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T. D. NARANG, SHAVETAMBRY TEJPAL and SANGEETA(*)

On radial continuity of farthest point map (**)

1 - Introduction

Let V be a non-empty bounded subset of a metric space (X, d). The anti metric
projection (farthest point map) is the mapping @y, which takes each element x of X
into the set Qy(x) ={v eV :d(x,v) =dx, V) =supd(x,y)} of all the farthest

points to x in V. V is called remotal (uniquely remo%/;{g if Qv (x) # I (Qy(x) contains
exactly one point) for each x € X. Qy is called lower semi-continuous (upper semi-
continuous) at x if for each open set W with Qu(x) "W # & (Qy(x) C W) there
exists a neighbourhood U of « such that Qy(y) N W # T (Qy(y) Cc W) forally € U.
If V is non-empty subset of a metric space (X, d) then nearest points and metric
projections are defined similarly (see e.g. [3]). Many results on the lower (upper)
semi-continuity of the farthest point map are available in the literature (see e.g. [1],
[8], [9]). Concerning metric projections (nearest point maps) and anti metric pro-
jections (farthest point maps) Brosowski and Deutsch [2], [3] and, Panda and

Kapoor [12] introduced and discussed in normed linear spaces some simple and
more general “radial” continuity criteria (called Outer Radial Lower, Inner Radial
Lower, Outer Radial Upper, Inner Radial Upper) which require that the restric-
tion of the mapping to certain prescribed line segments be lower semi continuous
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(Ise) or upper semi continuous (usc). In this paper, we discuss all these concepts for
the farthest point map. The underlying spaces are convex metric spaces introduced
by Takahashi [15].

2 - Notations, definitions and examples

In this section we give some notations, recall few definitions and give some ex-
amples.

Let (X, d) be a metric space and «x,y,z € X. We say that z is between « and y if
d(x,2) + d(z,y) = d(x,y). For any two points x,y of X, the set {z € X : d(x,?)
+d(z,y) = d(x,y)} is called the metric segment and is denoted by G[x, y]. The set
Glx,y, —] denotes the ray starting from x and passing through y i.e. it is the largest
line segment containing Glx,y] for which x is an extreme point. The set
Gi(x,y, —) = Glx,y, —]1\ Glx,yli.e. it is the set of all those points on the ray starting
from « passing through ¢ which do not lie between x and y.

A continuous mapping W : X x X x [0,1] — X is said to be a convex structure on
Xifforallx,y € X and 4 €[0,1]

dw, W(x,y,2) < 2d(u,x) + (1 — Dd(u,y)

holds for all # € X. A metric space (X,d) together with a convex structure is
called a convex metric space [15].

Example [15]. Let I be the unit interval [0,1] and X be the family of closed
intervals [a;,b;] such that 0<a; <b; <1. For I; =[a; b;],1; =[a;,b;] and
A0 < 4 <1), define a mapping W by W{;,1;, 4) = [Aa; + (1 — Daj, Ab; + (1 — A)b;]
and define a metric d in X by the Hausdorff distance, i.e.

it 1 = sup { | inf{lo— bl} — inf {Ja — e[} }.

A subset K of a convex metric space (X,d) is said to be convex [15] if
Wi(x,y,4) € K for all x,y € K and 4 € [0,1] i.e. G[x,y] C K for all 2,y € K.

Example [15]. The open spheres S(x,r) and the closed spheres S[x,r] in a
convex metric space (X, d) are convex.

A convex metric space (X,d) is said to satisfy Property (I) [5] (respectively
Property (I)) if for all x,y € X and 4 € [0,1], d(W(x,p,4), W(y,p, 1) < id(x,y)
(respectively d(W(x, p, 1), W(y, p, 1)) = Ad(x,y)).

Every normed linear space has Properties (I) and (I’).
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A convex metric space (X, d) is called strongly convex [10] or an M-space [6] if for
every two points x,y € X, and every r €[0,1] there exists unique point
zy, = W(x,y,r) € X such that d(x,z,) = (1 — r)d(x,y) and d(y,z,) = rd(x,y) i.e. un-
ique point z, of the metric segment Glzx, y].

Example [6]. Let (X,p) be a closed ball of the Sy, of radius p with
nr/4 < p < mr/2. Then (X, p) is an M-space. Here Sy, is the 2-dimensional spherical
space of radius . Its elements are all the ordered 3-tuples x = (1,2, x3) of real

3
numbers with > m% = 12, distance is defined for each pair of elements x, % to be the

=1 3
1=1 .

2

smallest non-negative number ay such that cos (%) =

A bounded subset K of a convex metric space (X, d) is said to have Property (SF)
[4] if xy € X and ko € Qx(xo) imply ko € Qx(W(xo, ko, 4)),0 < 4 < 1. Let K be a
bounded set in a metric space (X,d). A point ky € K satisfying d(x, ko)
= d(x, K) = sup{d(x,k) : k € K} is called a farthest point to € X and the map-
ping Qg : X — 2K the collection of all subsets of K, defined by Qx(x)
= {ko € K : d(x, ko) = 6(x,K)} is called the farthest point map or anti metric
projection. The set K is said to be

(a) remotal if for each x € X, the set Qg () is non-empty,
(b) uniquely remotal if for each x € X, the set Qx(x) consists of exactly one
point.

Examples [11] 1. Every compact set in a metric space is remotal. The set K
consisting of open unit square together with its corners in the 2-dimensional
Euclidean space R? is remotal although it is not compact.

2. Most natural examples of uniquely remotal sets are singletons. Let
X =R\ {0} with the usual metric d(x,y) = | — y| and K =[0,1]\ {0}. Then K is
uniquely remotal but is not a singleton.

3. Let (X,|.]) be the wusual infinite dimensional real Hilbert space,
K={xeX: || =1}

The farthest point map Qx : X — 2K is defined as

—X

=K,x=0.



T2 T. D. NARANG, SHAVETAMBRY TEJPAL and SANGEETA [4]

Itis well known (see e.g.[12]) that if K is the closed unit ball in a finite dimensional
normed linear space or in a locally uniformly convex Banach space then the farthest
point map is upper semi continuous. Blatter [1] showed that a bounded subset K of
Banach space X is singleton if and only if K is remotal subset of X and Q is lower
semi continuous. We now discuss some generalizations of upper and lower semi
continuity for the farthest point map.

3 - Outer Radial Upper(ORU) continuity

In this section we consider a first generalization of upper semi continuity, called
ORU-continuity.

Let G be a non-empty bounded subset of an M-space (X,d) and xp € X. The
farthest point map @) is called ORU-continuous at xy if for each gy € Q¢ (o) and each
open set W D Qg(xp), there exists a neighbourhood U of xy such that Qg (x) C W for
alle € U N G1(go, %o, —). Q¢ is called ORU-continuous if it is OR U-continuous at each
point of X .

The following lemma will be used in proving the ORU-continuity of Q¢:

Lemma 3.1. [14] If G is a bounded subset of an M-space (X,d) and
9o € Qg(wo) for xy € X then gy € Qg(xy), where x; € G1(go, %o, —).

Proof. Consider
d(x;, go) =d(x;, x0) + d(o, go)
>d(x;,x) + d(xg,g) for all g € G
>d(x,,g) for all g € G.

Therefore gy € Qg (x;).
Concerning ORU-continuity of Q¢, we have

Theorem 3.2. For a non-empty bounded subset G of an M-space (X,d), the
Sfarthest point map is ORU-continuous.

Proof. Assume that ; is not ORU-continuous at some xy € X. Then there
exists an element gy € Qg(xp) and an open set W O Qg(xg) such that for every
neighbourhood U of xy there is an « € G1(g, 49, —) satisfying Qq(x) ¢ W. Thus for a
neighbourhood U; of ay there exists a; € G1(go, ®o, —) such that Qg(x,) ¢ W. As
o € Qa(xo), by the above lemma, gy € Qg(x;). We claim that Qq(x;) C Qo).
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Let y € Qq(x;) be arbitrary. Then d(xg, G) > d(xy,y). If d(xg, G) > d(xg,y) then

d(a;, y) <d(;, x0) + d(wo, y)
<d(x,20) + (a0, G)
= d(x;, o) + d(o, go)
=d(;, 90)
=d(x;, )

ie. d(x;,y) < d(x;,G) and so y & Qg(x;), a contradiction. Therefore, J(xy, G)
= d(xg,y) i.e. y € Qg(xy). Consequently, Qg(x;) C Qalxy) C W, a contradiction and
hence @ is ORU-continuous at xy and so on X.

Remark. For normed linear spaces, Theorem 3.2 was proved by Rao and
Chandrasekaran [13].

4 - Inner Radial Upper (IRU) continuity

A second generalization of upper semi continuity, called Inner Radial Upper
(IRU) continuity [12] is:

Let V be abounded subset of a convex metric space (X, d) and xy € X. Qy is called
IRU-continuous at xy if for each vy € Qy(xp) and each open set W O Qy (), there
exists a neighborhood U of x such that Qv (x) C W foralla € U N W(vy, 29, A). Qv is
IR U-continuous if it is IRU-continuous at each point of X.

Concerning IRU-continuity of @y, we have the following:

Theorem 4.1. Let V be a non-empty bounded subset of a convex metric space
X,d) and xy € X. Consider the following statements:

(1) Qv is IRU-continuous at x.
(ii) For each vy € Qy(xy) and each & > 0 there exists a 6 > 0 such that

sup d(v, Qv (o)) <&

vEQy (v)
Sfor every x in {W(vg,x9,1) : 4 € [0,1]} with d(x,xg) < 0.
(iii) For each vy € Qy(xy) and each sequence x, in W(vy, xy, 1) with x, — xo,

sup d(v, Qy (o) — 0.

veQy ()
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(iv) For each vy € Qy(xo) and each sequence x,, in W(vy, xg, A) with x, — xo and
each sequence vy, with v, € Qy(x,), d@,, Qy(xy)) — 0,

) For each vy € Qy(xy) and each sequence x, in W(vy, x, A) with x, — xy and
each sequence v, with v, € Qy(x,) and v, — v, v € Qu(xy).

Then ()=(ii)<(ii)<Gv)=(). Moreover, if Qy(xy) is compact, (iv)=-(1) and
hence the first four statements are equivalent. If V is compact then (v)=(i) and
hence all the five statements are equivalent.

Proof. (i)=(ii) Choose vy € @y and W = {B (v%) ve Qv(xo)} > Qu (o).

By the IRU-continuity, there exists a neighborhood B(xy,d) of xy such that
Qv (x) C W for every x in B(xy, ) N {W(vy, 0, 4) : 1 € [0,1]}.

Let « € B(xg, o) N{W(vg,20,4) : 1 €[0,1]} and v € Qy(x) then there exists
v € Qy(rg) such that d(v,v) <§ and so d®,Qy(xy)) < % It follows that

sup d(v, Qy(wp)) < ¢ oe
vEQy () 2

(i)=-(@ii) Let vy € Qy(xp) and x, be a sequence in W(vy, a9, 4) with x, — ay.
Therefore, for & > 0 there exists a positive integer N such that d(x,,, x¢) < ¢ for all
n > N.

If n > N, x, € B(xy, ) N W(vg, %9, 2) and so by the hypothesis,

sup d(v,Qv(x) < ¢

vEQy (x,,)

for all » > N, which implies

sup d(v,Qv(xo)) — 0.
vEQy ()
(iii)=-(ii) Suppose (ii) does not hold i.e. there exists vy € Qy(xy) and ¢ > 0 such

that for every 6 > 0, sup d(v,Qy(xp)) > efor allx in {W(vy,x9, ) : 4 € [0, 1]} with
veQy ()
d(x, xg) < 0. Let x, be a‘sequence in {W(wg,x9,2) : 4 €[0,1]} with x,, — x9. Then

sup d(v,Qy(xg)) > ¢for allmw and so sup d(v, Qy(xy)) does not converge to 0, a
veQy () vEQy (@n)
contradiction.

(iii))=-(@1v) Let vy € Qy(xp) and x, be a sequence in W(vg,xo, ) with a,, — xg
and v, be a sequence in Qy(x,). By hypothesis, sup d@,Qy(xy)) — 0 and so
d(vy, Qv (ig)) — 0. v

(iv)=-(iii) Suppose (iii) does not hold i.e. for some vy € Qy(xy) there exists a se-
quence &, in W(vg,x9, A) with x,, — a9 such that sup d(v, Qv(xy)) does not con-
verge to 0. veQy (@)

Let v,, be a sequence in Qy(x,). So, we have sup d(v,, Qv (xy)) does not con-
vneQV(xn,)
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verge to 0. This implies d(v,,, Qv (xy)) does not converge to 0 for some v,, € Qy(x,), a
contradiction.

(iv)=(v) Let vy € Qy(xp) and x,, be a sequence in W (vy, xg, A) with x,, — xy and v,
be a sequence in Qv (x,). By hypothesis, d(v,,, Qv (x¢)) — 0 i.e. limd(v,, Qy(xy)) = 0.
This implies d(v, Qy(xg)) = 0 = v € Q,(x).

Suppose Qy(xg) is compact. To prove (iv)=-(i).

Suppose (i) does not hold i.e. there exists vy € Qy(xy) and some open set

1
W D Qy(xp) such that for every n there is an x, in {W(vg,x9,4): 1 — ” <A<1}

such that Qy(x,) N W¢ # ¢. Choose v, € Qy(x,) N W°. Then x, — xp and so
dy, Qv(xg)) — 0. Choose ¥,, € Qv (xy) such that d(v,,y,) — 0. As Qy(xy) is com-
pact, there exists a subsequence y, — %o € Qy(x). Consider

Ay, o) < dWn, Yn) + (Y, Yo)
— 0.

This implies v,, — 9. Since y¢ € Qv(xy) C W, yo € W and W is open, v, € W for
large n, a contradiction.

Suppose V is compact. To prove (v)=-(i). We show that (v)=-(iv)=-(i).

Let vy € Qv (o) and x,, be a sequence in {W(vy, o, 4) : 4 € [0,1]} with a,, — a0
and v,, be a sequence with v,, € Qv (x,,). To prove d(v,, Qy(xy)) — 0. Since Qy(x,)is a
closed subset of the compact set V, it is compact and so v,, has a subsequence v,, — v.
By hypothesis, v € Qy(x). Consider

d(vni; QV(mO)) S d(/v’ﬂ/i ’ ,U) + d(v7 QV(%.O))
— 0.

i.e. (iv) is true. Since V is compact Qv () is compact and so (iv)—(i). Hence (v)—().
For uniquely remotal sets, we have:

Theorem 4.2. For a uniquely remotal set V in a convex metric space (X,d)
satisfying Property (SF), the farthest point map Qv is IRU-continuous.

Proof. Let xy € X be arbitrary and vy € Qy(xp). Let G be an open set with
G D Qy(xy) = {vo}. Let & € {W(xp,v9,4) : 0 < 1 < 1}. Since V has Property (SF),
vy € Qv (x). As V is auniquely remotal, Qv (x) = {vo}. Let U be any neighbourhood of
xo then for all x € U N {W(xo,v9,4) : 0 < A< 1}, Qux) = {vo} C G. Hence Qy is
IRU-continuous at xy and so on X.

Remark 4.3. Since a bounded subset V satisfying property (SF) of a convex
metric space is singleton [14], the farthest point map in the above case becomes
constant and so it is not only IRU-continuous but also continuous.
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5 - Outer Radial Lower (ORL) continuity

First generalization of lower semi-continuity (Isc) is the following:

Let V be a non-empty bounded subset of an M-space (X, d) and ¥y € X. The map
Qy is said to be ORL-continuous at x if for each vy € Qy(xy) and each open set W
for which Qy(xy) "W # & there exists a neighbourhood U of xy such that
Qux) N W # & for all x € U N Gy(vy, 29, —). Qv is called ORL-continuous if it is
ORL-continuous at each point of X.

The following lemma, which was proved by Brosowski and Deutsch ([3]-Lemma
2.2) in normed linear spaces for the metric projection Py and which also holds in M-
spaces for the mapping Qy, will be used in the proof of our next theorem:

Lemma 5.1. Let V be a non-empty bounded subset of an M-space (X, d) and
xo € X then the following are equivalent:

(i) Qv is ORL-continuous at xg

(ii) for each vy,v1 € Qy(xy) and each ¢ >0 there exists a 6 >0 such that
Qv(x) N By, &) # D forall x € {z : d(z,20) < J and z € G1(vy, %9, —) }, where B(vy, &)
denotes open ball in X with centre v1 and radius e.

(iii) for each vy, v1 € Qy(xy) and every sequence z,, 1 G1(vy, Xy, —) With 2, — Xy
there exists v, € Qv (z,) such that v, — v.

Theorem 5.2. If'V is a non-empty bounded subset of an M-space (X,d) with
Property (I) such that Qy(x) is convex for all x then Qy s ORL-continuous.

Proof. Let xy € X be arbitrary. We show that Qy is ORL-continuous at xy. If
Qy(xg) = D then result trivially holds. Let vy, v; € Qv (xo) and x,, € G1(vy, %9, —) With

Ay, vo) = And(Xo,v0) and d(xy, o) = (A, — 1)d(xp,v9) Where 4, =1 +%, n € N.
Then x,, — 9. Take v, € Glvo, v1], v, = W (21, vo,%). Thenv,, — v;. We claim that
v, € Qy(xy,). Since Qy(xy) is convex, v, € Qy(xg). Also by Lemma 3.1, vy € Qy(x,,).
Now d(x,,, vo) = A,d(xg, Vo). This implies %d(mn, Vo) = d(xg, vo) and

n

1 1
Ay, vo) = d(wy, 20) +d(xo, vo) = d(y, Xo) + ;—d(%n, v0) = d(,, o) = (1— 7. ) Ay, v0).

1
Therefore M-convexity of X gives xg = W (acn, 0, /1) .

n
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For any v € V, consider

d(x,,v) <d(xy, vo)
= A d(x0,v0)

- },nd(.’)(}o, vn) as vy € QV(WO)

—}vnd<W<x’ﬂ/7/UO7~i) ) W<v17v07i>>
/L’n }"ﬂ

< Lid(acn, vl)] by Property (I)

‘n

= d(@,, v1)

ie. d(x,,v1) > d(x,,v) for all veV and so vy € Qy(x,). Also vy € Qy(x,). As
Qy(xy,) is convex, v, € Qy(x,). Therefore by Lemma 5.1, @y is ORL-continuous
at xp and so on X.

6 - Inner Radial Lower (IRL) continuity

A second generalization of lower semi continuity is IRL-continuity defined as
under.

Let V be a non-empty bounded subset of a convex metric space (X,d) and
2o € X. Qy is said to be IRL-continuous at x if for each vy € Qv () and each open
set W with Qy(xo) "W # &, there exists a neighbourhood U of xy such that
Qvx) N W #£ Jforeveryx € U N Glvy, x0]. Qv is called IRL-continuous if it is IRL-
continuous at each point of X.

The following lemma, the proof of which is similar to the one given in normed
linear spaces for the metric projection Py(see [3]) and holds for @y in convex
metric spaces will be used in the proof of our next theorem.

Lemma 6.1. Let V be a non-empty bounded subset of a convex metric space
(X,d) and xy € X then the following are equivalent:

(1) Qv is IRL-continuous at x.

(ii) for each vy,v1 € Qy(xy) and each ¢ >0 there exists a 6 > O such that
Qv(x) N By, e) # O for all x in Glvy, xo] with d(x, xy) < 0.

(iii) for each vy, v, € Qy(xy) and every sequence x, in Glvgy,xg] with x, — x,
d(wy, Qy(xy,)) — 0 1.e. there exists v, € Qy(x,) such that v, — vy.
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Using Lemma 6.1, we prove

Theorem 6.2. IfV is a non-empty bounded subset satisfying property (SF) in
a convex metric space (X, d) with Property (I') then the farthest point map is IRL-
continuous at x € X if Qy(x) is convew.

Proof. If Qy(x) = then result is trivially true. Let vy, v; € Qy(x) and
x, = W(x,v9,1 — 4,) where 0 < 4, <1 and 4, — 0. Then by the Property (SF),
v € Qu(xy,). Let v, = W(vy,v9,1 — 4,) then v, € Qy(x) as Qy(x) is convex and
v, — v1. We claim that v,, € Qy(x,). Consider

d(ﬂcn, vn) = d(W(ﬂC, Vo, 1- )~n)a W(?)l, o, 1- ;Ln))
=(1 — Ap)d(x,v1) by Property (I')
= d(xy, vo)

=0(xy, V).

Therefore v, € Qy(x,). Also v, — v; and so by Lemma 6.1, Qy is IRL-continuous
at «.

Remark 6.3. In view of Remark 4.3, the map Qy is not only IRL-continuous
but also continuous.

Acknowledgments. The authors are thankful to the referee for valuable
suggestions leading to an improvement of the paper.

References

[1] J. BLATTER, Weiteste punkte und nachste punkte, Rev. Roumaine Math. Pures
Appl. 14 (1969), 615-621.

[2] B. Brosowski and F. DEUTSCH, Some new continuity concepts for metric
projections, Bull. Amer. Math. Soc. 78 (1972), 974-978.

[3] B. Brosowskr and F. DEUTSCH, Radial continuity of set-valued metric projec-
tions, J. Approximation Theory 11 (1974), 236-253.

[4] P. GOVINDARAJULU and D. V. PA1, On f-farthest points of sets, Indian J. Pure
Appl. Math. 14 (1983), 873-882.

[5] S. ItoH, Some fixed point theorems in metric spaces, Fund. Math. 102 (1979),
109-117.

[6] R. KHALIL, Best approximation in metric spaces, Proc. Amer. Math. Soc. 103

(1988), 579-586.



[11]

(7]

(8]
(9]

[10]

[11]

[12]

[13]

[14]

[15]

B.

S.

ON RADIAL CONTINUITY OF FARTHEST POINT MAP 79

S. MorzkiN, E. G. STRAUS and F. A. VALENTINE, The number of farthest
points, Pacific J. Math. 3 (1953), 221-232.

D. NARANG, A study of farthest points, Nieuw Arch. Wisk. 25 (1977), 54-79.
D. NARANG, Nearly compact sets and the farthest point map, Indian J. Pure
Appl. Math. 9 (1978), 116-118.

D. NARANG, Strict convexity and approximation in metric spaces, Caribbean
J. Math. Comput. Sci. 8 (1998), 32-42.

D. NARANG, On farthest points in metric spaces, J. Korea Soc. Math. Educ.
Ser. B Pure Appl. Math. 9 (2002), 1-7.

B. PanDA and O. P. KAPOOR, On farthest points of sets, J. Math. Anal. Appl. 62
(1978), 345-353.

GEETHA RAO and K. R. CHANDRASEKARAN, Some radial continuity properties
of the farthest point map, Pure Appl. Math. Sci. 21 (1985), 71-74.

SANGEETA and T. D. NARANG, A note on farthest points in metric spaces, Aligarh

Bull. Math. 24 (2005), 81-85.

W. TAKAHASHI, A convexity in metric spaces and non-expansive mappings 1,

Kodai Math. Sem. Report 22 (1970), 142-149.

Abstract

Some new continuwity concepts, called Outer Radially Lower (ORL), Outer Radially
Upper (ORU) and Inner Radially Lower (IRL) for metric projection (nearest point map) and
Inner Radially Upper (IRU) for anti metric projection (farthest point map) are known in the
theory of nearest and farthest points in normed linear spaces (see e.g. B. Brosowski and F.
Deutsch [Bull. Amer. Math. Soc. 78 (1972), 974-978], B. B. Panda and O. P. Kapoor [J. Math.
Anal. Appl. 62 (1978), 345-353]). In this paper we discuss all these concepts for the farthest
point map when the underlying spaces are convex metric spaces.

& ok ok






