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MAURIZIO BADII (¥)

Periodic solutions for semilinear parabolic problems

with nonlinear dynamical boundary condition (*%)

1 - Introduction

The subject of the present paper is motivated by a semilinear parabolic problem
with time derivate in the boundary condition of the form

1.1 o — Z 8xi(al-j~(x)8x_7.u) +q@)u =f(x,t,u) in Q :=Q2 x P,
ij=1
1.2) o + Z ()0 u cos (v, ;) + (@, t,u) =0 on 2 := 0Q x P,
ij=1
1.3) w@,t+w) =ule,t) in Q, w >0,

of which we want to give a mathematical proof of existence of weak periodic solutions.
The symmetric density matrix {a; ;(x)},,.,, in the diffusion term, has as elements con-
tinuous functions defined in Q, a bounded regular set of R", n > 1 with boundary 0Q.

We represent with P := R/wZ the period interval [0, w] and with v the outward
normal vector on 9Q. Consequently, for functions definited in P, we are auto-
matically imposing the time periodicity. The physical meaning of model is the fol-
lowing: A perfect solid heat conductor €, is placed in contact with a fluid and the
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temperature within the solid at position x and at the time ¢ is designed by u(x, ). If
the boundary 0f2 is permeable to heat, then the rate at which heat flows through 0Q
is described by Zf =1 @ij(@)0y;u cos (v, ;) and c(x, ¢, u) denotes a t-periodic nonlinear
source term. The rate of accumulation of heat in the fluid is given by condition (1.2).

We emphasize that the main feature of problem (1.1)-(1.3) arises by setting a not
standard boundary condition since it also involves derivates with respect to time of
the unknown which is very natural in many mathematical model as: heat transferina
solid in contact with a moving fluid; Stefan problem; diffusion in porous media;
chemical engineering; problems arising in fluid dynamics. Problems under dyna-
mical boundary condition have received a great deal of attention in literature.

The well-posedness in some Bessel potential spaces of parabolic semilinear re-
action-diffusion problem and parabolic systems is investigate in [6],[7] using the
framework of semigroups. Again the theory of semigroups in Banach spaces is ap-
plied in [8] to prove an existence and the uniqueness result for parabolic and hy-
perbolic equations. Instead, the question of the blow-up of solutions is studied in [15]
and [6]. Uniform estimates in Holder spaces for the solutions of parabolic systems
are given in [3]. The solubility of parabolic equations with dynamical boundary
condition in Holder weighted spaces is treated in [13]. Finally, we recall [5], [9], [14]
and [2] where the interested reader can find an exhaustive list of references on re-
lated papers.

However, in all previous papers the periodic case is not studied. It is worth to
mentioning that the starting point to approach the periodicity of solutions, relies on
the next theorem 0 for maximal monotone operators, Faedo-Galerkin approxima-
tions and a suitable fixed point argument.

Theorem 0 ([1], [4], [11]). Let L be a linear closed, densely defined operator
from the reflexive Banach space V to V*, L maximal monotone and let A be a
bounded hemicontinuous monotone mapping from 'V to V*, then L + A is maximal
monotone in V x V*. Moreover, if L + A is coercive, then Range(L + A) = V™.

The outline of this work is the following. Section 2, is mainly devoted to detail the
assumptions and some definitions used along the paper; this leads to the definition of
some functional spaces. In order to establish the existence of periodic solutions, the
equation under consideration is transformed into an abstract problem to make
maximal monotone theory applicable. Therefore, in the third section, we define two
mappings L , A and show that satisfy the assumptions of theorem 0. Finally, the last
section is concerned by a fixed point argument and one shows, by means of the
Schauder fixed point theorem, the existence of weak periodic solutions for approx-
imating problems, obtained by means of the Faedo-Galerkin procedure. We derive
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an uniform energy estimate for these approximating solutions uy. The same Galerkin
method is useful to show estimates on u;; in the norm of the spaces L3(Q x P) and
L2(0Q x P). Uniform estimates, constitute the core of our development, in that
permit to establish the existence of periodic solutions for our problem, passing to the
limit on the approximating solutions .

2 - Assumptions and definitions

Concerning the periodicity of weak solutions to (1.1)-(1.3), we shall use a static
formulation which consists to look for them in some appropriate t-periodic functional
space.

Indeed, let

V.= L2(P; W (Q))

denote the space of periodic functions endowed with the equivalent norm

_ 1/2
en |y = (J | v(x, t) [* dadt + J | Vo, t) [* dedt + J | u, t) 2 dsdt)
Q Q >

where u stands for the trace of u € V. Recall that for regular domains Q, every
v € WH2(Q) has a trace in WY2(0Q) and in view of the trace Sobolev theorem,
W2(0Q)— L*(0RQ) compactly.

The topological dual of V is the space

V= LAP; WH(Q).
endowed with the ||.||, norm. The pairing of duality between V and V* shall be de-
noted by <.,.>.

The structural assumptions on data are accounted below:
Hy) ay € C(Q) and there exists a positive constant a such that

aléP< Z ai(@)&;&;, for all £ € R
ij=1
Hb) ¢ is a continuous function with

0 < 0 := min q(x);
7]

Hs) f € LA(Q x P x R) with the growth condition
| f@,t,0)|<CA+ | &)
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Hy c: 092 x P x R — Ris a Caratheodory function, with c(x, ¢, £) nondecreasing
in & € R for a.e. (x, t) € 02 x P and

| c(oe,t, &) |< Cldxe, )+ | £ )
éc(‘%a ta é) Z C3 | é ‘2 *04(907 t)a C3 >0

with d € L2(0Q x P), ¢y € L(0Q x P).
The notion of weak solution for our problem may be introduced in the following way

Definition 2.1. A function « is a weak periodic solution to (1.1)-(1.3) if hold

@ueV,u € L2(Q x P);

(b) By the trace theorem, there exists the spatial trace of  on X and has a dis-
tributional time derivate d;u belonging to L*(0Q2 x P)

and

J@tuo—dxdt + Z Jalj(ac)@cjuaxi odxdt + Jq(m)uadmdt
Q e Q
2.2)
+ J Oy adsdt + Jc(m, t,u)odsdt = Jf(ac, t,u)adxdt, Vo c V.
b x Q

Remark. If the weak periodic solution % possesses the additional regularity
u € CY(P; C*(Q)), then owing to the divergence theorem u is a classic solution.
Fixed w € L?(Q), consider the problem

2.3) o — Z O (;j(0)Opu) + q(@)u = f (2, T, w) in Q,
i,j=1
2.4) O+ 3 (@), cos (v, 27) + @, t,7) = 0 on X,
i,j=1
2.5) w(@,t + w) = u(x,t) in @, w > 0.

In agreement with definition 2.1, a function % defined in @ is called a weak per-
iodic solution of (2.3)-(2.4), if

ueV,u € LA(Q x P) with du € L2(9Q x P)
and satisfies

J@tuadacdt + Z Jaij(m)axjuﬁxi odxdt + Jq(m)uadwdt
Q el Q



[5] PERIODIC SOLUTIONS FOR SEMILINEAR PARABOLIC PROBLEMS... 61

(2.6) + J O odsdt + Jc(oc, t,u)odsdt = Jf(ac, t,wodxdt,Yo € V
x z Q

3 - Existence of periodic solutions

In this section, our main purpose is to prove the existence of weak periodic so-
lutions. This shall be done introducing two appropriate mappings, in order to for-
mulate (2.3)-(2.5) as an abstract problem to which apply theorem 0.

Let L : D — V* be a closed skew-adjoint i.e. . = —L* (integrating by parts and
using the periodicity) linear operator, defined by

< L), >= J@tua dudt + Jata & dsdt. Vo € V
Q P
on the dense set,
D:={ucV:ucL*Qx P)and du € L*(9Q2 x P)}

because C*(Q) C D is dense in V.

As a consequence of aresult in [11], Lemma 1.1, p. 313, the operator L is maximal
monotone from V to V*.

Let A : V — V* be the mapping defined by setting

n

<Au),o >:= Z Jaij(x)%uaxiadacdt + Jq(m)ua dxdt
W1 Q
+ J c(x,t,wodsdt, Yo e€V.
b
The next proposition concerns with the properties of the latter operator.
Proposition 3.1. If H))—H,) are fulfilled, then A is:
(i) hemicontinuous;

(ii) monotone;
(iii) coercive.

Proof. (@) Applying the Holder inequality one has
|< A(u),o >|< ﬁ(zzjzl | Oyjtt || Do | doedt) + M [ | u || o | dedt)
Q

Q
+O([ | dG,t) || & | dsdt+ [ |7 | Gdsdt)
X P

< BIVullag + Mlull2q) + Clldl 2 + Cllullz2s)llally
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< C(|dll sy + lullDllolly

(M := maxg q(x) and f := maxg | a;;(x) |),

from which one obtains
JA@, < Cldl| 2, + lllly).

At this point, the hemicontinuity assertion is ensured by [10], Theorems 2.1 and 2.3.
(i) < A(ur) — Auz), ur — uz >

= >t =1 | @) (1 — u2)d, (w1 — up) ddt
Q

+ [ q@)(uy — ug)® dudt
Q

+ [ (cla, t, 1) — (e, t, u2)) (U1 — uz)dsdt > 0.
P

(i) < A(w),u >= "7 i1 J @i (@)0pud, u dadt
El Q 1

+ [ qeyu? dadt + [ c(e,t, wyudsdt
Q 2
2 ‘1||V”H%2(Q) + 5”“”%2@) + CSH@VL”%Z(Z) - g ca(w, t)dsdt

> C'|lull}, — [ eale, tydsd,
z
hence

| calee, t)dsdt

<A),u > y
ST > Oy 2

l[eelly,

The proof is complete. W

5 — 400, as |jully — +oo.
l[eelly
Besides, let G € V* denote a linear functional defined by

<G,0>= Jf(ac, t,wyodxdt, Vo € V
Q

then, we can rewrite problem (2.6) in an abstract form like

3.1 Lu+Au = G.

A such setting makes possible to apply the methods of the functional analysis.

Theorem 3.2. If Hy)—H,) hold, problem (3.1) has a unique weak periodic

solution.

Proof. The existence of weak periodic solutions is a consequence of theorem 0,

while the uniqueness descends from the strict monotonicity. H
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Next, we shall establish some energy estimates through the Faedo-Galerkin
method. Let {s;}, be an orthonormal base of the space W12(2), we turn our interest
to the finite-dimensional problem

Jamksh dx + Z Jaij(x)%ukaxish dx + Jq(w)uksh dx
ij=1
3.2) e e ¢
+ J Osy.Sy, ds + J c(ue, t, u)sy, ds = Jf(x,t,w)sh du,
90 90 Q

whose solution wu(x,t) := 22:1 yr()sy(x) is called a periodic Faedo-Galerkin ap-
proximation solution of u(x,t) with the time periodic functions y;,(t) satisfying

250+ Y [ a0y si0n51 da + [a(@) do)
Bi=lg o
k

= J fe,t,w)s), de— J cle,t, Y g5y @)5, ds, h=1,2, .k.

2 e h=1

Multiplying (3.2) by ¥;,(t), integrating the resulting relation over (0, w) and summing
forh=1,2,....k, we get

Jukatuk dadt + Z Jaij(x)awjukaxiuk dadt + Jq(x)u,% dadt

Q WG Q
3.3

+Jc(9c,t, )y, dsdt = Jf(ac,t, w)uy, dadt.
X Q

By the periodicity of uy, the first term of the left side in (3.3)

Jukatuk dxdt =0,
Q

by which

Z Jaly(ac)axjukaxiuk dudt + Jq(x)ui dadt
W=l | Q

+ Jc(ac,t, W)Uy, dsdt = Jf(ﬁé‘,t, wyuy, dadt.
z Q
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Hence,

aJ | Va2 dxdt+5j|uk |? dudt
Q Q

+ng | 2 [? dsdt — Jc4(9c,t)dsdt < %J | £, t,w) [* dadt +%J | uy |? doedt,
z z Q Q

thus,

min((a—%) o, Cg) (J | V. |2 dacdt—i—J | g P dxdt+J | g P dsdt)
Q Q 2

< % J | F,t0) P dxdt+J | cale ) | dsdt.
Q 2

This last inequality provides the energy estimate

(3.4) J | Yy, | deedt + J | uy |? deedt +J |y |? dsdt < L
Q Q z

where with L > 0, we denote various constants independent of k.
Now, we seek estimates of wu, % in L2(Q x P), respectively in L2(0Q x P). To
this aim, we consider the problem

Jatuksh dx + Z Jaij(x)a%ukam sy, dx + Jq(x)uksh dx
Q hi=lg o

3.5)
+ J Oyusy, ds + J c(ue, t, u)s), ds = Jf(x,t,w)sh da.

0Q oQ Q

Multiplying (3.5) by ¥, (t) and summing for / one obtains

J | Dy, |2 dee + Z Jazj(x)(axjuk)at(axiuk) da + J(I(%)%kat%k dx

2 Li=lg Q

3.6)
+ J | Oyiye 2 ds + J c(e, t, )0y, ds = Jf(x,t, w)Ouy, du.

0Q 0Q Q

Integrating over (0, w), using Hy), the periodicity and the Young inequality, we
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infer that

3.7 J | Dyuy, |? deedt + J | Oy, |? dsdt
Q x

2

< %J | d(x,t) |* dsdt + eJ | Oyt |2 dsdt
X 2z

2 2 2
+C—J . 2 dsdt+sj | Dy, | dwdt—i—c Q] +C—J | w [* daedt.
2¢ 2¢ 2¢

z Q Q

Concluding, one has
3.9 J | O 2 davdt + J | Oy, 2 dsdt < L.
Q >
Owing to (3.4) and (3.8), we deduce that u;, is bounded in D, namely
llukllp < C,Vk € N.

Passing to subsequence, if necessary still denoted by u;, we obtain

u, — uin D
Vauy, — Vau in LA(Q)
Ay — Opu in L2(Q x P)

Oy, — Oy in LA(0Q x P).

A result of [11], Theorem 5.1, guarantees that the sequence uy, is precompact in
L2(Q) so that

ur — u in L*(Q) and a.e. in Q.
According to a trace theorem (see [12], Theorem 3.4.1) we also have

w, — w in L*(P; L2(0R)).

4 - Fixed Points

In order to find the solutions to (1.1)-(1.3), we employ a fixed point argument
based on the Schauder fixed point theorem. To this end, we define the mapping

®: LAQ) — LAQ)
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by setting

D(w) =u
where u is the unique solution corrisponding to w, of (2.3)-(2.5). The mapping @ is
well-defined and one has

Proposition 4.1. The mapping ® is continuous in L*(Q).

Proof. Let w; be a sequence of L*(Q) such that w;, — w strongly in L?(Q)
proceeding as in section 3, we infer that @ is continuous since u; = @(wy,) converges
strongly to u = ®(w) in L2(Q). W

Besides,

Lemma 4.2. There exists a constant B > 0 such that

)| < B, Y € L*(@Q).

Proof. The result follows from (3.5) passing to the limit on . H

Since ®(LA(Q)) C D, the compact embedding of D in L?*(Q) gives us the com-
pacteness of @ from L?(Q) into itself.
We close the section, stating the main result of the paper

Theorem 4.3. If Hy)—Hy) are fulfilled, problem (1.1)-(1.3) admits weak per-
1odic solutions.

Proof. The above arguments show that the mapping @ is both continuous and
compact. By Schauder’s fixed point theorem, @ has a fixed point and we thus have a
weak periodic solution for our problem with a dynamic boundary condition. This
completes the proof of the theorem. W
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Abstract

We study the existence of weak periodic solutions for semilinear parabolic problems with
a semilinear dynamical boundary condition. Methods to investigate the periodicity utilize
the functional frame of some results on maximal monotone operators and the Schauder fixed

point theorem.






