the density replaced by the concentration of one of the constituents of
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a mixture, should describe slow diffusion processes. This view emphasizes the
connection of the Korteweg-type models with the phase field.

Constitutive equations in which density gradients genuinely enter require that
the thermodynamic scheme be appropriately modified. Dunn and Serrin [8] pre-
serve the equation of motion and the entropy inequality in the standard forms but
modify the energy balance by allowing for an interstitial energy flux. Though the
general form of the second law, with an unknown entropy flux, is classical (see [9]),
the application to materials with internal variables [5] is of interest and opens new
questions. It seems that a deeper investigation may provide more operative con-
clusions.

The purpose of this paper is to show that constitutive equations with density
gradients may be framed within a thermodynamic scheme in which the entropy flux
is different from the heat flux over the absolute temperature. Indeed, we first de-
termine thermodynamic restrictions as necessary conditions on the constitutive
functions. Next we set up a scheme which satisfies the necessary conditions, proves
sufficient - in that satisfies the second law - and gives the constitutive equations in
terms of the chosen free energy.

2 - Preliminaries and thermodynamic scheme

Let B be a body occupying a time-dependent region Q C R®. The notation
x € Q2 denotes the position vector, in Q, relative to a chosen origin. Throughout
we consider time-dependent fields on Q x R. The symbol p denotes the mass
density, v the velocity, T the Cauchy stress tensor, b the body force (per unit
mass), e the internal energy density, ¢ the heat flux vector, L the velocity
gradient, D the symmetric part of L, » the heat supply, 6 the absolute tem-
perature, # the entropy density and y the free energy density. Also, V is the
gradient operator, d; the partial time derivative. The superposed dot denotes
the total time derivative so that for any function g(x,t), where x € Q and t € R,
we have

g=0+v-Vg
where - denotes the inner product. In addition, V- denotes the divergence and A the
Laplacian.

The balance equations for mass, momentum and energy are taken in the classical
form of continuum mechanics, namely

(2.1) p+pV-v=0,
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(2.2) po =V - T + pb,
(2.3) pe=T -D—V -q+pr.

The Cauchy stress tensor T is symmetric, T = T
The second law of thermodynamics, or entropy principle, is considered in dif-
ferential form. We regard @ as the entropy flux and state the second law as follows.
Second law of thermodynamics. The inequality

pﬁz—v-m%

must hold, at each point x € Q and time t € R, for all fields A= (p,v,T,
e,q,0,®,b,7), on 2 x R, compatible with the balance equations.

In simple models @ is shown, or is taken, to be q/6. It is then convenient
to write

q
D=-"+
9 k

and hence the entropy inequality becomes
= —v. (4 P
(2.4) pi=—-V (0+k)+ i

The vector field k, which is called the extra entropy flux, is unknown and has to
be determined so that the second law holds. There is an intrinsic non-uniqueness
of k in that a divergence-free term may be added to k without affecting the
inequality (2.4). It is usual to require that

k-n=0 at 0Q,

n being the unit normal, so that the entropy inequality for the whole region Q2 is
free from k.

Letting v = e — 65 and replacing —V - ¢ + pr through the energy equation (2.3)
we can write (2.4) as

(2.5) fp(¢/+n9)+T~Df%qu9+9V'k20.

2.1 - Constitutive equations

Motivated by the interest in Korteweg-type materials we express the constitutive
properties by choosing

I =(p,0,Vp,V0,VVp,VV0,D)
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as the set of independent variables. So, e.g.,
w =w(p,0,Vp,NV0,VVp,VV0,D)

and the like for 7', e, q, k. The occurrence of the gradients Vp, VO, VVp, VV and the
form (2.5) of the entropy inequality requires that we know the relation between
Vg, VVygand Vg, VVg for any function g on Q x R. The result is known (see [10]) for
Vg and V¢, namely

(2.6) Vg =vi—L'Vy.

We now determine the relation for VVg and VVjg.

Lemma 1. For any C? function g(x,t) the derivatives VVg and VV{ are re-
lated by

(2.7) VVg = VV§ — (VV)Vyg — 2sym[(VVg)L].

Proof. By definition
VVg = O,VVyg + © - V)VVg.
By interchanging the order of differentiation we have
AVVg =VVyg

and, in component form,

(v-V)VVyg 0 Vpg pik = Wpg.p) jk — G pVp.ic) j — Vp,jd pk

=@ V@ jk — 9pVk — 9pVp.kj — 9pkVp.j-
Since
VVog + VV(v-g) = VVyg

we obtain (2.7) where

2sym[(VVg)L] = Itk + 9 pkVp.j-

3 - Thermodynamic restrictions

To exploit the second law of thermodynamies we first evaluate i and V - k by the
chain rule and substitute in (2.5) to obtain
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— pwop — Py +m0 — pyrg, - (Vip — L' p) — pyry - (VO — L"V0)
— Pyyv,(VVp — (VV0)Vp — 2sym[(VVp)L]
— pWowp(VVO — (VV0)VO — 2sym[(VVO)L]

. —_ 1
—Pl//D'D_P'//va'VVU‘FT'D—EQ'VH
+H(k,,'Vp+k()-V9+kvp-VV/)+kw~VVH

+ kVVp -VVVp+ kyvy - VVVO+kp-VD) > 0.

The arbitrariness and linearity of #, VA, VV@ imply that the inequality holds
only if

(3.1) = =¥, Wyg =0, Yyvy = 0.
As a consequence the inequality reduces to

—pw,p — Py, - (Vp — L'Np) — pyroy,(VVp — (VVD)Vp — 2sym[(VVp)L]
. 1
~pyp-D+T-D—75q-V0+ 0k, Vp+k,- V0

+ kv/, -VVp+kygy-VVO+ kvv/, -VVVp+kygye - VVVO+kp- VD) > 0.

We now observe that the quantities D and VVVp,VVV# are arbitrary and
occur linearly. Hence the inequality holds only if

(32) Yp = 07

(3.3) kv, =0, kvvo = 0.

Now replace p with —pV - v to obtain

PP,V v+ pyrg, (VpV v + pV(V - v) + L"Vp)

+pyyy,  (VVpV v +2VpV(V -v) + pVV(V - v) + (VVO)Vp + 2sym(VVp)L)

1
+T-D~5q-V0+0k,-Vp+k,-V0+ks,-VVp+kv-VV0+kp- VD) >0.

The arbitrariness and linearity of VV(V - v) imply that
(3.4) Yyy, = 0.

Letting lo) be the traceless part of D,

D=D- %(trD)l,
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we can decompose D in the form
D :%(v 014D,

Hence the arbitrariness and linearity of V(V - v) and D imply that
(3.5) PPy, + Okgy =0

and k is independent of 5 Hence we are left with the inequality
. 1
T~L—§q . VH-FQ(ICP -Vp+ky- V9+kvp-VVp+kw -VVO) >0

where
T =T+ p*w, 1+ pVp -y, 1+ pVp @ vy,

is the stress tensor deprived of the free-energy contribution — ( pzz///,l +pVp
Wy, + pVp @ wy,). Denote by W the skew part of L so that L = D + W. Hence the
inequality becomes

T~D+T~Wféq~V6+H(k,,~Vp+kg~V0+kv,,~VVp+kw~VVO)20.

The arbitrariness of W requires that T - W = 0 which means that 7' is symmetric.
The symmetry of T and T requires that

(3.6) skw Vp @y, =0.

As a consequence, the constitutive functions y,#, T, ¢,k are compatible with the
second law of thermodynamics if and only if (3.1)-(3.6) and

(3.7) T—D—éq~V@+9(k,,-Vp+kg~V0+kvﬂ-VVerkw-VV@)Z0.

hold.

The functions T,q,k are required to satisfy the reduced dissipation in-
equality (3.7). The extra entropy flux k has to depend on V -v otherwise, by
(3.5), v is independent of Vp and the essential feature of the Korteweg-type
materials is lost.

An interesting constitutive model follows by letting

0

2
2pZIVp|~

w(p,0,Vp) =y(p,0) +a

Hence

k=—-a(V-v)Vp
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and
kv, - VVp=—a(V -v)Ap.

This implies that
2 0 2 H nd
T=—p 1//,,1+(1;|Vp| 1+a;Vp®Vp+aAp1+T

where T is subject to

T-L—%mVHZO.

4 - A model compatible with thermodynamics

The difficulty of finding constitutive equations 7', ¢,k satisfying (3.7) suggests
that we look for a different approach to the restrictions placed by the second law.
Upon an appropriate assumption on the function k we establish a model which is
compatible with the second law inequality (sufficient conditions) and meanwhile
satisfies the necessary conditions.

Preliminarily we observe that, for any vector functions h, k and scalar function g
we have

—h-Vg+0V -k=V(—gh+0k)+gV-h—k-V0.
Hence, because
1 1
gV -h—5hg V0 =047 - (éh),

we obtain the obvious proof of the following

Lemma 2. If 60k = gh then

(4.1) —h-Vg+9V-sz)gV-(éh).

Again we let the necessary conditions (3.1), (3.2) and (3.4) hold. Hence the entropy
inequality becomes

1
(4.2) —pt//p/')—pl//w«(Vp—LTVp)—FT-D—Eq‘VH—FHV~k20.

This suggests that we let
(4.3) Ok = py,p
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and apply Lemma 2, with the identifications h = py,, g = p. Upon replacing p with
—pl - L we obtain from (4.2)

1
[PPw,1 — pOv - (gy/vp)l—l—pr@t//vp—i—T]~L—5q-V(92O.

As a consequence,

(44) T = —pzl//pl + pov - (g va)l —pVpRyy,+T

where 7 is subject to
1
(4.5) T~L—5q~V020.

Again, upon the decomposition

L=D+W
and the arbitrariness and linearity of W we obtain from (4.5) that
T -W=0

whence it follows that 7 is symmetric. This in turn implies the symmetry of
Vp ® yy,, namely

(4.6) skw Vp @ yyg, =0.

Hence (4.5) becomes

(4.7 T-D—(%q-VHEO.

In conclusion, the constitutive functions v, #,T,q, k, of I', satisfying the restric-
tions (3.1), (3.2), (3.4) and (4.3), (4.4), (4.6), (4.7) are sufficient for the validity of the
second law in the form (2.4).

Compatibility with thermodynamics holds if, in addition to the other restrictions
just listed, the stress tensor is given by (4.4). This means that, owing to the diver-
gence V - (pyy,/0), a contribution

2
P

occurs in the stress tensor. This is remarkable in that it provides a stress term
originated by the temperature gradient. Qualitatively, though, this effect is not
characteristic of the occurrence of the 1/0 dependence in the divergence term.
Since y depends also on 0, even V - (pyy,)1 produces a stress contribution pro-
portional to V6.
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Remark. Assumption (4.5) satisfies the necessary condition (3.5) as it follows
by replacing p with —V - v. Also, (3.3) holds trivially in that y is independent of VV§
and VVp.

5 - Comments on Korteweg’s constitutive equation

Korteweg’s constitutive equation [11]
(5.1) T + pl = Atr D)1 + 2uD — a|Vp[*1 = fVp @ Vp + WAp)1 + SV V)p
amounts to letting
T = Mtr D)1 + 2uD
and
p =7,

By (4.6), for isotropic materials it follows that (see [1])
(5.2) vy, = wlp,0,Vp[)Vp.
Hence we have

= (p,0) + ¥(p,0,|Vp*)

where ¥ o » = w/2. As a consequence,

Vol
p =P, +¥)

is a function of p, 0 and |Vp|2. Substitution of (5.2) gives

POV - (gl//w) 1-pVp@yy,=<C1—poVp®@ Vp

where
E=p? [(wp + % + 2w‘vp|z|Vp|2) |Vp|2 — (a)g — %)Vp - VO + coAp} )

Accordingly, two qualitative features distinguish Korteweg’s equation (5.1) from
(56.3) T= —pzl//pl + & - poVpRVp+T.

First, the dependence on V4 is not involved in (5.1) whereas V# occurs in (5.3) as
V0 - Vpthrough & The VO - Vp term occurs both because of the dependence of won
(through wy) and as a consequence of k - V0 and use of Lemma 2. Secondly, in (5.3)
the dependence on VVp is only through Ap, as though ¢ = 0 in (5.1). This happens
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because  is independent of VVp and hence second-order derivatives arise only as a
consequence of V - yy,. The dissipative stress 7 may be linear in VVp provided (4.7)
holds. For instance, functions of the form

T = g IVOPYVp+ ..,  q=0o(VVp -D)VO + ...

are compatible with (4.7). However they do not seem to be motivated on the physical
ground.

6 - Conclusions

The model provided in §4 gives a class of constitutive equations, characterized by
(4.6) and (4.7) which are based on (4.5) about the extra entropy flux k. The reduced
dissipation inequality (4.7) involves the dissipative stress 7 and the heat flux g as in
the classical theory of heat-conducting and dissipative fluids. The function k is fully
determined by (4.5), is compatible with the thermodynamic restrictions (3.3) and
(3.5), and eventually no longer appears in the entropy inequality as k - V6. Owing to
the analogy with the phase-field model, these results are likely to be useful in the
modelling of phase transitions.
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Abstract

Korteweg-type constitutive equations describe smooth properties of capillarity through the
dependence on higher-order density (or deformation) gradients. Such constitutive equations
are compatible with thermodynamics provided the scheme is appropriately modified. The
purpose of the paper is to show that constitutive equations with density gradients may be
Sframed within a thermodynamic scheme tn which the entropy flux is different from the heat
flux over the absolute temperature. This is shown in two steps. First, thermodynamic re-
strictions on the constitutive functions are derived as necessary conditions placed by the
second law inequality. Next a scheme is set up which satisfies the necessary conditions, proves
sufficient - in that satisfies the second law - and gives the constitutive equations in terms of the
chosen free energy. The immediate connection with Korteweg’s equation is established.
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