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A variant of the pinwheel tiling (**)

0 - Introduction

Pinwheel tiling is the name that C. Radin [8] gave to a certain tesselation of
the plane given by John Conway. This tiling has the particular feature that the
tiles are rotated in an infinite number of ways. In [3] C. Bandt gave a general
way to construct families of self-similar sets (usually fractal) which can be used
to tile R", without the necessity of checking the so called open set condition. In
some sense, the underlying structure of Bandt’s construction is the existence of a
periodic tiling. This was later extended by Gelbrich, see [4],[5]. We show in [9] a
way to generate graph-directed sets, usually fractal, with tiling properties where
the underlying structure may be a non-periodic tiling. The pinwheel tiling does
not fulfill the hypotheses of the theorems of [9]. Nevertheless in the present
paper we show that one may generate other nice tiles (using Conway’s tessela-
tion as the underlying structure) which tile the plane in the same sense as the
pinwheel tiling does i.e. the tiles appear rotated in an infinite number of ways.
Also our fractal tiles are generated as a graph-directed iterated function system
but they seem to be not disk-like. It will be clear from the context and the
conclusions that many other fractal tiles may be constructed by modifying our
procedure.

(*) Depto. e Instituto de Matematica, Universidad Nacional del Sur, Av. Alem 1253, (8000)
Bahia Blanca, Argentina; e-mail: papanzone@infovia.com.ar

(**) Received July 20™ 2005 and in revised form November 8% 2005. AMS classification
28 A 80, 52 C 20.
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1 - Definitions and results

A tiling is a family of measurable sets T}, i = 1,2, 3, ... of R? such that:

a) U; T; = R? and Area(T; N T;) =0 if i #j where Area(S) is the Lebesgue
measure of a set S of R?,

b) each T; coincides after a rigid motion (orientation-preserving euclidean iso-
metry) of the plane with some K;, 7 = 1, ...,7 (so we have only a finite family of dif-
ferent tiles).

The pinwheel tiling is generated by two tiles: the triangles K, 1 = 1,2 with Kj
obtained from K] by reflection. Triangle K] is the right angle triangle ABC of figure
2 whose sides have lengh 1, 1/v/5, 2/1/5. We recall Conway’s tesselation and refer
to [8] for details. Take the triangle ABC and dissect into five equal triangles K, K,,
K, =DEF, K, K, as it is shown in figure 2 (call this the dissection procedure) and
send the points D, E, F to points A, B, C by an expansion, that is, a map
¢~ 1(2) = lexp(i0)z + 2o with A = /5, 0 real. For K, the dissection procedure is just
the reflection of figure 2. Now apply the dissection procedure to the five remaining
triangles and then apply again the same expansion. If one repeats this procedure ad
infinitum, we obtain Conway’s tiling. One must notice that there exist triangles ro-
tated in an angle n6 for any » natural number. Because 0 = 27a where « is an ir-
rational number, the triangles are rotated in an infinite number of ways, see [8].

By a contraction (respectively reversing contraction) we mean a map
Aexp(i0)z + z¢ (respectively Lexp(i0)z + zo) with 0<A < 1, 0 real.

We want to give an ad-hoc construction of a non-periodic tiling of the plane by
compact sets K; with non void interior, ¢ = 1, ..., 40. We recall that a periodic tiling is
one which has in its symmetry group at least two translations in non-parallel di-
rections. The sets K; have the property of being generated uniquely by a transitive
graph-directed iterated function system (see [1], [7]). More precisely

Theorem. There exists a non-periodic tiling of the plane given by sets K,
1=1,...,40 where K;, 1 =1, ..., 20 are the unique compact sets determined by the
equations

Ky = 1(K2) Un(K3) U p(K1) U x(Ky) Uw(Ks)
Ko = w(Kg) Uv(K7) U p(Kg) U x(Kg) U w(Kio)
K3 = ©(K11) Un(K3) U p(K12) U y(K13) U w(K14)

Ky = o(K15) Un(K7) U (K1) U (Kg) Uw(Kie)
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K5 = w(Ki7) U v(Kq) U p(Ks) U 7(K9) U y(Kse)
Ke = 0(Ki5) U v(K7) U (K1) U 2(Kq) U p(Kqg)
K7 = 1(Ki0) U o(K3) U 9(K1) U 2(Ky) Uy (Kyy)
Kg = 1(K11) U o(K3) U p(K1) U y(Ky) Uy (K5)
Ko = o(Kig) U v(Kr) U (K1) U 2(Kq) U w(Kie)
Kiyp = o(Kq) U v(K7) U p(Ks) U 7(Kg) U w(Kqo)
Ky = o(Ki7) U v(K7) U (Ks) U 2(Kg) U w(Kqo)
Kz = 1(K10) U o(K3) U (K1) U y(Ky) Uy (K5)
K3 = 1(K10) U 0(K3) U p(K7) U y(Ky) Uy (Kig)
K4 = o(Kq) U n(Kr) U p(Ks) U 7(Kg) U w(Kie)
Ki5 = o(Kz20) U v(K7) U (K1) U 2(Kg) U p(Kqo)
K16 = 1(K16) U 0(K3) U p(Kg) U y(Ky) U y(K14)
K7 = o(Kig) U v(Kq) U (K1) U 7(Ky) U w(Kq)
Kig = 1(K11) U o(K3) U p(K1) U g (Ky) Uy (K1)
Ky = 1(Ki6) U 0(K3) U 9(Kg) U y(Kg) Uy (Kig)

Koy = 1(K3) Un(K3) U p(Kq) U x(Ky) U w(K1g)

where t,v, 0, x,w,w are the contractions (or reversing contractions) that send the
triangle ABC to the triangles K;, K,, K,, K,, K,,, K,, shown in figure 2. The sets K;,
1 =21, ...,40 are obtained reflecting K;, 1 = 1, ..., 20.

In the tiling the sets T corresponding to any fixed tile K;, are rotated in an
mfinite number of ways.

The sets K;, 1 =1, ..., 20 are shown in figure 1.

Proof. Conway’s tiling has sixteen types of vertex neighbourhoods as shown in
figure 3. This can be verified applying the dissection procedure to each triangle in a
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Fig. 1

vertex neighbourhood, obtaining a configuration of triangles which has as vertex
neighbourhood some of the sixteen types of figure 3.

By construction the largest side of a triangle in Conway’s tiling belongs to two
triangles of the tiling and they are in contact in the ways a), b) shown in figure 3 or a
reflection of a). We construct our tiling in the following way.

STEP 1. We ’paint’ each triangle T”; of Conway’s tiling (which after a rigid motion
coincides with K;, j =1,2) with a color .
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STEP 2. To each triangle 7" we apply the dissection procedure obtaining five equal
triangles TQJ j=1,...,5, where T;l is the triangle touching the vertex with smallest
angle of T";. We paint these triangles with the following rule: if in the tiling of the plane
by the triangles T}, ¢ = 1,2, ... the triangle T} touches T in the way shown in figure 3
a) (or a reflection of figure 3 a) then we assign to Téo, i 7 =1,23,4,5the color iy and to
Tél.,j’ 7 =1,2,3,4,5the color i; (that is we keep the color); otherwise if T;O touches Tgl
asin figure 3 b) then we assign to the triangle Tl’-0 1 the color iy, to Tgl 1 the color ig, to the
triangles T} ;.j = 2,3,4, 5the color i and to the triangles T} ;,j = 2,3, 4, 5 the color i;.

It is easy to see that this rule assigns to each triangle 77 ; one and only one color.
subdivide this triangle into five smaller triangles Tglwinih j j=1,...,5 and use the
procedure of step 2 to paint them.

The reader should notice that if we define C;(j) as the set painted with a color 7 in
STEP j then Area(C;(})) = Area(C;(k)) = Area(C(j)) for any i, 7, k.

Also it is easy to see that for fixed ¢ the sets C;(j) tend in the Hausdorff metric
to a compact set T; as j tends to infinity.
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Fig. 3

To prove that 7} is a tiling of the plane we first prove U; T; = R

In fact, for fixed j the sets C;(), 1 =1,2,3, ... form a tiling of the plane and
by a limit argument 7;, ¢ =1,2 ... cover the plane. By the Baire Category
theorem at least one T, has non void interior. Also by the area property of
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Ci(4), the T; must have positive Lebesgue measure. In fact, using Fatou’s
lemma or the regularity of Lebesgue measure we conclude that 1/5<C;()
< Area(T;).

Next we shall see that, each T; is, after a rigid motion, equal to some K;,
1=1,...,40 where the K;, 1 =1, ...,20 are generated by (1) and K;, 1 =21, ...,40
are the reflections of K;, 1=1,...,20. As (1) is a transitive graph-directed
iterated function system it will follow that all the 7; have non void interior,
see [1].

To prove the above assertion one notices that the ‘shape’ of T; depends by
construction on the triangles T; whose distance to 7 is not more than a
certain fixed number (a patch around 7%). As we have only sixteen vertex
neighbourhoods the number of such patches is finite and so the number of
'shapes’ of the T is finite i.e. we have only a finite number of tiles K;. Let P;
be the patch corresponding to triangle 7). Reordering, if necessary, we may
think that the P;, i =1,...,n are different and any other patch P]’- is after
rigid motion equal to some of them. We sketch the argument for 7. Recall
that the triangle 7T is painted with color 1. Take all indexes i,;j (corre-
sponding to STEP 2) such that T1’ j is painted with color 1. Each triangle T;,j
has a patch (in its own size) which is, after some expansion, equal to a patch
Pj, corresponding to the triangle 7). This implies that 77 = Uy w(T%), where
v (2) is the unique contraction such that v, (T}) = Tg, e Basically, it is in this
way that system (1) is obtained.

To carry out this general idea in order to obtain (1) we proceed as follows.

Fix a triangle as ABC. It is not difficult to prove that its patch contains only those
triangles (of the same size as ABC) touching vertex A (the most acute angle) and B
(right angle).

From figure 3 it is seen that there are sixteen types of vertex neighbourhoods
for the vertex of type A (the most acute angle) which we call a, b, ¢, d, e, f, g, h, 1, J,
k,l, m, n, o, p and seven types of vertex neighbourhoods for the vertex of type B
(right angle), called a, b, c,d,e,f,g. See figure 4.

Some observations are in order. First recall that the hypotenuse of a triangle in
Conway’s tiling always touches another hypotenuse i.e. there are no vertexes of
triangles on it.

Second after subdividing the triangle ABC of figure 2 the only triangle which may
not keep its color is the triangle K. Also for such a subtriangle not to keep its color it
is necessary that the adyacent angle of the triangle touching the hypotenuse should
be also an acute angle as A. In figure 4 we have painted in dark the triangles which
constitute a ’barrier’ for the change of color i.e. the patch may not contain the tri-
angles beyond them.
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Precisely, one can consider a, g, &, as the same patch for the vertex A and also
1,¢,f as the same patch (again for the vertex A). So we are really left with 11 types of
vertex neighbourhoods for the vertex of type A. Let us write ab for that config-
uration of triangles such that the acute vertex is of type a and its right angle vertex is
of type b. Of the possible 11.7=77 combinations, many do not exist due to over-
lappings (as for example dg or ac) and others like ma do not exist because a right
angle in a vertex would appear in a nonexisitng combination with other non-right
angles. So an easy check shows that only the 25 types of patches shown in figure 5 are
possible. By subdividing the patch ke one sees that at the boundary of the triangle
this is as the patch kf and so generates the same tile. The same happens with the
pairs bf and be, ee and ef, nf and ne. A detailed inspection shows that the patch nc
does not exist. In fact, the colored triangle in nc could only be obtained in Conway’s
tiling as K, by the dissection procedure of a ’big’ triangle K a reflection of ABC of
figure 2. But then the vertex neighbourhood at the right angle of K is none of those
shown in figure 3. Now let us observe that the remaining 20 configurations of figure 5
(and their reflected) do really appear. Figure 5 also shows correspondence between
patches P} and tiles K.

From this (1) is obtained. For example: figure 6 shows the configuration ab, where
our main triangle is shadowed. We have applied the dissection and for
K. K, K, K, K, corresponds the patches P}, Ps, P}, Py, P} respectively, giving that

Kz = ©(Ki10) U v(K3) U p(K1) U x(Kq) Uy (K5).
One easily checks that the graph directed system (1) is transitive (see [1]) i.e.

iteration of (1) gives that any set K; contains a contraction of any set K;,j =1, ..., 40.
Therefore K; has non void interior.
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Finally we prove that Avea(T; N Tj) = 0if i # j.
5

If one writes (1) as K; = U ¢1(K;), 5 = 1,...,20, where ¢.(2) is 1(2), 0(2), v(z), p(2),
2(2) or w(z) then i=1

5 .
2) Area(K)< ) Area(@(K;))
i=1
forj=1,...,20.
If Area(K;) = max; Area(K;), then because of (2) and the transitivity of (1), we
have Area(K;) = Area(K;), for all i. Therefore in (2) the equality sign holds and

3) Area(gbi(Kji) N qbin(ij)) =0, for m #£1.

In particular, the decomposition of the subtile generated by the triangle DEF in
five contractions Kj,, ..., Kj; verifies (3). If we continue this decomposition until step
N, N great enough, and apply the similarity o~ ™+ (p the contraction in (1) sending
ABC to DEF) we reach 5V*! tiles T},. For them it holds that Area(T; N T;) =0.As
N — oo this holds for all ¢, j.

Fig. 6

Remark 1. We have painted the triangles using a certain procedure. This, of
course could be modified, and certainly other nice sets could be obtained. But other
procedures seem to increase the number of tiles.
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Remark 2. Some of the above tiles could be used to give periodic tilings of the
plane as the figure 7 shows (this is the tile K7 and its reflected tile). This is due to the
fact that a periodic tiling of the plane is obtained with the patches ag and its re-
flected.

Fig. 7

C. Radin proved in [8] the following striking property: one can impose in the
original triangles of the pinwheel tiling certain matching conditions so that any tiling
with these tiles one must have the triangles rotated in an infinite number of ways
(because of K7 our tiles do not have this property). Radin needed a lot of different
copies of the prototiles to implement his matching rules.

Acknowledgments. Iwishtothank the referee for his useful comments which
helped us to clarify this note.
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Abstract

Using the structure of the pinwheel tiling we give an ad-hoc construction of a fractal finite
Sfamily of tiles which tile the plane in a non-periodic way and appear rotated in an infinite
number of ways, as the pinwheel does. Our tiles are generated by a graph-divected iterated
Sfunction system. It will be clear from the context that many other constructions of such tilings
are possible.






