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Introduction

The main subject of this work concerns the numerical solution of nonlinear kinetic
equation of the form

(1) %‘]:‘F'Uv%-f:%Q(f,f), .%'GRd‘”, DERdvv d%‘7dv:172’37

where f' = f(x, v, t) is a nonnegative function, ¢ > 0is a parameter related to the mean
free path between particles and Q( f; f) is a (nonlinear) operator. The most well-known
example is represented by the Boltzmann equation of rarefied gas dynamics [30], [31].
Besides other classical examples, like the Landau equation of plasma physics [77],
kinetic equations play an important role in modelling granular gases [12], charged
particles in semiconductors [84], neutron transport [71] and quantum gases [3], [83].
More recently applications of kinetic equations have been considered for car traffic
flows [74], chemotactical movements [34], tumor immune cells competition [8], coa-
gulation-fragmentation processes [44], population dynamics [41], market economies
[36], supply chains [2] and many other. For a recent introduction to the Boltzmann
equation and related kinetic equations we refer the reader to [39], [129].

Although the scope of our insights is wider, in this paper we will focus mainly on
the classical Boltzmann equation. This is motivated not only by its relevance for
applications but also because it contains all major difficulties present in other kinetic
models. In other words it represents the most challenging case for the development
of numerical schemes.

Approximate methods of solution for the Boltzmann equation have a long history
tracing back to D. Hilbert, S. Chapmann and D. Enskog [30] at the beginning of the
last century. The mathematical difficulties related to the Boltzmann equation make
it extremely difficult, if not impossible, the determination of analytic solutions in
most physically relevant situations. Only in recent years, starting in the 70s with the
pioneering works by A. Chorin [35] and G. Sod [122], the problem has been tackled
numerically with particular care to accuracy and computational cost. Even nowadays
the deterministic numerical solution of the Boltzmann equation still represents a
challenge for scientific computing.

Most of the difficulties are due to the multidimensional structure of the collisional
integral, since the integration runs on a highly-dimensional unflat manifold. In ad-
dition the numerical integration requires great care since the collision integral is at
the basis of the macroscopic properties of the equation. Further difficulties are re-
presented by the presence of stiffness, like the case of small mean free path [51] or
the case of large velocities [46].
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For such reasons realistic numerical simulations are based on Monte-Carlo
techniques. The most famous examples are the Direct Simulation Monte-Carlo
(DSMC) methods by Bird [9] and by Nanbu [92]. These methods guarantee effi-
ciency and preservation of the main physical properties. However, avoiding statis-
tical fluctuations in the results becomes extremely expensive in presence of non-
stationary flows or close to continuum regimes.

In some recently developed Monte Carlo methods, a different approach is taken
with the goal of constructing simple and efficient numerical methods for the solution
of the Boltzmann equation in regions with a large variation in the mean free path
[104], [105], [112], [114], [100]. These algorithms are based on a suitable time dis-
cretization of the Boltzmann equation, first introduced in [51].

Among deterministic approximations, perhaps the most popular method is re-
presented by the so called Discrete Velocity Models (DVM) of the Boltzmann
equation. These methods [85], [121], [13], [21], [97] are based on a cartesian grid in
velocity and on a discrete collision mechanism on the points of the grid that preserves
the main physical properties. Unfortunately DVM are not competitive with Monte
Carlo methods in terms of computational cost (typically O(n%*1/4) where n is the
total number of discretization parameters in velocity) and their accuracy seems to be
at most first order in velocity [95], [96], [97]. Fast algorithms for DVM models have
been recently proposed in [90].

Another important class of numerical methods is based on the use of spectral
techniques in the velocity space. The methods were first derived in [102], inspired by
previous works on the use of Fourier transform techniques (see [11] for instance).
The numerical method is based on approximating the distribution function by a
periodic function in velocity space, and on its representation by Fourier series. The
resulting scheme can be evaluated with a computational cost of O(r?), which is lower
than that of DVM.

The method was further developed in [106], [107] where evolution equations for
the Fourier modes were explicitly derived and spectral accuracy of the method was
proved. Strictly speaking these methods are not conservative, since they preserve
mass, whereas momentum and energy are approximated with spectral accuracy.
This trade off between accuracy and conservations seems to be an unavoidable
compromise in the development of numerical schemes for the Boltzmann equation.

Recently in [89], [88], [45], using a suitable representation of the collision op-
erator, the computational cost of spectral methods has been reduced from O(n?) to
O(n log, 1) without loosing the spectral accuracy thus making the methods compe-
titive with Monte Carlo. These fast algorithms are restricted to a certain class of
particle interactions including pseudo-Maxwell molecules (for d, = 2) and hard
spheres (for d, = 3).
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We recall here that the spectral method has been applied also to non homo-
geneous situations [48], to the Landau equation [46], [109], where fast algo-
rithms can be readily derived, and to the case of granular gases [91], [47]. Finally
let us mention that A. Bobylev and S. Rjasanow [14], [15] have also constructed
fast algorithms based on a Fourier transform approximation of the distribution
function.

Numerical concerns

We can summarize the main different numerical difficulties and requirements
specific to the approximation of kinetic equations as follows

e Physical conservation properties, positivity and entropy inequality are very
important since they characterize the steady states. Methods that do not maintain
such properties need special attention in practical applications.

e The operator Q(f, f) may contain an highly dimensional integral in velocity
space. In such cases fast solvers are essential to avoid excessive computational cost.
Otherwise full realistic 3D-3D simulations would be impossible even with today
faster computers.

e The significant velocity range may vary strongly with space position (steady
states may not be compactly supported in velocity space). Thus methods that use a
finite velocity range require a great care and may be inadequate in some circum-
stances.

e Stiffness of the problem for small mean free paths and/or large velocities. Stiff
solvers for small mean free path problems may be hard to use when we have to invert
a large nonlinear system. Operator splitting may loose accuracy in such cases.

e Schemes must be capable to deal with boundary conditions in compli-
cated geometries and with shocks without introducing excessive numerical
dissipation.

In this work we review some of the main results in this field both from a
deterministic as well as from a probabilistic viewpoint. In both settings after a
presentation of classical methods like diserete velocity modelling and direct
simulation Monte Carlo, the emphasis is addressed to spectral methods and
time relaxed Monte Carlo methods. Besides the algorithmic aspects and the
efficiency of the methods, considerations on stability, accuracy and consistency
of the various schemes are reported. Among other methods, we will not discuss
in this paper finite differences methods [94], [124], stochastic weighted particle
methods [118], [119], majorant frequency schemes [67] and hybrid methods
[99], [100].
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ParTI
Deterministic methods

1 - The Boltzmann equation

1.1 - The model

The model is characterized by a density function f(x,v,t) describing the time
evolution of a monoatomic rarefied gas of particles which move with velocity v € R® in
the positionx € Q C R® at time ¢ > 0 which satisfies the Boltzmann equation [30], [31]

of

@ L 0V =1 QU

The parameter ¢ > 0 is called Knudsen number and is proportional to the mean free
path between collisions. The bilinear collision operator Q(f, f) which describes the
binary collisions of the particles acts over the velocity variable only

3) Q@) = J jB(v, vo )L f) £ — F@) Fw)] deodo..

R3 SZ

In the above expression,  is a unit vector of the sphere S% and (v/, v) represent
the collisional velocities associated with (v, v,). The collisional velocities satisfy mi-
croscopic momentum and energy conservation

4) Vvl =vtu, PP =P+

The above system of algebraic equations has the following parametrized solution

1 1
(5) v’zé(v—s—v*—klv—v*lw), v;:é(v+v*—|v—v*|w)
where v — v, is the relative velocity.
The collision kernel B(v, v., w) is a nonnegative function which characterizes the
details of the binary interactions and depends only on |v — v,.| and the scattering
angle 0 between relative velocities v — v, and v — v, = |[v — v, |®

w—v)
cosl) = ——————
v — s
The kernel has the from
(6) B, v,,w) = |v — v.|o(jv — v.]|, cos 0),

where the function o is the scattering cross-section.
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Fig. 1. — The collision sphere

Example 1.

e Inthehard sphere model the particles are assumed to be ideally elastic spheres
of diameter d > 0 and thus
d? da?
(7 a(|v—v*|,cos0)zz, B(v,v*,w):I|v—v*|,

since the total cross section is nd? = 4n(d?/4).
e In the case of inverse k-th power forces between particles, the kernel has the
form

(8)  a(Jv — .|, cos ) = b,(cosO)|v — ’v*|“71, B, v,,w) = by(cosO)|v — v,|",

with a = (k —5)/(k — 1). For k > 5 we have hard potentials, for k < 5 we have soft

potentials.
e The special situation k = 5 gives the Maxellian model with

(9) B, v.,w) = by(cos ).

o Fornumerical purposes, a widely used model is the Variable Hard Sphere (VHS)
model, corresponding to b,(cos 0) = C,, where C, is a positive constant, and hence

(10) o([v —v,],co80) = Cylv —v.|° 7, B, v,,w) = Cylv —v.|".
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The collision integral Q(f, f) can be written in different equivalent forms, ac-
cording to the parametrization used for the collisional velocities. Using the
identity

(11) J - 1)+ ¢n(u - n)) dn = |4ﬁ| J ¢<u —2|%a)) do

obtained by the transformation w =e —2(e - n) ,n, we get the frequently used
form

(12) QUL )W) = J jéw,m,w)[f(v')f(v;) @) fw)ldwdy,
R? %

with

(13) V=v—((v—2v) 0o, v,=v,+ (V-0 0o,

and

(14) B, v,,w) = 2|v —v,|| cos Ola(jv — v,|, 1 —2|cos b))

The hard sphere case corresponds to

~ 2
(15) B, v,,m) = % |[v — v, cos 6],

whereas the Maxwellian molecules case gives

(16) B(,v,,w) = 2| cos 0] by( cos 0).

Remark 1. For the Maxwellian case the collision kernel B(v,v,, ) is in-
dependent of the relative velocity. This case has been widely studied theoretically,
m particular exact analytic solutions can be found in the space homogeneous case
where | = f(v,t) [10].

A simplified one-dimensional space homogeneous Maxwell model is given by
the Kac equation [72]. It reads

2n
0 1
(17) a—fz - J J S [F@) @) ~ @) fo. )1 d0 b,
RO

where the collisional velocities are characterized by rotations in the collisional
plane

(18) v, =vcosh — v, sinf, v, =wvsinb+ v, cosb.

For this model we have only microscopic conservation of energy (v')* + )
2 .2
=v* + 05
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(v,v',)

(v,v,)

S

Fig. 2. — Collisions in Kac’s model

1.2 - Physical properties

During the evolution process, the collision operator preserves mass, momentum
and energy, i.e.,

J QUEN WA =0, ) = 10", 0%, 77, o,

R?

and in addition it satisfies Boltzmann’s well-known H-theorem

J QU In (f@) dv < 0.

R

The above properties are a consequence of the following identity that can be easily
proved for any test function ¢(v)

| acrnswdo =1 | [Bo.o.olrs —08 +6 - - 6. 1dodv. dv
R? R® s?

where we have omitted the explicit dependence from v,v,,v', v, to simplify the ex-
pression.
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In order to prove this identity we used the micro-reversibility property B(v, v, ®)
= B(v,,v, ®) and the fact that the Jacobian of the transformation (v,v,) < (v, v)) is
equal to 1.

A function ¢ such that

¢ + ¢(.) — p(v) — p(v,) =0

is called a collision invariant. It can be shown that a continuous function ¢ is a
collision invariant if and only if ¢ € span{1,v, [v[*} or equivalentely

dw)=a+b-v+cpf, aceR, belR

Assuming f strictly positive, for ¢(v) = In (f(v)) we obtain

J QUf,HIn(f)dv

R3

- _i J JB(”’”W) LFf — 1[I () + I (f) — () — (£l dewdv. dv
RS 2

1| [ew.ortrr - gan(LF) dvds. o <o
RS 2

since the function z(x,y) = (x — ) In (x/y) > 0 and z(x,y) = 0 only if x = y.
In particular, the equality holds only if In (f) is a collision invariant, that is

f=expla+b-v+chf), c¢<O.
If we define the density, mean velocity and temperature of the gas by
1 1 9
p:dev, u:;Jvfdv, T:—pJ[v—u]fdv,
R? R? R?

we obtain that the distribution function has the form of a locally Maxwellian dis-
tribution

_ _ p lu — vf?
f(?),t) - M(p7u7 T)(?}, t) - WGXP <_ ZRT >

The constant B = Kp/m is called the gas constant, Kp is the Boltzmann constant and
m the mass of a particle. Boltzmann’s H-theorem implies that any equilibrium dis-
tribution function, i.e. any function f for which Q(f, /) = 0, has the form of a locally
Maxwellian distribution.
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If we define the H-function

H(f) = Jfln (f)dv,

R?

we obtain immediately the inequality

dH

aHy)_ J QU (f)do < 0.

R?

Thus the H-function is monotonically decreasing until f reaches the equilibrium
Maxwellian state for which we have

3
HOD = »(1 L)__).
=r (n((2nRT)3/2 2

1.3 - Fluid limit

If we multiply the Boltzmann equation by its collision invariants and integrate the
result in velocity space we obtain

% Jf¢(v) dv + VT(J vf $(v) dv>: 0, o) =1,v1,v9,0s, |v|2.
R? R?
These equations describe the balance of mass, momentum and energy. The system of
five equations is not closed since it involves higher order moments of the distribution
function f.

As & — 0, from (2) we have formally Q( f, f) — 0, and thus f approaches the local
Maxwellian. In this case the higher order moments of the distribution function can
be computed as function of p, u, and T and we obtain the closed system of com-
pressible Buler equations

ap

8t+Vx‘(pu):0

0

Lquw-(pu@qup):o
ot

OF

- (E -

8t+vx FEu+pu)=0
3 1

p=pT, E’fépT+§pu

where p is the gas pressure and ® denotes the tensor product.
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The rigorous passage from the Boltzmann equation to the compressible Euler
equations has been investigated by several authors. Among them we mention refer-
ences [23], [93]. Higher order fluid models such as the Navier-Stokes model, can be
considered using the Chapmann-Enskog and the Hilbert expansion. We refer to [80]
for a mathematical setting of the problem and to [56] for recent theoretical results.

1.4 - Boundary conditions

The Boltzmann equation is complemented with the boundary conditions in space
for v-n > 0and x € 02, where n denotes the unit normal, pointing inside the do-
main Q. Usually the boundary represents the surface of a solid object (an obstacle or
a container). The particles of the gas that hit the surface interact with the atoms of
the object and are reflected back into the domain £.

Mathematically, such boundary conditions are modelled by an expression of the
form [30]

(19) |v-n|flx,v,t) = J [v. - (@) K@i — v,2,1) f(2, s, 1) dv..
,-n<0
This is the so-called reflective boundary condition on 0Q.
The ingoing flux is defined in terms of the outgoing flux modified by a given
boundary kernel K. This boundary kernel is such that positivity and mass con-
servation at the boundaries are guaranteed,

Kw, —v,x,t) >0, J Kw, - v,x,t)dv=1.

vn(x)>0

Fig. 3. — Reflection and diffusion at the solid boundary
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Commonly used reflecting boundary conditions are the so-called Maxwell’s condi-
tions. From a physical point of view, one assumes that a fraction a of molecules is
absorbed by the wall and then re-emitted with the velocities corresponding to those
in a still gas at the temperature of the wall, while the remaining fraction (1 — a) is
specularly reflected.

This is equivalent to impose for the ingoing velocities

(20) f@,v,t) =1 —a)Rf(x,v,1) + aMf(x,v,1),

in which x € 9Q, v - n(x) > 0. The coefficient a, with 0 < a < 1, is called the accom-
modation coefficient and

(21) Rf (x,v,t) = f(x,v —2n(n -v),t), Mf(x,v,t) = ux, )M,).

If we denote by T, the temperature of the solid boundary, M,, is given by

2
M,,(v) = exp <— m) )
w

and the value of x is determined by mass conservation at the surface of the wall

(22) (e, t) J My,@)v - nldv = Jf(x,v,t)\v'mdv.

vn>0 vn<0

For a = 0 (specular reflection) the re-emitted molecules have the same flow of
mass, temperature and tangential momentum of the incoming molecules, while for
a = 1 (full accommodation) the re-emitted molecules have completely lost memory of
the incoming molecules, except for conservation of the number of molecules.

More complex boundary conditions for rarefied gas dynamies (RGD) can be
imposed using the boundary conditions of Cercignani and Lampis [32]. These can be
written as

(23) fle,v,t) = JP('v,v’)f(ac, v, 0 dv
where
(24) P,v) = Qu/a)I'2(1 — a)1 /200 /a) exp (@* — (1 — a'®)/a

in which v and ¢’ are the normal components of the outgoing and incoming velocities
respectively, and I’ is the modified Bessel function. This satisfies the reciprocity
(detailed balance) condition

(25) vP(— v, —v)M,,(v) = — V' Pw,v") M,,(v').

A consequence of the reciprocity condition is that the Maxwellian distribution M,, is
preserved by this boundary condition.
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In the case of inflow boundary conditions, one assumes that the distribution
function of the particles entering the domain is known, i.e.

f@,v,t)=9gWw,t), xe€0R, v-n>0.

A typical example of such condition is used in shock wave calculations, where one
assumes that the distribution function at the boundary of the computational domain
is a Maxwellian M(v) and that the incoming flux of particles at the boundary is
distributed according to the Maxwellian flux (v - n) M(v), v-n > 0.

1.5 - Variants

1.5.1 - BGK models

A simplified model Boltzmann equation is the so-called BGK model introduced by
Bhatnagar, Gross and Krook [6]. In this model the collision operator is replaced by a
relaxation operator of the form

(26) Qper ([, HW) = M(f) - f,

where M(f) is a Maxwellian with the same moments of f.
Conservation of mass, momentum and energy as well as Boltzmann H-theorem
are readily satisfied. The equilibrium solutions are clearly Maxwellians

Qper(f,/) =0& f =M(f).

Numerical computations, as well as the analytic theory, for such model are much
simpler then for the full Boltzmann equation. This model has the advantage of de-
scribing the right fuid limit. But in the Chapman-Enskog expansion, the transport
coefficients obtained at the Navier-Stokes level are not satisfactory. In particular,
the Prandtl number P, (the ratio between heat conductivity and viscosity) is equal to
1. For most gases, we have P, < 1. In particular, the hard-sphere model for a
monoatomic gas leads to a Prandtl number very close to 2/3. The correct Prandtl
number can be recovered using more sophisticated BGK models, as the velocity
dependent collision frequency BGK models and the Ellipsoidal Statistical BGK (ES-
BGK) models [16], [62].

1.5.2 - Landau models

The Landau model [77] is a common kinetic model in plasma physics character-
ized by the following collision operator

QL)) =V, J AW = 0) LWV f@) — f)V, f]d,

R¢
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where A(z) = Y(|z|)11(z)is ad x d nonnegative symmetric matrix and I7(z) = (7;(2))
is the orthogonal projection upon the space orthogonal to z,

Riki
mij(2) = (%‘ - #)

We have ¥(|z]) = A|z|*™® for inverse-power laws, with a > —3 and 4 > 0. The
case a = —3 is the so-called Coulombian case, of primary importance for applica-
tions. In such case the Boltzmann collision operator has no meaning, due to the
divergence of the integral, even for smooth functions (a cut-off angular approx-
imation is then used and the Landau equation can be derived in the so called grazing
collision limit [129]).

Since conservation of mass, momentum, and energy, as well as H-theorem for the
entropy are satisfied, equilibrium states are Maxwellians.

1.5.3 - Other models

¢ Enskog model: takes into account the nonlocality of the interactions induced by
the diameter of the interacting spheres (accurately describes the behavior of dense
gases). The collision operator is delocalized in space (regularization effect).

e Quantum-Boltzmann models: the nonlinear interactions f’f! — ff. is replaced by

SIAENAEL) = FA LA LS.

The minus sign corresponds corresponds to fermions (such as alectrons), and the plus
sign to bosons (such as photons). The collision operator are called Pauli operator and
Bose-Einstein operator respectively.

e Semiconductor-Boltzmann models: the linear Boltzmann equation for semi-
conductor devices has the form

Qs(f, M) = Ja(v,w{M(v)f(v*) M, f@)} dv.,

where M is the normalized equilibrium distribution (Maxwellian, Fermi-Dirac) at the
temperature 6 of the lattice. The function o(v,v,) describes the interaction of car-
riers with phonons.

e Granular gas models: particles undergo inelastic collisions. Energy is dis-
sipated by the model and the steady states are Dirac delta function centered in the
mean velocity.

More recently kinetic modelling has been applied to new fields as vehicular traffic
flows, biomathematics (chemotaxis, inhalation of sprays), finance (modelling income
distributions), coagulation-fragmentation processes, supply chains, and so on (see
[2], [12], [34], [36], [44], [74], [83], [84] and the references therein).
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1.6 - The splitting approach

The most common approach to solve numerically the full Boltzmann equation is
based on an operator splitting [42].
The solution in one time step At may be obtained by the sequence of two steps.
First integrate the space homogeneous equation for all x € ,
of 1 .-

Fe,v,0) = folx, v),

for a time step A4t (collision step) to obtain f = C4(fy), and then the transport
equation using the output of the previous step as initial condition,
of

aJrv-fo:O,

fla,v,0) = f(x, v, 4t).

for a time step 4t (transport step) to get f = T 4( f ) = T 4(C 4 (fo)).

After computing an approximation of the solution at time At, the process may be
iterated to obtain the numerical solution at later times. Although this splitting
scheme (simple splitting) described above is first order accurate in time it is very
popular because it has several nice properties.

e The collision step acts only on v whereas the transport step acts on x. This
makes the implementation of the resulting scheme simpler (it allows the use of
any existing code designed to solve the free transport equation) and highly
parallelizable.

e It makes simpler to design schemes which preserves the physical properties of
the equation (conservations, positivity, H-theorem), since these properties essen-
tially depends on the treatment of the collision step.

It is then clear, that after this splitting almost all the main numerical diffi-
culties are contained in the collision step. The discretization of the resulting
equations can be performed in a variety of ways (finite volume, finite difference,
Monte Carlo methods and so on). The choice of the discretization mainly depends
on the method that is used for the solution of the space homogeneous Boltzmann
equation.

We point out that the order of accuracy of this simple splitting does not improve
even if we solve with great accuracy both collision and convection steps. The accuracy
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in time may be improved by a more sophisticated splitting [125]. For example Strang
splitting is second order accurate, provided both steps are at least second order. It
can be written as

S = Cuipo(T 4(C 1/2(f0))),
or equivalently as
S =T 42(Ct(T 2(f0)))-

Remark 2. Ifaschemeis ableto treat the collision step in the simple splitting
for vanishingly small values of ¢ then the splitting scheme become a first order
kinetic scheme for the underlying fluid dynamic limit. In fact the collision step
becomes a projection towards the local Maxwellian C4(fo) = M(fy) which is then
tramsported by the transport step f = T 4(M(fo)).

Unfortunately Strang splitting reduces its accuracy to first order in time 1n this
regime. This problem seems to occur for all high order splitting methods developed
i the present literature. This drawback is not present if one uses Implicit-Explicit
Runge-Kutta methods of the type proposed in [25], [68], [108] applied to the whole
equation without splitting.

2 - Discrete velocity models

2.1 - Derivation

Historically these methods were among the first deterministic methods for dis-
cretizing the Boltzmann equation in velocity space [20], [54]. The discretization is
built starting from physical rather then numerical considerations. We assume the
gas particles can attain only a finite set of velocities

w3
VN:{vlav%vSa'“avN}v v; € R°.

Particles collide by simple elastic collisions. The collision (v;,v;) < (v, v;) is ad-
missible if v;, vj, v, v; € Vy and preserves momentum and energy

(27) vt =v+o, ol + ol = ol + o
The set of admissible output pairs (v, v;) corresponding to a given input pair (v;, v;)
will be denoted by C;; and its cardinality by g;;.

The discrete collision operator is obtained by computing first the transition
probabilities a%l of the collision (v;, ;) + (vi, v;) which must satisfy the relations

N

kl Kkl NI

ajl >0, E a; =1, Vi,j=1,...,N.
k=1
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Fig. 4. — Sketch of a planar model based on a cartesian grid. For the collision (v;,v;) in the
figure we have 3 admissible output collision pairs (vy, v;) hence ¢;; = 3. Note that in general
few grid points will belong to the collision circle

Example 2. All output pairs are assumed to be equally probable

if (v3,v)) < (v, V) admissible
aii = ¢ Qi

0 ¥ (v5,v) < (v, v1) not admissible
Note that a,]g = “Zz and ag.l = aj’?f = a}i = ag? (microreversibility). Next we in-
troduce the transition rates A% = S|v; — vjlaf,
particles, and write the discrete Boltzmann equation as

where S is the cross sectional area of

(28) D\ vi Vi = QAP
with

N
(29) QD= Y ALGifi - Fif),

Jk,1=1

wheref;, f;, fi, /i are the distribution densities of particles with velocities v;, v;, v, v;.
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2.2 - Properties

It is easy to check that the discrete Boltzmann equation satisfies for any test
function ¢; = ¢(v;)
N

(30) Z Qi(f,1)g; = — 1 A’d<fkfz — [+ 8 — 8 — &),

and thus the discrete collision invariants satisfy
(31) Gtd—9—¢=0.

Clearly we have ¢(v;) = 1,v7,v%,0%, |v1;|2 as collision invariants. Note that due to the
finite number of velocities we can have models with additional spurious collision
invariants or models where the collision invariants are not independents. Models
with the correct space of collision invariants are called normal. It is remarkable that
the normality of a model is determined only by the distribution of the non-zero
coefficients in the matrix AZZ, and does not depend on their values.

The main macroscopic quantities are defined as

N 1 1 \
(32) pP= 7,:21](‘“ U= ;;fivi, T= %i;fi(vi —u)”.
In addition taking ¢, = In (f;) we obtain
> 1 5w i1
(33) S@apm =7 > AL fagnn([ ><0
im1 i ki=1

and hence the discrete analogue of Boltzmann’s H-theorem.
By the same arguments as in the continuous case we obtain that the equilibrium
states are characterized by the equation

fi=exp(a+Db-v; +c|vi|2), c<0.

However in the discrete case it is not possible to write explicitly a, b, ¢ as functions
of the macroscopic quantities p, u, T except in some particular cases.

In general one has to solve for a, b, ¢ the system of nonlinear equations char-
acterized by

N
(34) p=> expla+b-v+clv’)
i=1
1Y )
(35) /;Zexpm b-v; + clvi*vi,
1=
1 N

(36) T :EZ exp (a + b - v; + cfvi)w; — w).
i—1

(V8]
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Fig. 5. — Example of discrete Maxwellian on a truncated velocity domain (dashed lines) and
corresponding Maxwellian with same mass, momentum and energy

This requires a suitable numerical method if the discrete local Maxwellian equili-
brium is needed explicitely.

Similarly we can formally write the corresponding conservation equations. Note
however that, since discrete Maxwellian equilibrium states differ from Maxwellians
of the Boltzmann equation, the corresponding fluid equations may be different from
the classical ones (see Figure 5).

The same difficulties (necessity to solve a nonlinear system and velocity trun-
cation effects) are present also in discrete BGK models of the Boltzmann equation.

2.3 - Computational considerations

Although the discrete Boltzmann equation is a discrete model of the Boltzmann
equation that has the nice property of preserving the essential physical features
(conservations, H-theorem, equilibrium states) from a computational point of view it
presents some severe drawbacks.

e The computational cost is very high, typically ON"), with > 2.

e The accuracy of the method is poor, the error behaves as O(1/n#) with u < 1
and where n is the number of grid points in each direction (for a cartesian grid).
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TABLE 1. — Relative L., error and computational cost (in seconds) for n = 8, 10, 12, 14, 16,
18, 20, 22

n 8 10 12 14 16 18 20 22

E, 0.044 0.035 0.033 0.028 0.024 0.021 0.019 0.017
Tgec 0.38 1.96 7.25 23.01 66.43 135.47 286.94  638.13

In Tables 1 and 2 we report the results obtained in [97] where a careful numerical
study of the convergence rate of DVM has been performed in the case of 3D Maxwell
molecules. All computations were performed on Sun Dual UltraSparc 1700/167
MHz. Their method in dimension d is derived in a discrete-velocity space V subset of
the regular cubic grid

{vi = hili = (t1,...,1q9) € 7},

where k. = 1/n.

TABLE 2. — Convergence rates u and cost exponents n for n = 8, 10, 12, 14, 16, 18, 20, 22

n 8-10 10-12 12-14 14-16 16-18 18-20 20-22
. 1.0255 0.3227 1.0659 1.1544 1.1337 0.9499 1.1670
n 2.4506 2.3915 24974 2.6466 2.0167 2.3745 2.7953
The model is defined by
2|k — 1|By_i1—; .
kl _ p2d—1 k—il—t Kl
(37) Aij =h W%ijv k # 1,

where g(k — 1) denotes the greatest common divisor of the components of the vector
k —1 and xff is an indicator function of the set of points satisfying (27). In [97] the
authors showed that the discrete-velocity model defined by (37) satisfies the discrete
mass, momentum, and energy conservation relations and the entropy property. The
model has no other collision invariants than linear combinations of 1, v; and |vi|2.

The term Bj,_;,_; depends on the collision kernel. For VHS molecules we have
WF_; +of )2

\Pk—i|

Bj_i1-i = 2C,

The method behaves essentially as a first order scheme x ~ 1 with a computa-
tional cost higher then quadratic n ~ 2.45. Theoretically the computational cost of
DVM can be estimated using the Farey series and gives the value n = 2d +1)/d
[83]. In this case since d = 3 we have 7 = 7/3 which is slightly smaller then the above
numerical estimate.
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The general approach for proving convergence of discrete collision terms is to
view them as multidimensional quadrature formulas for the integral. In fact, nu-
merically the discrete Boltzmann equation corresponds to taking a quadrature
formula for the Boltzmann equations where

Vn = {v1,v2,v3,..., o8} quadrature nodes

kL

CLZJ

quadrature weights.

Thus for a grid of regular hypercubes with equal weights, using product rectangular
rules, we expect a first order convergence to the Boltzmann equation for hard
spheres. Conservations assumptions on the weights impose A’g =0 for non ad-
missible interactions which can result in a deterioration of the accuracy of the
method. We remark that the convergence of DVM to the full Boltzmann equation is a
rather delicate task, since it involves the study of the distribution of integer points on
spheres/planes in R?.
To this aim we recall the recent consistency result obtained in [97]

Theorem 1. Let us define the kernel

Bf(x,y) =

4 ||
2 2 Ay A
4|9c| > y20<\/x Ty ,1—27902 y2>’ r=v -0, Y=, —0.

Assume that the above kernel satisfies |x|ﬁ B¢(x,y) € C"™(P) for some 0 < < 3
and m > 1. Here P = {(x,y) € R? x R3 |-y =0} with the metric (|ac|2 + |y|2)1/2.
Take f and g € C™(R®), with compact support. Then, for sufficiently small h,

(38) |Q(fag)(v1) - Qz(fvg)| < Ch*

where

—min{ " g m(m +3 — ) }
H= m+8""" (m+3)m+3—-p+p—m

and the constant C does not depend on h and 1.

It is interesting to note that in the case of hard spheres (B(x,y) = C/|x|) and
C>-integrands the theorem states that y =1 — ¢ for any ¢ > 0.

As a consequence of the excessive computational requirements, applications of
DVM have been mainly limited to space homogeneous problems or to simple models
with few velocities in order to obtain qualitative results for space nonhomogeneous
situations.
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v,=(0,1) v,=(0,0,1)
A A
v,=(0,1,0)
v,=(-1,0) +——— ———» v,=(1,0) v,=(-1,0,0) 4—/ —> v,=(1,00)
v=(0,-1,0)
v,=(0,-1) v,=(0,0,-1)

Fig. 6. — Velocities in Broadwell models

2.4 - Broadwell models

In this paragraph we consider a simple example of discrete velocity model. As we
will see despite its simplicity the model can be used for a qualitative study of the
formation of shock waves. More precisely we consider a set of one dimensional
Broadwell models [20] defined by

39) D%l him
(40) BB -hif)
() B L hh

being now fi,f2,f3 the density of partlcles with velocity 1, —1,0 respectively. The
parameter a > 11is proportional to the number of particle densities moving with zero
velocity. In particular for a = 1 we have the reduced four velocity Broadwell model,
whereas for a = 2 it corresponds to the reduced six velocity Broadwell model.

The space of collision invariant has dimension 2 corresponding to conservation of
mass and mean velocity

(42) p=h+f+2ds, pu=hH—rf.
The Maxwellian state is characterized by two constants a and b such that
M; =aexp{b}, Ms=aexp{-b}, Ms;=a.

In particular it is possible to get the analytic expression of @ and b as a function of p
and v

Y I e )
(43) CL—T, b—log[a(e_u):|,
where e = e(u) is given by
(44) e:%(lJruZ) a=1

(45) ezé(Z\/Suz—i—l—l), a=2.
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24.1 - A numerical example

After the splitting the solution of the collision step consists of the set of ODEs

(46) B
) Bl -hp
(49) )

Due to the stiffness of the system for small values of ¢ an implicit scheme, such as the
implicit Euler method, is needed. Here, since the system of equation can be solved
analytically, we used directly the exact solution.

Next we need a numerical scheme for solving the transport phase for f; and f>

ofh  ofr

(49) =0
e I

(50) S —a2=0
o

(51) =0

In our numerical experiments we considered the first order upwind scheme with
uniform mesh spacing Ax in the spatial grid points x; given by

L) = @) + o L @) — £ @], =1,2
and its second order TVD (total variation diminishing) extension [79]
L) = ) + L @) — £ @)

1 —n)
2

— i [F} (@iyi)de — F(e)dx],  j=1,2

where = At/ Ax, i; = (— 1Y,

Lfi(@izjr2) — fi(owij1)]

Fi(x;) = yr

fi@) — fiiy) ] E

$O0@)),  O(w) = [m

and ¢ is the particular slope-limiter function. For example, the “superbee” limiter of
Roe
¢rs(0) = max{0, min{1,20}, min (0,2)},
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or Van Leer’s limiter function
Sy, (0) = (10] + 0)/(1 + |0)).
The initial data is characterized by two local Maxwellian with mass and velocity
pyu, =<0
p,u, x>0.

where the macroscopic quantities p, % are computed in terms of p, u from the classical
Rankine-Hugoniot relations.
The test case we consider is a shock wave problem for a = 2 characterized by

p=40 , w=0 ; p=10 , wu=10

In this situation, corresponding to a shock wave travelling with speed s = 1/3, the
problem can be solved exactly

(52) pla,t) = m, u(x,t) = m7

where & = [3x — t]/2.
The results are reported in Figure 7 and show very good agreement with the
analytic solution. In particular the Euler shock is well captured by the scheme.
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Fig. 7. — Profiles for different Knudsen numbers & = 0.1, 0.05, 107% of p (o) and « (®) for the
second order scheme with ¢ = ¢, and = 0.5, 4x = 0.0l at ¢t =1.5
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3 - Spectral Fourier methods

3.1 - Preliminaries

The use of spectral methods to develop fast algorithms for collisional integral
equations was inspired by the theoretical results of A.V. Bobylev on Maxwell mo-
lecules. In [10] Bobylev showed that for such model a sort of convolution theorem
holds, namely the Fourier transformed collision operator is defined through a simple
integration over the sphere S% instead of R? x S2. For this reason the first attempts
aimed at deriving a similar simplification at a discrete level [58], [50]. The develop-
ment of a general spectral method based on a Fourier-Galerkin approach has been
subsequently done in [102], [106]. The presentation here follows [98], [106], [48].

After a splitting of the equation we focus our attention on the development of
spectral methods for the space homogeneous collision step. Let us denote the collision
operator as the difference of a gain and a loss part Q(f, f) = Q" (f, f) — fLLf], with

(53) QT (f,.Hw) = J JB(v,v*,w) f@) f@) dwdw,,
R? s?

(54) LIf1w) = J JB(u v, @) f,) dwdv,.
R? §?

In the sequel we will restrict to inverse power forces interactions and thus we will
use the notation B = B(|v — v.|, 0).
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Fig. 8. — Periodization in 2D
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3.2 - Fourier-Galerkin projection

We start from the homogeneous equation

VLN =Q (D
with initial condition
fQe,v,t =0) = folx,v).

The method can be described as the results of three main steps.

1. Change of variables (v, — g =v — v,)

Integrating over g = v — v, gain and loss parts can be rewritten as

(55) Q(fif) = J JB(lgL 0) f() @) dordy,
R? 2
(56) L(p) = j JB(\gl, 0) f— g) dordg,
R3 §?
where now
N L1
(57) v =v—§(g— lglw), v, =v—§(9+lg|w)-

Note that what is crucial here is that we have rewritten the post-collisional ve-
locities in the form v' = v + O(«x, y) where « and y are the integration variables.

2. Reduction to a bounded domain

The following proposition characterizes the action of the collision operator on
compactly supported functions. This is an essential step to understand the effect of
aliasing in the final scheme. Let B denote the ball of radius R centered in the origin,
then we have

Proposition 1. Let Supp( f(v)) C Bg then

(58) Supp (Q( f; /)W) C B sz,

and

(59) QUf, NHw) = J JB(\QI, DLW f@W) —f() flv — g)ldwdy,
Ber 2

with v/, v,v — g € By, jzp-

» Uy
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The first statement follows from energy conservation since if v/,v, € Bp then
<+ (—g)PF = W) + @) < 2R2. Next we observe that if v,v, € Br we have
9| = v —v.| < |v[ + [vi] < 2R. Finallyv € B 55, and g € Bag imply [v — g| < |[v| + |g]
<2+ v2)R.

3. Fourier-Galerkin projection

We can consider the distribution function f(v) restricted on [ — T, TP by as-
suming f() = 0on[ — T, TT? \ Bg, and extend it by periodicity in the whole space R?.
If the period T satisfies the following condition

@+V2R-R _(3+2)
* 2 T2

(60) T>R R =R/,

then the value of Q( f, /) remains unchanged. For simplicity we set T = = and hence
R =/n.
Then we approximate f by the truncated Fourier series

N
(61) @) = > fie*?,
k=—N
. 1 )
2 _ —ik-v )
(62) i @ J f@e ™* dv

[—7,7]

Here we use the vector notation k = (k1, k2, k3) and the compact expression

N N N N

IR IED NP D

k=N k=N k=N ks=N

The fundamental unknowns are the coefficients f,. To obtain the Fourier-
Galerkin method we require that

| (‘Zc—j Ty L) Q+<fN,fN>> e dy = 0.

[
By substituting expression for fy in the Boltzmann equation we get

N

N
LU =Y > fifwBn,myet

l=—N m=-N

and

N N
Q+(fN7fN) = Z Z fl.fm B(l’ m) ei(ler)-v’
l

|=—N m=—-N
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where the kernel modes E(L m) are given by

tm)

(63) B(,m) = J JB(|g|,9)e*1'9' gl

Bar s%

(=)

T dwdg.

The final scheme is charaterized by a set of ODE’s for the Fourier coefficients

(64) 6_ﬁ+ i oo fu Bm,m) = i Feem Fu Bk — m,m)
ot s k—m Jm ) sy k—m Jm y .

with the initial condition

r, _L —ik-v
i = o j flw)e ™ do.

[~nnP

Remark 3. The following remarks clarify some aspects of the implementa-
tion and the cost of the method.

o Setting N = N3 the evaluation of the whole spectral scheme requires exactly
O(N?) operations. Thus the cost of the spectral method is smaller then the cost of
DVM. In fact, for DVM we have a cost of ON@4+D/d) yhere d = 2, 3 is the dimension
of the velocity space [83].

o Inthe VHS model, the kernel does not depend on the angle 0: B = C,|g|". In this
case B(l,m) is a function of |l — m|, |l +m| and thus can be precomputed and stored
n a matrix. This can be done in O(N*) storage, by replacing the N® x N3 matrix
B(l, m) by a smaller N> x N? matrix 5(@', 1), where the integers i, j are given by (see
[39], chapter 4)

0<i=|k]<3N% 0<j=|l—m| <12N>

o The scheme preserves mass (Fourier mode of order zero) but not momentum
and energy exactly. However, we will see that these quantities, except for the error on
the initial data, are approximated with spectral accuracy in time.

3.3 - Analysis of the kernel modes

Let us assume B = C,|g|* (VHS model). Then we can reduce the computation of
the kernel modes to a 1D integral. One has

B(l,m) = C,167%22n)* "“F (&, ),

where & = |l + m|ir, n = |l — m|Ax and r = |g|/2/% and

sin

1
(65) F,(&n = Jrz” Sine (¢r) Sine (yr) dr,  Sine (x) = —
0
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Note that the five fold integral which defines the E(l, m) has been reduced to a one-
dimensional integral, and hence the value of the coefficients can be easily computed
numerically by an accurate quadrature formula, and stored in an array at the be-
ginning of the calculation.

Expressions of F;,

We have the symmetry relation F, (&, ) = F, (5, &). For integer values of a, F, has
an explicit analytical expression.
We give the expressions for a = 0 (Maxwellian gas) and a = 1 (H. S. gas)
_ psin(q) — gsin (p)

P2(gsin(q) + cos (@) — ¢2(psin (p) + cos (p)) — 4én

67 F =
(67) 1) S

i

where p = (& +n), g = (& —n).
In the 2D case we have

1
(68)  B(,m)=Can*@mi)*" JF WEm, Fu&m =1 JoErom) dr.
0

3.4 - Properties of the spectral method

Notations

Foranyt > 0, fx(t) € PN where
PN = span{e®’| —N <k; <N,j=1,2,3}.

Let Py : L2([ — =, 7?) — PN be the orthogonal projection upon PY in the inner
product of L2([ — 7, 7]%), hence fyy = Pxnf. We have the following [106]

Proposition 2. Let f € L2[ — =, zl®), f > 0,Y v, and let us define

p 1
(pu) = J f( v )dv.
pe [z, |U|2

Then the following relations hold

C1 C(2
(69) p=ry Ipu—pux <SSl lpe = penl < 31 f
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This estimates can be strongly improved if f is smooth. If f GH;;([— T, n]g),
where >0 is an integer and H]’;([— T, 7?) is the subspace of the Sobolev space
H'([— =, 7), which consist of periodic functions, for each p€ L2([— r, 7) we have
[106]

C
(70) [ <foo>=<fion > 1< lollz [lf =vllz < 777 N0l 1l

where || - || H; denotes the norm in H;;([ -, 7?). This inequality shows that the
projection error on the moments decays faster than algebraically when the solution
is infinitely smooth.

Using the previous notations the spectral method becomes

v

(1) A

QAn(fv),

where Q(f) denotes the Boltzmann operator with the relative velocity restricted
on BZR-
We have the following consistency result in the L?-norm for Qy(fy) [106]

Theorem 2. Letf € L2([ — n, nl), then

N7

QUN |
(72) Q) — @n(fVllz < C(lf—fN”z*'w),

where C depends on || |-

The previous estimate states that the rate of convergence in the L?-norm of
Qn(fwv) to Q(f) depends only on the speed of convergence of fy to f. Hence if fy is
spectrally accurate so it is @y (fy). The following corollary states the spectral ac-
curacy of the approximation of the collision operator [106]

Corollary 1. Let f € Hy([ - m,z’), » > 0 then

(73) 1 — @yl < s (Il + 1QU I )-

3.5 - Numerical results

In our tests we use the spectral method coupled with an explicit fourth-order
Runge-Kutta method in time. This scheme provides the high temporal accuracy
needed to demonstrate spectral accuracy in velocity.
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3.5.1 - Test #1 2D Maxwellian molecules

We consider the initial condition

2
f,0) =—5exp(— ?12/02).
no

The integration time is tmax = 40. This problem has an exact solution given by [10]

1 1-—S? V2
(74) 0.0 = (25 14 2—g> exp (- W)

1S%a2

where S =1 — exp( — ¢?t/8)/2. This test is used to check spectral accuracy, by
comparing the error at a given time, when using N = 8, 16, and 32 Fourier modes for
each dimension.

3.5.2 - Test #2 3D Maxwell molecules

Next, we consider the initial condition

B 1 v — 20e; ° v + 20e; |*
f(U,O) B W [exp(—T + exp —2—02

with ¢ = /7/6. The integration time is tmax = 10. Here e; = (1,0, 0) denotes the unit
vector in the direction v,. This test is used to check the evolution law for the stress
tensor which has an analytical expression [105].

3.5.3 - Test #3 2D VHS molecules

Finally we take as initial condition

1 ox _|v—20'el|2 e - v+ 20e; [°
2@no?) | P 207 P 207

with ¢ = An/6. The integration time is tmax = 10. This test is used compare the

f,0) =

relaxation to equilibrium of the stress tensor for Maxwellian molecules, with the
relaxation of other VHS molecules.

In all the computations the scaling parameters are chosen in such a way that the
numerical support of the initial condition is well approximated by Bg.

The results are reported in Figures 9 and 10. Figure 9 clearly shows the spectral
accuracy of the method as well as the aliasing effect. The latter requires a careful
balance between resolution and choice of the computational domain. For example,
the convergence rates at t = 5 are 7 = 5.6 passing from N = 8to N = 16 and n = 9.7
passing from N = 16 to N = 32.
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L L L L L L L L L L L L L L
5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40
time time

Fig. 9. — Test #1 2D Maxwell molecules: L, relative norm of the error vs time (left) and with
a more compact initial condition (right) for N = 8, 16, and 32 modes per direction

Remark 4. The same spectral Fourier strategy for the collision operator can
be applied also to:

e Landau equations. In this case the overall computational cost of the spectral
scheme can be reduced to OWN® In N) thanks to the algebraic structure of the operator
(see [109], [46]). Using further approximations fast methods for Landaw equations
were also derived in [22], [38], [78].

e Boltzmann equation for granular gases. In the spectral method, a suitable
source of energy, for example a diffusive operator, has to be considered to avoid the
Dirac delta stationary states of the operator (see [91], [47]). As an alternative, re-
scaling velocity techniques can be used (see Filbet and Russo in [110] and the re-
ferences therein,).

time time

Fig. 10. — Test #2 and #3: Time evolution of the stress tensor component P;; in 3D Maxwell
molecules for N = 16 modes (left). Exact reference solution (line) and numerical solution
(dashed line). Relaxation of the stress tensor component P;; in 2D VHS molecules for
different values of a = 0,0.5,1,2 for N = 32 modes (right)
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4 - Non homogeneous case

The solution of the transport equation can be obtained in a variety of ways ac-
cordingly to the particular application considered (see for example [79], [49], [120]
and the references therein). A review of such a broad field is above the scope of this
paper. Here we give the details of the methods developed originally in [49] which has
several nice properties, among which to allow the use of large time steps even for
large velocities.

4.1 - Positive and conservative schemes

Let us consider the transport equation written as
(75) O f+ Valvf) =0, V(t,x)e R x R
Then, the solution of the transport equation at time "1 reads
FA" x) = f(t", 0 —vAt), Ve R

For simplicity, let us restrict ourselves to a one dimensional problem and introduce a
finite set of mesh points {;;1/2};.; on the computational domain. We will use the
notations Ax = x;1/2 — %;_1/2, C; = [¥;_1/2,%i;1/2] and x; the center of C;. Assume
the values of the distribution function are known at time " = n 4t on cells C;, we
compute the new values at time ¢**! by integration of the distribution function on
each sub-interval. Thus, using the explicit expression of the solution, we have

Tiy1/2 Tip12—v At
J FE ) de = J F@", x) du,
Li-1/2 Ti_1/2—V At

then, setting
Tit1/2

Py o (t) = j £t ) de,

Tiy1/2—v At
we obtain the conservative form
Tiy1/2 Tit1/2
(76) J f(tn+179€)d90 = J f@", x)dx + @i,l/g(tn) — ¢i+1/2(tn).

Li-1/2 Li-1/2

The evaluation of the average of the solution over [x;_y /2, %;,1/2] allows to ignore fine
details of the exact solution which may be costly to compute. The main step is now to
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choose an efficient method to reconstruct the distribution function from the cell
average on each cell C;. We will consider a reconstruction via primitive function
preserving positivity and maximum values of f [49]. Let F'(t", ) be a primitive of the
distribution function f(¢", x), if we denote by

Liv1/2
= J f@", x)dex,

‘Uz 1/2
then F(", 21 1/2) — F(t",%;_1)2) = Axcf]" and
i
F" 1) = Ay fil = wf.
k=0
First we construct an approximation of the primitive on the small interval

[%i,l/z, .761'+1/2] using the stencil {96‘1‘,3/2, Li-1/2,Xi+1/2, 901'+3/2}

F 1

Fit",w) =wi_y + @ = @iap) i + 57 @ = @i )@ = Tl ity — ']
1

+m(9€ — 961:71/2)(90 - 90i+1/2)(90 — xi+3/2)[ iﬁl _ 2](;_11 _i_fiqzl],

where we use the relation w? —w! ; = Axf’". Thus, by differentiating F),(x), we

obtain a third order accurate approximation of the distribution function on the in-
terval [x;_y/2, ¥i11/2]

Sl @) = —(t" x) = f}"

1

o 2@ 0@ — @)+ @ = )@ — )| (i — )
1

o [2@ )@ — @iy + @ @@ — i) | S

Unfortunately, this approximation does not preserve positivity of the distribution
function f. Then, in order to satisfy a maximum principle and to avoid spurious os-
cillations we introduce slope correctors

(77) fu@",x) = f"

8+

+6Ax

2@ — @)@ — iy + @ = 212w — @) (i — £

s 2@ — 2@ — i) + @ — 21D — @) | UF = S,
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with
min (1,2£7/(f7% 1 = f1) if £ —f" >0,

(78) et —
min(l, —2(fo —[/(f1, _fi”)> if £ —f7 <0,

1

B ny s .
where fo, = r?éalx{}j } is a local maximum.

The theoretical properties of this reconstruction can be summarized by the fol-
lowing [49]

Proposition 3. The approximation of the distribution function f,(x), de-
fined by (77)-(78), satisfies

Li+1/2
e The conservation of the average: for all i € I, J Jr@)dx = Axf;.

Li-1/2
o The maximum principle: for all x € Xmin, Tmaz), 0 < frl®) < foo.

Moreover, if we assume that the Total Variation of the distribution function f(x) is
bounded, then we obtain the global estimate

J | ful@) — fr(@)| dac < ATV (f) A,

Lin

where fj, denotes the third order approximation of f without slope corrector.

Remark 5. If the solution is smooth, we can check numerically that the
scheme s third order. In several dimensions we can perform reconstruction di-
mension by dimension using tensor product.

4.2 - Time discretization

The time discretization in the collision step is more delicate than in the transport
step, because of the severe restriction on the time step when the system is close to
the stiff (fluid) regimes.

For not small Knudsen numbers, we can use Runge-Kutta or multistep
schemes. For small Knudsen numbers, implicit schemes are practically unusable
due to the high computational cost required to solve the large system of nonlinear
equation originated by the collision operator. Here we will use a different ap-
proach based on the Time Relaxed (TR) scheme proposed in [51]. For more details
on the derivation and the properties of the schemes we refer to Section 8 of this
paper and to [51], [48].
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These time discretizations are based on the Wild sum expansion of the solution of

the equation .
YL es. ) uh)

where P is a nonegative bilinear operator. The general schemes of order m read
m

(79) @) =0 -0 R + M),
=0

where " = f(n4t), 4t is a small time interval, and the functions f;’ are defined re-
cursively as

k

(80) MO Z

1
P ), k=0,1,2,...
le=u

The quantity t = 1 — e #4/% is called relaxed time.

The Boltzmann equation can be readily written in the above form in the case of
Maxwellian kernels. In fact we have P(f, f) = QT (f, /) and u = L[ f] = 4nCqyp. In the
case of the Boltzmann equation with non constant L[ f] we can proceed as follows. If
the loss term is bounded, then the equation can always be written in the above form,
where u is a positive constant such that

j> LIfI) = J J oo — ., @) F@.) do do.,

R? §?

and P(f. f) = Q+(f.f) + (u — LLf1w)) f.

The drawback of this simple choice, namely of taking a fixed g, is that the trun-
cation error of the schemes is proportional to (u4t)™, and therefore it can be large for
large x. A better choice would be to compute at each time step

p=max (LLf1) = Q+(£,.N)/),

where Q is some relevant region of velocity space (e.g. [ — T/2, T/2]). This is the
smallest u that makes the first order scheme positive.

Note that for udt/e — 0 the schemes project over the local Maxwellian M. For
intermediate regions, an adaptive time step technique can be used.

4.3 - Implementation issues

Several improvements to the performance of the schemes can be done as a
consequence of the splitting strategy. Here we describe briefly two of the most
relevant.
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Parallelization

As already mentioned, the code can be implemented in a parallel environment
since collisions take place simultaneously at all space points during the relaxation
step. More precisely, let f;"; denote f at time ¢", position x; and velocity v;.

e The transport step works on the space variables (velocity v; is just a para-
meter), thus T acts on the columns of matrix f"

e The collision step works on the velocity Varlables (position x; is just a para-
meter), thus C4 acts on the rows of matrix S

Then a parallel algorithm works as follows

(@ f*=Tu(f" [computation]

b) f*— T [communication]
(¢ f" = Cu(f*T) [computation]
(d) frHbl — frtl [communication]

Multi-resolution

Transport is more efficient and less accurate than the collision step, thus a finer
grid can be used for transport than for collision.

Let f;, denote the function on the fine grid in velocity and fz the function on the
coarse grid (see Figure 11). Then the multiresolution algorith works as follows

@ fy =Talfy)

(b) f; is computed by FFT on the fine grid

(¢) higher modes are neglected to get f,’_} (on empty circles)

@ fi™ = Calfp)

(e) f™* (on green nodes) is computed by trigonometric interpolation using
IFFT from fii'!

Fig. 11. — The fine (all nodes) and the coarse grids (empty circles)
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4.4 - Numerical tests

The tests are performed using a parallel machine, and a 2D model in velocity and
1D or 2D in space.

44.1 - Test #1: time accuracy

We use first order TR scheme with adaptive time stepping and u given by

u(®) = 3/2 max (L(v) —~ %) ,

where Q =[ —T/2, T/2]3. We use 642 modes in 2D so that the velocity error can be
neglected. We compare the results with a reference solution obtained with a 4th
order Runge-Kutta with a fixed time step. The results are reported in Table 3.

TABLE 3. — Test #1 Comparison between fixed At and At = t/u(t)

7= ult) At Not Numerical error ¢V Numerical error ¢®
with a fixed 4t = T'/nyo with At = ©/u(t)
0.010 50 0.0036 0.002
0.025 20 0.0080 0.007
0.050 11 0.0160 0.014
0.100 08 0.0300 0.025
0.200 07 0.0520 0.045
0.500 05 0.2000 0.090
1.000 03 XXXX 0.150
3.000 02 XXXX 0.040
5.000 01 XXXX 0.006

The time evolution of x is given in Figure 12. It shows that the method becomes
more and more accurate as the solution approaches the Maxwellian state.

8 F

[, . Time evolution

0 0.5 1 1.5 t 2 2.5 3 3.5 4
Fig. 12. — Time evolution of the value x(t)
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44.2 - Test #2: space accuracy

Next we test the overall space accuracy of the method using as initial condition
folee,v) = (L+  cos (ko)) exp(—v*/2),  (x,v) € [0,L] x R?,
with periodic boundary conditions. The error is computed as

f2h = I0AX (@ = f20 D1/ folys

and the results are given in Table 4. Second order accuracy is observed.

TABLE 4. — Test #2 Convergence results

Numerical parameters relative I! error norm &anlen
ny = 032, ny, = n,, = 08, 4t = 0.100 &4, = 0.3835 5.20
1y = 064, ny, = n,, = 16, 4t = 0.050 g2, = 0.0738 4.35
Ny = 128, ny, = n,, = 32, 4t = 0.025 g, = 0.0169 X

44.3 - Test #3: stationary shock profile

We consider a stationary shock wave problem for the Boltzmann equation solved
on a finite domain —L < x < L with boundary conditions that the incoming flux of
particles at x = £ L is distributed according to the Maxwellian flux vM * (v). As
initial data, we take f(x,v,0) = M(p,u, T), with

p=10, T=10, M=20, L>x>0,
where M is the Mach number. The mean velocity is

Uy = —Mﬁ, uy =0,
with y = 5/3.
The values for p, w and T for x < 0 are given by the Rankine-Hugoniot conditions
[131].
The profiles are shown in Figure 13 for different Knudsen numbers. As a re-
ference solution we report also the solution obtained by Monte Carlo methods.

444 - Test #4 2+ 2 dimensional BE: the ghost effect

Consider a gas between two plates at rest in a finite domain. In this situation, the
stationary state at a uniform pressure (the velocity is equal to zero and the pressure
is constant) is an obvious solution of the Navier-Stokes equations; the temperature
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2.6 T T T T T T T T T 2.6 T T T T T T T T T
Monte-Carlo Method —— Monte-Carlo Method ——
24 ¢ Spectral Method - g 24 L Spectral Method - i
. Initial Data - Initial Data
22 ¢ R 22 ¢ \ R
2+ 1 2+ 1
1.8 1 1.8 - 1
16 4 — 16 —
14} j ] 141 1
12} 1 12+ 1
1+ 1r
0.8 . . . . . . . . . 0.8 . . . . . . . . .
0 02 04 06 08 1 12 14 16 18 2 0 02 04 06 08 1 12 14 16 18 2
Monte-Carlo Method —— oo | Monte-Carlo Method —— |
24 Spectral Method - J : Spectral Method -
Initial Data S Initial Data
22t 1 2 1
2y 1 18+ 1
1.8 1
B 16 g
1.6 3 1
141 ] 141 1
12+ 1 12} 1
1 L
1 L
0 02 04 06 08 1 12 14 16 18 2 0 02 04 06 08 1 12 14 16 18 2
At ‘ ‘ ‘ " Monte-Carlo Method —— q+ ‘ ‘ ‘ " Monte-Carlo Method ——
Spectral Method -~ Spectral Method -
12t Initial Data 1 42+ Initial Data 1
14t 1 A4t 1
-1.6 1 -1.6 1
-1.8 + 1 -1.8 | 1
2t 1 2L 1
22 ¢ R 2.2 r R
24 f . 1 24t 1
2.6 3 26 A
0 02 04 06 08 1 12 14 16 18 2 0O 02 04 06 08 1 12 14 16 18 2

Fig. 13. — Test #3 Shock profiles at Mach 2: ¢ = 107! (left) and & = 0.05 (right). From top to
bottom: density p, mean velocity v and temperature T

field is determined by the heat conduction equation
u=0, T=C —V(TV*V,T)=0.

On the other hand, if we move the plate by a velocity proportional to the Knudsen
number, then the macroscopic fields (density and temperature profiles) will be af-
fected by the flow, even for vanishing Knudsen number. This effect, called “ghost
effect”, is predicted by the Hilbert expansion of the Boltzmann equation in terms of
the Knudsen number, and it is rather difficult to capture numerically, since the flow
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0.03 T T T

Kn=0.05 ——
Kn=0.03 --—+--
0.025 Kn=0.02 ---»--- 1
0.02
o )
o
- $ 0015
P 5
0.01
0.005 |
4 ‘ ‘ ‘ ‘ 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
X X
Temperature at y = 0.5 Mean velocity u at y = 0.5

Fig. 14. — Ghost effect: temperature and mean velocity along y = const for various Knudsen
numbers ¢ = 0.05,0.02,0.01

velocity is very small [123]. The results show that the numerical solution agrees with
one obtained by the asymptotic theory and not with the one obtained from the heat
conduction equation; this result is a confirmation of the validity of the asymptotic
theory.

Thus consider two parallel plates, both with temperature distribution

Twx)=1-05cos@rx); Vee(,1),
in slow motion with velocity
(@) = (g, 0).
We use the hard spheres model with diffusive b.c. on the walls and periodic in x. The
cross section of temperature and velocity profile are shown in Figure 14 for various

values of the Knudsen number, while velocity field and isothermal lines are reported
in Figure 15, for Knudsen number ¢ = 0.02.

o5 T T T 0.5

04} 04f ; | 1

0.3 -

0.2

NV AN
it s,
04 fraNss= o

————— PN
NI et

A S
NN P

e - - R

0 0.2 04 X 06 0.8 1

velocity field u isothermal lines

Fig. 15. — Ghost effect: velocity field, and isothermal lines; Knudsen number ¢ = 0.02
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5 - Fast methods

In this section, for a particular class of interactions, using a Carleman-like re-
presentation of the collision operator together with a suitable angular approx-
imation, we are able to derive spectral methods that can be evaluated through fast
algorithms. Related methods based on FF'T have been derived in [14], [15]. The
class of interactions includes Maxwellian molecules in dimension two and hard
spheres molecules in dimension three. The methods are strictly related to the
spectral methods described in the previous sections, but on the contrary to the
latter the new methods are able to take advantage of the structure of the
Boltzmann equation in order to decouple the kernel modes. This is the central issue
in the development of fast schemes. For more details and extensions of this tech-
nique to more general collision interactions and discrete velocity models we refer
to [90], [89].

5.1 - Carlemann representation and reduction to bounded domains

Truncation of the Boltzmann collision operator in a bounded domain is the ne-
cessary preliminary stage of any deterministic method. Here we shall approximate
the collision operator starting from a Carlemann-like representation which con-
serves more symmetries of the collision operator when one truncates it in a bounded
domain.

The basic identity we shall need is

1 1 2
(81) 5 J F(|u|a—u)da:W J 0@ -u+ |x") F(x) de.

s R

Using (81) with w = g = v — v, and performing the change of variables ¥ — x/2 and
V. — Y =V, — U — & We can write

_ gd-1 x-@+y 1 .
=2 [ [ Bl -GEnp) o e

weR? yeRr?

Jfo+y f+a)—fo+ax+y) f@)dedy.

Now let us consider the bounded domain Dy =[ — T, T1 (0 < T < +00). From now
on let us write

N 2d—-1

x~(9c+y))
¢ + yl

o] + |
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For VHS molecules we have

- 2d-1
Ba,y) = ———=Culr +y|"
|z +y

so that Maxwell molecules (a = 0) in dimension d = 2 and Hard Spheres (¢ = 1) in
dimension d = 3 correspond simply to constant values.

Next we have to truncate the integration in x and y without affecting the
action of the operator for compactly supported functions. Thus we set them to
vary in Bg, the ball of center 0 and radius S. For a compactly supported function f
with support Bg, we take S = 2R in order to obtain all possible collisions. In fact
we have

o < o + [y* = |z + y* = gI” < @RY,

thus || < 2R and similarly we get |y| < 2R.
The operator now reads

(82) QR(f, )= J J B,y - 1) [f @0+ ) f0+2) —fot+ w4+ ) f0)] dedy,

xeBop yGBZR

with v € B 5. The interest of this representation is to preserve the real collision
kernel and its invariance properties.

Remark 6. Let us recall that in the classical spectral method it is enough
to take T > (3 + V2)R/2 to prevent intersections of the regions where f is dif-
ferent from zero. The operator (82) requires a slightly larger periodization since
the arguments of the integrands are contained into By, 55, instead of By, - In
fact we have that |x| < 2R and |y| < 2R imply |ec+y[> =[x +|y|* < 8R?
(thanks to the orthogonality condition x -y = 0 consequence of the § function)
and then |x+y| <2V2R. From this we get |v+x+y| <|v| + |z +y| < V2R
+2v2R = 3V2R. In this case we need to take T > (3 4+ V2)R/\/2 as a bound for
the periodization.

5.2 - Spectral methods

Now we use the representation Q% to derive the spectral methods. The main
difference compared to the usual spectral method is in the way we truncate the
collision operator.
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Following the same computation as in the classical spectral method but using
representation (82) we obtain the following set of ordinary differential equations on
the Fourier coefficients

s N
) VO_ S pamjifu. k=-N...N
Tk

where now [f(l, m) = fl,m) — p(m,m) with

B, m) = J J B, y) 8 - y) e eV da dy.

x€Bop YEBar

In the sequel we shall focus on f, and one easily checks that (I, m) depends only on
2], || and |l - m|.

Note that the classical way to truncate the Boltzmann collision operator for
periodic functions, presented in Section 3, originates the following form of the kernel
modes (63) in the x, y notation

'Eusual(l7 m) = J J B, y) o(a - W L {jory<ory (€7 €Y — ™ ] du dy.

x€Bar YEBar

One can notice that here x and y are also restricted to the ball Bor but the condition
|+ y| < 2R couples the two modulus, such that the ball is not completely covered
(for instance, if « and y are orthogonal both with modulus 2R, the condition is not
satisfied, since |x 4 y| = 2v2R).

5.3 - Fast algorithms

The search for fast deterministic algorithms for the collision operator, i.e. algo-
rithms with a cost lower than O(N2¢*) (with typically x = 1), consists mainly in
identifying some convolution structure in the operator (see for example [109], [98]).
If this is trivial for the loss part of the operator, for the gain part this is rather
contradictory with the search for a conservative scheme in a bounded domain, since
the boundary condition needed to prevent for the outgoing or ingoing collisions
breaks the invariance.

The aim is to approximate each (I, ) by a sum

A
(84) Bl,m) = " ay(Da,(m).
p=1
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This gives a sum of A discrete convolutions and so the algorithm can be computed in
O(A N%log, N) operations by means of standard FFT techniques [26]. To this pur-
pose we shall use a further approximated collision operator where the number of
possible directions of collision is reduced to a finite set.

We start from representation (82) and write « and y in spherical coordinates

QR(f,f)(v):i J J ole - ) dede

eeSt 1 gres?!

R R
: { J J P2 TE B, P f @+ ple) fw + pe) — f(v + pe + ple) f)] dpdp' }
“R

-R

Let us denote with A a discrete set of orthogonal couples of unit vectors (e, ¢’), which
is even, i.e. (¢,¢') € A implies that ( — e, '), (e, —¢’) and ( — ¢, —¢’) belong to A (this
property on the set A is required to preserve the conservation properties of the
operator). Now we define Q% to be

R R

®) QA0 = j { J Jp‘H W2 Blp, ) [fw + pe) £ + pe)

(e,e)eA -R —-R
(86) —fw+pe+p'e)fw)dp dﬂ’} dA

where d.A denotes a discrete measure on A which is also even in the sense that
dA(e,e) = dA(—e,e') = dA(e, —¢') = dA( — e, —¢'). It is easy to check that @7 has
the same conservation properties as Q.

We make the decoupling assumption that

(87) B, y) = a(|z) b(|y]).

This assumption is obviously satisfied if B is constant. This is the case of
Maxwellian molecules in dimension two, and hard spheres in dimension three (the
most relevant kernel for applications). Extensions to more general interactions are
discussed in [89].

We describe the method in dimension d = 3 with B satisfying the decoupling
assumption (87) (see [89] for other dimensions). First we change to spherical co-
ordinates

R R
fitm) :i J J e - ¢) [J pa(p)e”? dﬂ] “ P b(p) e’ ) dp’] de de'

ecS? ¢'eS? —R -R
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and then we integrate first ¢’ on the intersection of the unit sphere with the plane e*,

/)’(l,m):% J ¢%,a(l'6)[ J gb}n},b(mw’)de’] de

ecs? ¢ cS?net

where
2 R
Brals) = J pap)e™dp, Gy (s) = J pb(p) e dp.
_R _R

Thus we get the following decoupling formula with two degrees of freedom

B, m) = J Gl )Wy (11,.(m)) de

q2
ecoy

where %i denotes the half-sphere and
w%’b (11,.(m)) = J ‘ﬁib (|- (m)| cos 0) dO.
0

In the particular case where B =1 (hard spheres), we can compute the functions ﬁg
and 3

#(s) = RZ [2 Sinc(Rs) — Sinc®(Rs /2)], i (s) = J¢§ (s cos6) db.
0

Now the function e — ﬁm(l : e)z//%ﬁb (11,-(m)) is periodic on S. Taking a spherical
parametrization (0, ) of e € Si and taking for the set A uniform grids of respective
size My and M, for 0 and ¢ we get

My.M
B, m) ~ m ZO ap,q(l)aé;ﬁq(m)
P.q=

where

WD) = Spall- €000 Opg(m) =Yy (Lo (M)

(o

and (0, 9,) = (p n/Ml,qn/Mg).

We shall consider this expansion with M = M; = M, to avoid anisotropy in the
computational grid. The computational cost of the algorithm is then O(M2N?3 log, N),
compared to O(N®) of the usual spectral method. Thus we require M2 log N < N3 in
order to speed up the schemes.
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5.4 - Error estimates

In order to give a consistency result, the first step will be to prove a consistency
result for the approximation of Q% by Q%M = QF+ where Ay, is the uniform
spherical grid with M points for each angular coordinate (see [89]). Here H’ ]’f) denotes
the periodic Sobolev space on D;,.

Lemma 1. The error on the approximation of the collision operator is spec-
trally small, i.e. for all k > d — 1 such that f € H®,

- RM ka”H
1QFCf/,./)— Q@ (f, )l £Ct ——7—

For the second step we use the consistency result ([106], Corollary 5.4) on the
operator @, which we quote here for the sake of clarity.

Lemma 2. Forallk € N such that f € Hf

C
1QRCA — PyQ(fwf)lze < v (I F s + Qv o)l ).

Combining these two results, one gets the following consistency result of spectral
accuracy [89]

Theorem 3. Forall k > d — 1 such that f € H”

R Al ¢
QA1) = PuQ™ (v flze < Co e+ r (g + 1Q° vl ).

Finally let us focus briefly on the macroscopic quantities. In fact here no additional
error (related to M) occurs, compared with the usual spectral method, since the ap-
proximation of the collision operator that we are using is still conservative. Following
the method of [106], Remark 5.4, we have the following spectral accuracy result

QEMCE10.0) — (PR@(fi, 0, 0) 5 < v Il (1 Pl + 1QE¥ v ol ).

where ¢ can be replaced by v, [v|>. Thus the error on momentum and energy is in-
dependent on M and it is spectrally small with respect to N.

5.5 - Numerical results

In this section we will present numeral results for the space homogeneous
equation which show the improvement of the fast spectral algorithms with respect to
the classical spectral methods. Extension to nonhomogeneous situations follows
straightforwardly (see [45] for more details).
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5.5.1 - Test #1: 2D Maxwell molecules

We consider the same test problem #1, namely the exact solution for Maxwell
molecules in 2D, as for the standard spectral method. We present the results ob-
tained by the classical spectral method and the fast spectral method with different
number of discrete angles. In Table 5, we give a quantitative comparison of the
numerical error at time 7,4 = 1.

TABLE 5. — Comparison of the L' error in 2D between the classical spectral method and the
fast spectral method with different numbers of discrete angles and with a second-order
Runge-Kutta time discretization at time Ty = 1

Number  Classical  Fastspectral  Fastspectral  Fast spectral
of points spectral with M =4 with M =6 with M =8

8 0.02013 0.02778 0.02129 0.02112
16 0.00204 0.00329 0.00238 0.00224
32 1.405E-5 2.228E-5 1.861E-5 1.772E-5

5.5.2 - Test #2-#3 : 2D Maxwell molecules and 3D VHS molecules

We now consider again the same tests as for the classical spectral method, namely
the sum of two Gaussian, both in 2D and 3D velocity space. This tests are used to
check the speed-up of the fast algorithm compared to the classical one. The results
are given in Tables 6 and 7.

TABLE 6. — Comparison of the computational time in 2D between the classical spectral
method and the fast spectral method with different numbers of discrete angles and with a
second order Runge-Kutta time discretization

Number  Classical  Fastspectral  Fastspectral  Fast spectral
of points spectral with M =4 with M =6 with M =8

16 2 sec. 40 1 sec.15 1 sec. 70 2 sec. 30
32 38 sec. 01 5 sec. 55 8 sec. 47 11 sec. 10
64 616 sec. 35 sec. 50 54 sec. 66 71 sec. 27

TABLE 7. — Comparison of the computational time in 3D between the classical spectral
method and the fast spectral method with different numbers of discrete angles and with a
second-order Runge-Kutta time discretization

Number  Classical Fast spectral ~ Fast spectral Fast spectral with
of points spectral with M =4 with M =6 M =38
16 1 min. 14 sec. 3 min. 31 sec. T min. 45 sec. 13 min. 44 sec.

32 118 min. 02 sec. 50 min. 31 sec. 105 min. 19 sec. 186 min. 18 sec.
64 125 h 54 min. 8 h45min. 22sec. 21 h 39 min. 35 h 01 min. 28 sec.
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PaArt 11
Probabilistic methods

6 - Random sampling

In this section we give a brief review of random sampling, which is at the basis of
several Monte Carlo methods [73]. The most commonly used Monte Carlo methods
for the simulation of the collision step, namely Nanbu-Babosky’s and Bird’s schemes
[9], [92] will be introduced later.

6.1 - Random number generators

Random sampling assumes that one is able to sample from a uniformly dis-
tributed random number between 0 and 1. In this section we briefly review some on
the main techniques to generate sequences of (pseudo) random numbers with the aid
of a computer.

Real random numbers can not be generated by a computer because of several
reasons, among which we mention

o floating points are used as approximation or real numbers;

e areally random sequence can not be generated even at a discrete level (it would
require an infinite memory).

Random number generators produce a sequence of numbers which satisfies some
statistical properties of true random sequences. In particular, one wishes to gen-
erate a sequence &, which is

¢ uniformly distributed (approximate Lebesgue measure in [0, 1], the frequency
histogram approximates a uniform distribution, see Figure 16);

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 16. — Histogram of a pseudorandom sequence. N = 10000, number of bins (subintervals
of [0, 1] used to realize the frequency histogram) is 50



196 LORENZO PARESCHI and GIOVANNI RUSSO [52]

1 1
H HE F S
T Y T
: ] : A R |
L | | i
P i
o8l :
o7t 4
o6F ¥
H
osf § : Y T o
A T S A B
H . -y
L T i
03} - : . i i : ]
021,

WP |
e T

LI L N LRI S o P L
1 0 0.1 02 0.3 04 05 0.6 0.7 0.8 0.9 1

Fig. 17. — Examples of good (left) and bad (right) pseudo random number generators

¢ the elements of the sequence are uncorrelated (for example absence of pairwise
correlation means that (&,, &, 1) should approximate Lebesgue measure in [0, 1]2,
see Figure 17), absence of three-term correlation means that (&, &1, ¥,,42) should
approximate Lebesgue measure in [0, 1]3), and so on);

e they have to be computed quickly.

A family of commonly used generators are the so-called Linear Congruential
Generators (LCG) defined by the recurrent relation

(88) Lyy1 = (@, +c) mod m, n >0,

with xy, a,c,m € IN.
Dividing «,, by m one obtains an approximation of the uniform distribution in [0, 1].
Clearly x, is a sequence with period at most m, therefore m has to be large enough.
The quality of the result depends on the choice of a, ¢, m. A good choice, used by
several computer codes is m = 231 — 1,4 = 7, ¢ = 0. Further information on ran-
dom number generators can be found, for example, in [73] or in [75].

6.2 - Monovariate distribution

The first sampling technique we describe is the so-called inverse transform method.

Let x € R be a random variable with density p.(x), i.e. p.(x) > 0, Jpx(oc) de =1,
Q
and let £ be a uniformly distributed random variable (number) in [0, 1].
Then the relation between x and ¢ can be found by equating the infinitesimal
probabilities

pele)de =1-dé&.
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By integration one has
X
(89) Py(x) = J p(y) dy =¢,

where P,(x) is the distribution function corresponding to the random variable x, i.e.
the primitive of p,(x). Then the random variable x can be sampled by sampling a
uniformly distributed variable £, and then solving equation (89) with respect to «

(90) x =P L.

Example 3. (Sampling from an exponential)
Let p,(x) =exp(— x), € > 0 (see Figure (18)). Then

Py(x) = JeXp(— ydy =1—exp(— x)=¢,
0

and therefore
r = — ln (1 - é)v

orx = —1In¢ because 1 — & is also uniformly distributed in [0,1].

Unless otherwise stated, in this chapter we denote by &, &;, &, and so on, samples
from uniformly distributed random numbers in [0, 1].

We will consider density functions defined on the whole real line. If the support of
the density is strictly contained in R, as in the previous example, the density function
can be defined by using the Heaviside @-function. In the example above one could
define p,(x) = exp(— x)O(x),x € R.

p.(x)

Fig. 18. — Sampling from an exponential distribution
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It may be expensive to compute the inverse function, since in general a nonlinear
equation has to be solved. In such cases, a different technique, the so-called accep-
tance-rejection, can be used.

Let « be a random variable with density p.(x), x € R. We look for a function

w(x) > p.(x) Ve € R whose primitive W(x) is easily invertible. Let A = J w(x) d
and denote with & and &, uniformly [0, 1] random numbers. %

Algorithm 1 (acceptance-rejection)

1. Sample from w(x)/A by solving the equation W(x) = Ay;
2. ifw@)és < pi(x) them accept the sample, else reject the sample and repeat step 1.

In Figure 19, # has been sampled from w(x). It will be accepted with probability
equal to the ratio p(n)/w(n).

The efficiency of the scheme depends on how easy it is to invert the function W(x)
and how frequently we accept the sample. The fraction of accepted samples equals the
ratio of the areas below the two curves p,(x) and W(x) and it is therefore equal to 1/A.

Sometimes a density function is given as a convex combination of simpler density
functions

M
ple) = Z w;p; (),
i1

where w; are probabilities (i.e. w; > 0, Zi‘i 1 w; = 1), and p;(x) are probability den-
sities. In that case the sampling can be performed as follows

N
0.5 R

0.4r-

Fig. 19. — Use of the acceptance-rejection technique to sample from a random variables with
a complicated density function p(z)
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Algorithm 2

1. select an integer i € {1,...,M} with probability w;;
2. sample x from a random variable with density p;(x).

Because of the relevance in several applications, step 1 of the previous algorithm
deserves an extended discussion.

6.3 - Discrete sampling

Let us suppose that k € {1,...,M} is an integer random number, with prob-
abilities {wy,}. In order to sample k£ with probability w;, we can proceed as follows.
Divide interval [0, 1]in M intervals, i-th interval being of length w;, extract a uniform
[0, 1] random number ¢, and detect the interval k to which & belongs in the following
way (see figure (20).

Fig. 20. — Discrete sampling from given probabilities by binary search

Algorithm 3 (discrete sampling 1)

1. Compute Wy, = Zle wg, k=1,....M, Wy=0;
2. find the integer k such that Wy_; < & < Wy,

For an arbitrary set of probabilities {w; }, once W; have been computed, step 2 can
be performed with a binary search, in O(In M) operations.

Example 4. (Sampling a geometrically distributed variable)
As an application of the above procedure, let us show how to sample from a
geometrically distributed random variable. Let us take © € (0,1), and assume that

(91) we=0—-07F, k=1,... 0cc.
Then it is

k
(92) We=> w=1-7"

j=1

The integer k that satisfies the condition Wj,_, < & < Wy, is obtained as

S LTSI
Int

where |x| denotes the integer part of x.
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Fig. 21. — Discrete sampling from given probabilities by the rejection technique

In the general case in which a simple explicit expression of Wy, is not known, the
approach outlined above is efficient if the numbers W), can be computed once, and then
used several times, and if M is not too large. If the number M is very large and the
numbers wy may change, a more efficient acceptance-rejection technique can be used,
if at least an estimate w such that w > w;, 1 = 1,..., M is known (see Figure 21).

Algorithm 4 (discrete sampling 2)

1. Select an integer random number uniformly in [1,... M], as
k=|M&]+1.

2. if wiéy < W then accept the sampling else reject it and repeat point 1.

Clearly the procedure can be generalized to the case in which the estimate de-
pends on k, i.e. w, > wy, k=1,..., M.

The above technique is of crucial relevance in the Monte Carlo simulation of the
scattering in the Boltzmann equation.

6.3.1 - Sampling without repetition

Sometimes it is useful to extract » numbers, n < N, from the sequence 1,..., N
without repetition. This sampling is often used in several Monte Carlo simulations. A
simple and efficient method to perform the sampling is the following.

Algorithm 5 (sampling without repetition)
1. setind; =4,i1=1,...,N;
2. M =N;
3. fori=1ton
o setj= |ME| + 1, seq; = ind;,
o ind; =indy, M =M -1
end for

At the end the vector seq will contain » distinct integers randomly sampled from
the first N natural numbers. Of course if n = N, the vector seq contains a random
permutation of the sequence 1,...,N.

6.4 - Multivariate distributions

Suppose we want to sample a n-dimensional random variable & = (x1, ..., %),
whose probability density is p,.(x).
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If the density can be written as a product of densities of scalar random variables
(marginal probability densities), i.e. if

D@1, ... ) = Pr(x)pa(@z) - - - P y),

then the n scalar random variables x;, . .., x, are independent, and the problem is
equivalent to sampling » monovariate random variables.

Ifthisis not the case, then one may first look for a transformation 7' : © — n = T'(x)
such that in the new variables the probability density is factorized, i.e.

(93)  pery,...x)deidws . .. dw, = Py, )Py, ) - - - Py, (1, )dnydigy . .. dy,,,

then sample the variables 7, ...7,, and finally compute x by inverting the map 7',
ie.x=T71().

In some cases such transformation can be readily found. In other cases it is more
complicated. There is a general technique to find a mapping T : x — & where
E=(&,...,&,) denotes a uniformly random variable in [0,1]". Of course such
transformation is not unique, since we only impose that its Jacobian determinant
J =|0&/0x| is a given function p,(x1, ..., xy).

An explicit transformation is constructed as follows

kY1

Ti(x1) = J dn daxg . ..da, p.(, ... %),

J dn | dus...dx,pu(er,y, ... 2,)

o0 )

Jdn dws ... day, pe(ey,n, ... &)

Jdn J diy . .. da, Py, Xen. .., %)

o0 )

J dn J day ... da, pe(ar, L1, .. )

x}l
J dnpy(ey,....n)

Ty, ..., xn) = 7‘00

oo

J dnps(@1,...,1)

—00
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It is straightforward to check that |0&/0x| = py(ay,. .. x,). Furthermore, the
computation of the inverse requires the solution of a triangular system: find x; by
solving the first equation of the system, substitute x; in the second equation, and
solve it for a2, substitute x; and a3 in the third equation and solve for x3, and so on,
therefore the systems of equations is equivalent to » single nonlinear equations for
X1y...,Lp.

Remark 7. This transformation is used to map an arbitrary measure with
density p,(x) into the Lebesgue measure on the unit cube [0,1]". This can be used,
for example, to approximate a continuous measure by a discrete measure, once a
good discrete approximation of the Lebesgue measure is known.

Let us assume that we have a “good” approximation of the uniform measure
obtained by N suitably chosen points 5, € [0,1]",1=1,...,N,

=zl =

N
Z o — 1) = Lo (),
)

then

=z~

N
Z 0@ — x¢y) = Pp),
=1

where xqy = T~ (), i =1,...,N. This technique can be effectively used to obtain
good quadrature formulae to compute integrals in highly dimensional space, and is
the basis of the so called quasi-Monte Carlo integration.

If the inverse transform map is too expensive, then the acceptance-rejec-
tion technique can be used, exactly as in the case of the monovariate dis-
tribution. More precisely, let x be a random variable with density p,(x), x € R".
Then we look for a function w(x) > p.(x) Ve € R" which is “easy to sample”. Let

A= J w(x) dx. Then the algorithm works as follows

R"

Algorithm 6
1. sample x from w(x)/A by any known method,

2. ifwx)é < pu(x) then accept the sample, else reject it and repeat step 1.

As a first example we show how to sample from a Gaussian distribution in dif-
ferent ways.
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Example 5. (Sampling from a Gaussian)
o Let x be a normally distributed random variable with zero mean and unit
variance,

(m) — Lex (_ %’_2)
PO =7\ "2 )
In order to sample from p one could invert the distribution function P(x)
= (1 + erf (x/V2))/2, where

X
2
erf (x) = \/—Ejexp( — ) dt
0
denotes the error function. However the inversion of the error function may be ex-
pensive.
e An alternative procedure is obtained by the so called Box-Muller method de-

scribed below. Let us consider a two dimensional normally distributed random
variable. Then

1 xz +y2
p(,y) = 5 exp (— 5 ) = p@)py).
If we use polar coordinates
(95) x =pcosh, y=psinb,
then we have
1 2?4 52 1 P2
Eexp (— 5 ) dedy = %exp(— E) pdpd0.

Therefore in polar coordinates the density function is factorized as p,dppgdo,

with
2

eos(-E)a 21

1
pPog==—, 0<0<2rn
2n

The random variables p and 0 are readily sampled by inverting P, and Py, t.e.

P=V _21néla 0:277:527

and, from these x and y are easily obtained.

o A slightly move efficient way to sample from a 2D Maxwellian is obtained by
avoiding the use of trigonometric functions.

More precisely, the algorithm is obtained as follows and it is based on sampling
from the unit circle using rejection (see Figure 22).
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—

-1

Fig. 22. — Square and unit circle

Algorithm 7 (Gauss 2)

Losetv, =25 -1, v,=25—1, s=vi+02
2. if = s < 1then (accept)
r=/Togsfs
Vp = V¥, Uy =VyT
else (reject) return to point 1.

At the end of the procedure we have two points sampled from a Normal(0,1)
distribution (i.e. a Gaussian distribution with zero mean and unit variance). Of
course, if the random variable has mean u and standard deviation o, then « and y will
be scaled accordingly as

x=pu+apcost, y=u+apsinf.

Finally we show how to sample a point uniformly from the surface of a sphere.

Example 6 (Sampling the unit sphere).
A point on a unit sphere is identified by the two polar angles (p, 0),

2 =sin 0 cos g,
Y =sin @sin g,

2z =cos 0.

Because the distribution is uniform, the probability of finding a point in a region is
proportional to the solid angle
_do _sin0df dp

P=5="2 ‘o
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and therefore

dy
% — déh
sin 6 df
5 = dés.
Integrating the above expressions we have
® :271517

0 = arccos (1 — 2&5).

7 - Direct Simulation Monte Carlo (DSMC) methods

205

In this paragraph we will describe the classical DSMC methods due to Bird and

Nanbu in the case of the spatially homogeneous Boltzmann equation.

We assume that the kinetic equations we are considering can be written in the form

of 1

(96) a1 = 5 LA — ]

where u > 0 is a constant and P(f, f) is a non negative bilinear operator. In parti-

cular, for both Kac equation and Boltzmann equation for Maxwellian molecules we

have P(f,f) = Q*(f, f).

Example 7.
e Forthe Kac equation we have

27 400 00

1
00 PEPO =y | [Frfaddndn u=p= [ fo).

0 —o0 e

therefore it it is of the form (96).

e The Boltzmann equation for Maxwell molecules is also of similar form. We

have, in fact,
(98) P(f, w) = J Jbo( cos0) f(') f@W) dw dw, .
R3S?

The case of general kernels with cut-off will be discussed later.
7.1 - Nanbu’s method (DSMC no time counter)

We assume that f is a probability density, i.e.

+00

p= Jf(v,t)dv: 1.

—00
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Let us consider a time interval [0, .« ], and let us discretize it in npgr intervals of size
At. Let us denote by f"(v) an approximation of f (v, n4t). The forward Euler scheme
writes

1 ({ A\ | pAEPGEY)
(99) f"+_<1 8>f+6 Y

Clearly if f™ is a probability density then P(f",f")/u is a probability density.
Moreover if A4t < ¢/u M) then also f"*1 is a probability density since it is a convex
combination of probability densities.

From a physical point of view we can give the following interpretation to the
above equation. A particle with velocity v; will not collide with probability (1 — u4t/e),
and it will collide with probability u4t/e, according to the collision law described by
P(f", f*)).

7.1.1 - Maxwellian case

Let us consider first kinetic equations for which P(f, f) = Q*(f, f), i.e. the col-
lision kernel does not depend on the relative velocity of the particles.
An algorithm based on this probabilistic interpretation was proposed by Nanbu.

Algorithm 8 (Nanbu for Maxwell molecules)

1. compute the initial velocity of the particles, {v?,i=1,...,N},
by sampling them from the initial density fo(v)

2. forn = 1to nror

fori =1to N
with probability 1 — udt/e
o set vyt =
with probability uAt/e

o select a random particle j
o compute v, by performing the collision
between particle 1 and particle j

o assign v/ = v,
end for

end for

() This is related to (and is more restrictive than) the stability condition for Forward
Euler method for evolutionary equations.
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Note that in the algorithm we check for a possible collision of each individual
particle. It would be more efficient to compute the expected number of collisions, and
then to perform them. Furthermore, in this way we reduce the fluctuations in the
number of collisions, obtaining a simulation with a reduced variance. The expected
number of particles that collide in a small time step 4t is Nudt/e, and then the ex-
pected number of collision pairs is NuAt/(2¢).

The algorithm above is not exactly conservative, i.e. energy is conserved only in
the mean, but not at each collision. A conservative version of the algorithm was in-
troduced by Babovsky [4]. Instead of selecting single particles, independent particle
pairs are selected, and conservation is maintained at each collision. A conservative
version of Nanbu-Babovsky algorithm is illustrated below.

Algorithm 9 (Nanbu-Babovsky for Maxwell molecules)

1. compute the initial velocity of the particles, {v9,i=1,...,N},
by sampling them from the initial density fo(v)
2. forn = 1to nror
gwen {v¥,1=1,...,N}
o set N, = Iround (uN 4t/ (2¢))
o select N. pairs (1,7) uniformly among all possible pairs,
and for those
— perform the collision between 1 and j, and compute
v; and v; according to the collision law
- set vt =, vj’-”l =
o set v’i“’“ = v} for all the particles that have not been selected
end for
In the above algorithm, the N, pairs are selected by sampling 2N, integers
without repetition among the first N natural numbers. Here by Iround (x) we denote
a suitable integer rounding of a positive real number x. For example

€] +1 with probability «— |x]

Iround (x) = { o] with probability [x] +1—2

where |x| denotes the integer part of .

Remark 8.

e Clearly the above algorithm can be applied to the Kac equation and to the
homogeneous Boltzmann equation with Maxwellian molecules. The only dif-
ference in the two cases consists in the computation of the post-collisional
velocities.
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e Note that in Nanbu-Babovsky algorithm we are forced to take collision by
pairs. This may represent a problem since the CFL condition At < ¢/u does not
guarantee that 2N, < N when N 1is an odd number. This drawback, which can be
significant when we have a small number of particles, can be overcome simply
taking the slighty more restrictive CF'L condition At < e(N — 1)/(uN)when N is odd.

o The probabilistic interpretation breaks down if At/e is too large, because the
coefficient of f™ on the right hand side may become negative. This implies that the
time step becomes extremely small when approaching the fluid dynamic limait.
Therefore Nanbu method becomes very inefficient near the fluid regime.

Post-collisional velocities

When the above scheme is applied to the Kac equation, the new velocities v and v]’-
are computed as

v; = v;cos 0 —vjsind,  v; = v;sin 6+ v; cos 0,
where 6 = 27¢ and ¢ denotes a random number, uniformly distributed in [0, 1].
For Maxwell molecules one has

;o vty v - ,_ Vit |vi— v
(100) V=gt e, = o,

where w is chosen uniformly, according to:

2D
cos 0
(101) o= (sin@)’ 0 = 27n¢,
3D
cos ¢sin 6
(102) o= | singsinf |, 0=arccos@& —1), ¢=2nrs,,
cos 0

where &;, & are uniformly distributed random variables in [0, 1].

7.1.2 - Variable Hard Sphere case

The Nanbu-Babovsky algorithm has to be modified when the scattering cross
section is not constant. To this aim we shall assume that the collision kernel satisfies
some cut-off hypothesis, which is essential from a numerical point of view.

We will denote by Qx( £, f) the collision operator obtained by replacing the kernel
B with the kernel By

Bs(jv —v.|) = min{B(jv — v.]),2}, 2 >0.
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Thus, for a fixed X, let us consider the homogeneous problem

o 1

(103) a1 = 5 =)

The operator Qx=(f,f) can be written in the form P(f, f) — uf taking

(104)  P(f.f) = Qi(f.f) +f@) j j (2~ Bx(o — 0. f@.) dwdv.,

RS S2

with ¢ = 4nXp and

Qi(f.f) = J J Bs((v — 0.]) £ F@)) deo .

R? S?

In this case, a simple scheme is obtained by using the acceptance-rejection
technique to sample the post collisional velocity according to P(f,f)/u, where
1 =4nXp and X' is an upper bound of the scattering cross section.

Such an approach, however, has the drawback of requiring a choice of 2, and an
estimate of the approximation introduced by 2. In practical Monte Carlo simula-
tions, such a problem is automatically solved, since one can compute an estimate of
the maximum scattering cross section, based on the actual particle velocities.

The conservative DSMC algorithm for VHS collision kernels can be written as

Algorithm 10 (Nanbu-Babovsky for VHS molecules)

1. compute the initial velocity of the particles, {v?,i=1,...,N},
by sampling them from the initial density fo(v)
2. forn = 1tonror
gwen {vi,i=1,...,N}
o compute an upper bound X of the cross section
o set N, = Iround (NpZAt/(2¢))
o select N, dummy collision pairs (1,7) uniformly
among all possible pairs, and for those
— compute the relative cross section By = B(|v; — vj|)
-ifXé< Bij
e perform the collision between 1 and j, and compute
v; and v; according to the collisional law
o set vt =), v}”l =
o set v;-?“ =} for all the particles that have not collided
end for
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7.1.3 - Computational considerations

The upper bound X should be chosen as small as possible, to avoid inefficient
rejection, and it should be computed fast. The ideal choice of 2 would be

2 =Bnx = mi?xB(\vz- — ;).

However, this choice is too expensive, since this computation would require an O(N?)
operations.
An upper bound of By, is obtained by taking X' = B(2Av), where

N N 1
(105) Av:miax|vi—v|, v::]vzi:vi'

For general collision kernel, the algorithm is slightly modified by introducing the
angular dependence.

The cost of the method is proportional to the number of dummy collision pairs,
that is O(uN 4t/2). Thus for a fixed final time 7" the total cost is independent of the
choice of At = T'/n. However this is true only if we do not had to compute X (like in
the Maxwellian case). In fact, the cost of the computation of the upper bound %' is
O(N), which may be much larger than O(uN 4t/2).

A possible way to overcome this difficulty is to update at each time step the value
of the upper bound 2 only if it increases. This may be done as follows.

During the computation of the collision between particles ¢ and j, let v; and v;
denote the new particle velocities. Then the quantity 4v is updated according to

(106) Av = max (4v, [v; — V|, |v; — V).
At the end of the collision loop, the upper bound on the cross section is computed as
2 =0@4M).

In space nonhomogeneous calculations, assuming that there are several collisional
time steps during a convection time step, usually the estimate 2 is computed at the
beginning of the collision step, and then updated with the formula above. Using this
formula, however, Av can not decrease, in contrast with what one expects when a
system relaxes to equilibrium. This expression can become larger than necessary. For
very small ¢ it could be worth computing it again, in order to have a better estimate.

7.2 - Bird’s method (DSMC time counter)

The method is currently the most popular method for the numerical solution of
the Boltzmann equation. It has been derived according to physical considerations for
the simulation of particle collisions.
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7.2.1 - Maxwellian case

Let us consider first the Maxwellian case. The average number of collisions in a
short time step At is given by
Nudt
=5
This means that the average time between collisions At, is given by
At 2e
N. uN’

Now it is possible to set a time counter, ¢,, and to perform the calculation as

N

Aty =

follows

Algorithm 11 (Bird for Maxwell molecules)

1. compute the initial velocity of the particles, {v?,i =1,... N},
by sampling them from the initial density fo(v)

2. set titme countert, =0

set At, = 2¢/(uN)

4. forn = 1to nror

®

o repeat
-- select a random pair (i,7) uniformly within all possible N(N — 1)/2 pairs
- perform the collision and produce vj, v;
- set U = v}, =V}
-- update the time counter t, = t. — At log (&)
until t, > (n + 1)4t
osetvy™t =v;,i=1,...,N
end for

Remark 9.

o The time counter is updated by a random time step, which has an exponential
distribution, and an average At.. A very similar result would be obtained if the time
counter is updated by the average time step At..

e The above algorithm is very similar to the Nanbu-Babovsky (NB) scheme for
Maxwellian molecules or for the Kac equation. The main difference is that in NB
scheme the particles can collide only once per time step, while in Bird’s scheme
multiple collisions are allowed. This has a profound influence on the time accuracy of
the method. In fact, while the solution of the NB scheme converges in probability to the
solution of the time discrete Boltzmann equation, Bird’s method converges to the so-
lution of the space homogeneous Boltzmann equation. In this respect it may be con-
sidered a scheme of infinite order in time. For the space homogeneous Boltzmann
equation, the time step At, in fact, can be chosen to be the full time span tyax.
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7.2.2 - Variable Hard Sphere case

‘When a more general gas is considered, Bird’s scheme has to be modified to take
into account that the average number of collisions in a given time interval is not
constant, and that the collision probability on all pairs is not uniform. This can be
done as follows. The expected number of collisions in a time step 4t is given by

_ NpBAt

N,
4 28 I

where B denotes the average collision frequency.
Once the expected number of collisions is computed, then the mean collision time
can be computed as

=2 2
N. NpB

The N. collisions have to be performed with probability proportional to Bj

= B(|v; — vj|). In order to do this, one can use the same acceptance-rejection tech-

nique as in Nanbu-Babovsky scheme. The drawback of this procedure is that com-

puting B would be too expensive. A solution to this problem is to compute a local time

counter 4t as follows. First select a collision pair (¢, ) using rejection. Then compute

This choice gives the correct expected value for the collision time

Bi' 2¢
Mo = At ! =—.
‘ 1§;:§N ! lei<.7‘§N Bij NpB

Bird’s algorithm for general VHS molecules can therefore be summarized as:

Algorithm 12 (Bird for VHS molecules)

1. compute the initial velocity of the particles, {v9,i=1,...,N},
by sampling them from the initial density fo(v)
2. set time counter t, = 0
3. forn = 1to nror
o compute an upper bound X of the cross section
o repeat
-- select a random pair (i,7) uniformly within all possible N(N — 1)/2 pairs
-- compute the relative cross section By = B(jv; — vj|)
- if 2¢ < By
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o perform the collision between i and j, and compute
v; and v; according to the collisional law
e set v; = v}, = v
e set Atij = 28/(NpBij)
o update the time counter t. = t. + At;;
until t, > (n + 1)4t
osetvy™t =v;,i=1,...,N

end for

Remark 10.

o At variance with NB scheme, there is no restriction on the time step At for
Bird’s scheme. For space homogeneous calculations At could be chosen to be the
total computation time tmax. However, the scheme requires an estimate of Buax
and this has to be updated in time. This can be done either by performing the
estimate at certain discrete time steps as in NB scheme, or by updating its value
at every collision process. A possible solution in O(1) operations is to check
whether the new particles v;,v; generated at each collision increase the quantity
Av = max; [v; — .

e As for Nanbu-Babovsky method even Bird’s method becomes very expensive
and practically unusable near the fluid regime. In this case the collision time be-
tween the particles Aty becomes very small, and a huge number of collisions is
needed 1n order to reach a fixed final time tpax.

8 - Time Relaxed discretizations

A different family of schemes can be constructed, with the purpose of obtaining
a Monte Carlo method which is effective even near the fluid dynamic limit. Such
schemes are based on a different approach for the time discretization of the
equation. These schemes are based on the Wild sum expansion of the solution, and
have been briefly described in Section 4.2, when discussing time discretization
techniques for deterministic schemes. Here we give a more detailed analysis of
such schemes.

8.1 - Wild sum expansion

It is the starting point for the construction of TR schemes.
Consider the differential system

107 T _L1p( )~
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with initial econdition
f@,0) =fo(v),

1> 01s a constant and P a bilinear operator.
It is possible to show that the function f satisfies the following formal expansion
[132]

0 k
(108) ffy=e "3 (1= ) fi(w).
k=0
The functions f; are given by the recurrence formula for k¥ = 0,1, ...
|
(109) S (@) = Z;P(fhaflcfh)
/7,:

In order to prove such an expansion, we observe that (here we assume that ¢ = 1)

i) = e (B4 ) =P

Now let us define F(v,7) = e'f, with t =1 — e . It is

oF 0 t P(f f )
BN ge=e"
Using the bilinearity of operator P, one has
oF 1
(110) 5 = 7P,

Then one can write the Taylor series in 7 of the function F'. The easiest way is to
assume a formal power series

(111) F= Z fiet.
k=0
By inserting this expansion into Eq. (110), one has

Z(1+k)fk+1r =—P(thr mezm)

=0 m=0

and, equating the coefficients in 7%, one obtains the recurrence formulas (109).

Expressing f in terms of ¥, and making use of the expansion (111), one obtains the
Wild expansion (108).

The coefficient functions f}; that appear in the Wild sum expansion have several
interesting properties, that make them suitable for the construction of numerical
methods that preserve some of the qualitative properties of the exact solution.
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Properties of the coefficients fj

i) Conservation: If the collision operator preserves some moments, then all the
functions f, will have the same moments, i.e. if, for some function ¢(v)

(112) J P(f, N)pw)dv = J £ é) dv,

R? R?

then the coefficients f; defined by (109) are nonnegative and satisfy V& > 0

Jfk¢(v) dv = J fodw) dv.

R3 R?

ii) Asymptotic behavior: If the sequence {fk(”)}kzo defined by (109) is con-
vergent, then (108) is well defined for any value of ¢. Moreover, if we denote by
M) = limy_, o f then

lim f(0,) = M().

Here M(v) is the local (Maxwellian) equilibrium.
If B(Jv — v1],w) < 2'is a bounded scattering kernel section then the BE can be
always written in the above form, where y = 4npX’ is a positive constant s.t.

1> Lyl f1w) = J JB(|v o1l @) f@,) do do,
R? 82

and P(f,f) = QL(f, /) + w—Ls[fD f.

8.2 - Time relaxed (TR) schemes

From the previous representation, it appears natural to introduce the fol-
lowing class of numerical schemes for the time discretization of equation (107)
[51], [105].

(118) [0 =0 -0 R+ M),
k=0

where " = f(nAt), At is a small time interval, and t = 1 — e~/ (velaxed time).

The schemes are obtained by truncating the Wild series (108), and by replacing
the reminder with a Maxwellian, as suggested by the asymptotic behavior of the Wild
sum coefficients f;. Such schemes have the following properties:
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i) Conservation: If the initial condition f° is a non negative function, then f"+! is
nonnegative for any ut/e, and satisfies

J ) do = J Fréw)d.
R3 R3
ii) Asymptotic preservation: For any m > 1, we have

(114) lim " = M@).

pat)e—oo
iii) Accuracy: If supy.,,.{| fi — M|} < C for some constant C = C(v) then
| f(, 4t) — 1 ()| < Cw)™ .

The first two properties are obvious. The third can be proven by observing that

1-1 Z o+ — gl
and therefore k=m+1
@20 - @) =A -0 3 (=Mt <A- 3 |/~ Mtk < Cwpe,
k=m+1 k=m+1

Finally le us notice that the case m = 01is equivalent to the BGK approximation of
the Boltzmann equation [6].

8.3 - Generalizations

Generalized TR schemes can be derived, of the following form
m
£ =Y A ) + A M),
=0

The weights A, = Ax(r) are nonnegative function that satisfy the following prop-
erties

1) Conservation:
m+1

Y A@=1 tel01],
k=0

ii) Asymptotic preservation:

lirr}Ak(r) =0, k=0,...,m

iii) Consistency:

limAi(@)/c =1, lImAu@)/c=0, k=2...m+L
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Some Generalized TR schemes have been considered in [105], [104]. However,
what is the “best” choice of the functions Ay (7) is still an open problem, and subject of
research. Quite remarkably, this optimization problem can be solved for Maxwellian
molecules. Explicit expressions of the weight for the generalized first order TRMC
scheme for the Kac equation have been obtained recently in [29] and read

4 1
(115) Ayt = efpzlt/‘e’ A :g (ef,uzlt/(4e) _ ef,uAt/S), Ast)=1 +§ (ef;tzlt/s _4ef,udt/(4s)).

9 - Time Relaxed Monte Carlo (TRMC) methods

Just as the probabilistic interpretation of the Forward-Euler scheme for the
Boltzmann equation leads to the Nanbu-Babovsky scheme, so the probabilistic in-
terpretation of the TR time discretization yields the Time Relaxed Monte Carlo
Methods.

In this section we shall describe how to construct first, second and third order
TRMC schemes, while we leave to a future section the description of infinite order
TR schemes.

Aswe shall see, the TR approach will lead to schemes that give basically the same
results as Nanbu-Babovsky scheme in cases in which the Knudsen number is not too
small. Their advantage becomes evident in those regions in which the system is near
the fluid dynamie limit. In such cases, the asymptotic property of TRMC schemes
guarantees the correct fluid dynamie limit without the excessive cost required by
standard Monte Carlo methods.

9.1 - First order TR scheme (TRMC1)

For m = 1 the generalized TR scheme writes
[ =Aof" + ALfi + A2 M.

The probabilistic interpretation of the above equation is clear since f*,
fi=P(f,f)/u and M are probability densities and then also f"*! is a probability
density since it is a convex combination of them independently of 4t. From a physical
viewpoint we have that a particle extracted from "

e does not collide with probability Ay,

e collides with another particle extracted from f™ with probability A;,

e is thermalized, namely is replaced by a particle sampled from a Maxwellian,
with probability A,.
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Sampling two particles from f; is equivalent to perform a dummy collision, and it
can be done exactly as in the case of the Nanbu-Babovsky scheme.

As in the case of NB scheme, it is preferable to compute the expected number of
collision pair, < N, >= NA;/2, and perform the collisions among those pairs, in
order to maintain conservation of momentum and energy.

The conservative version of the methods can be formalized in the following al-
gorithm

Algorithm 13 (First order TRMC for VHS molecules)

1. compute the initial velocity of the particles, {v9,i=1,...,N},
by sampling them from the initial density fo(v)
2. forn =1to nror
gwen {vi,1=1,... N},
o compute an upper bound X of the cross section
o sett=1—exp(— udt/e)
o compute A(t), As(7)
o set N, = Iround (NA,/2)
o perform N, dummy collisions, as in Algorithm (10)
o set Ny = N — 2N, and Ny = Iround (N142/(Ap + Asz))
o select Ny particles among those that have not collided, and compute
their mean momentum and energy
o sample Ny particles from the Maxwellian with the above momentum
and energy, and replace the Ny selected particles with the sampled ones
o set v;”l = v} forallthe N — 2N, — Ny particles that have not been selected
end for

In this formulation the probabilistic interpretation holds uniformly in u4t, at
variance with NB, which requires u4t < 1. Note that since we take collisions by pairs
in intermediate regimes it may happen that 2N, > N when N is odd. In this case a
slightly smaller time step, such that A; < (N — 1)/N has to be chosen. This is par-
ticularly relevant when we use a small number of particles.

9.1.1 - Particle Euler solvers

As udt — oo, the distribution at time » + 1 is sampled from a Maxwellian. In a
space non homogeneous case, this would be equivalent to a stochastic particle
method for Euler equations [116]. The sampling from the Maxwellian requires some
explanation. If we replace a certain number of particles (approximately NAy for
TRMC1) by particles sampled from a Maxwellian, the momentum and energy of the
particles will be conserved only on average.
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If we want to be exactly conserved we can proceed as follows. First select
Ny = 2Iround (NA2/2) particles randomly and uniformly among the N — 2N,
particles, and compute their moments (mean velocity « and variance 27') (at least two
particles are needed to have a non zero sample variance). Then sample from a
Maxwellian with the same mean and variance. Finally, scale the sampled particles, so
that mean and variance of the sample are # and 27 [112]. One may argue that, by
doing so, one is introducing some correlation among the particles, so that the sam-
pled velocities will not be independent. As an alternative, once Ny, particles have
been selected, one can use an algorithm to sample a given number of normally dis-
tributed particles, with assigned moments « and 2RT of the sample. Such procedure
has been introduced by Pullin [117], and used in the TRMC codes that produced the
numerical results shown in the next section.

9.2 - Second order TR scheme (TRMC2)

A second order scheme in time can be obtained starting from the generalized TR
schemes with m = 2

f’n+1 :140]071_'_141‘]01_}_142f2_|_143]w7

with fi = P(f", f")/u, fo = P(f", f1)/u. Since also f> is a probability density, again
we have a clear probabilistic interpretation of f"*! as a convex combination of
probability densities. From a particle viewpoint we can say that a particle extracted
from f"

e does not collide with probability Ay,
e collides with another particle extracted from f™ with probability A; + As,
- if the collision takes place then the particle collides again with another
particle extracted from f° with probability As/(A; + Az),
e is thermalized, namely is replaced by a particle sampled from a Maxwellian,
with probability As.

The algorithm now reads

Algorithm 14 (second order TRMC for VHS molecules)

e compute the initial velocity of the particles, {v?,i =1,...,N},
by sampling them from the initial density fy(v)
e forn =1to npor
gwen {v},1=1,...,N},
o compute an upper bound X of the cross section
o sett=1—exp(— udt/e)
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o compute A1(t), Az(1), As(7)

o set N, = Iround (N(4; + A2)/2), N2 = Iround (N A2/(A; + A2))

o perform N, dummy collisions, as in Algorithm (10), and store N3 of them

o select Ny particles from f"

o perform the dummy collisions, as in Algorithm 10, of these selected

particles with the stored set of No particles that have collided once

o set Ny = N — 2N, and Ny = Iround (N1A43/(4¢ + A3))

o replace Ny particles with samples from Maxwellian, as in Algorithm 13

o set v;f”“ =} forallthe N — 2N, — Ny particles that have not been selected
end for

Similarly, higher order TRMC methods can be constructed. For example, a third
order scheme is obtained from

F" =AM+ AL fi + As fo + As fs + AdM,
with fi = P(f", ")/, fo = P(f", fi)/u and f3 = [2P(f", f2) + P(f1, f1)]1/Bu).

9.3 - Numerical results

In this section we report some numerical results for the space-homogeneous
Boltzmann equation, obtained by some of the numerical schemes described above. In
particular, we compare Nanbu-Babovsky (NB) scheme with time relaxed Monte
Carlo schemes of various orders.

As a test problem we use the exact solution for the Kac equation [10], [76]

1 3 2 5
f(?ht) :W |:§(C— 1)+(3—C)E] EXp(—?) /C),

with C(t) = 8 — 2exp ( — /7t/16).
The density function f has been reconstructed on a regular grid, by convolving
the particle distribution by a suitable mollifier

N
(116) fp = %Z Wu(Vi — v)),
=1

where {V; = Viin + 14V, I =1,...,N,}.
The smoothing function Wy is given by
3/4 — x? if x| < 0.5,
Wh(x) = Il{W<I£{>’ W) =< (x—3/2%/2 if 0.5 < || < 1.5,
0 otherwise.
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Fig. 23. — Kac equation: Details of the distribution function at time ¢ = 2.0 for 4t = 1.0.
Exact (line), NB(+), first order TRMC (A), second order TRMC (x), third order TRMC (o)

The value H = 0.2 has been selected as a good compromise between fluctuations
and resolution. The simulations are performed with N = 5 x 10* particles.

Next we perform the same kind of accuracy test in the case of the Boltzmann
equation for Maxwell molecules in the two-dimensional velocity case. An exact so-
lution to this equation is given by (74). In this case the comparison with the exact
solution is obtained by reconstructing the function on a regular grid of spacing
Av = 0.25 by the “weighted area rule” (i.e. bilinear interpolation).

All the simulations have been performed for ¢ € [0, 16] by starting with N = 105
particles.

In Fig. 25 we show the L? norm of the error in time for both NB and TRMC
schemes. In the first picture we report the results obtained with the same time step
At = 1.0. The results confirm the gain of accuracy of the second order TRMC method
on the transient time scale.

Using a time step of 4t = 1.0 for the second order TRMC method and 4t = 0.5 for
the NB method the solutions are almost equivalent.

10 - Space non homogeneous case

The solution of the Boltzmann equation is performed in two separate steps, using
a splitting approach. The computational domain is divided into a certain number N,
of cells. In each cells there are particles with position and velocity (x;, v;), «; € RY,
v; € IR%. The time interval of the computation t,,y is divided into intervals of size At.
Let us denote by

N
[0y =m> 6@ —af)ow —v)),
=1
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Fig. 24. — Kacequation: L2 norm of the error vs time. NB(+), first order TRMC (A), second order
TRMC (x), third order TRMC (o). Left: Time step 4t = 1.0. Right: NB with 4t = 0.25, first order
TRMC with 4t = 0.5, second order TRMC with At = 0.75, third order TRMC with A4t = 1.0
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Fig. 25. — Maxwellian case, 2D in velocity: L? norm of the error vs time. NB (4), first order
TRMC (A), second order TRMC (x), third order TRMC (o). Left: Time step 4t = 1.0. Right:
NB with 4t = 0.25, first order TRMC with 4t = 0.5, second order TRMC with 4t = 0.75,
third order TRMC3 with 4t = 1.0

Cells  Index of the particles in each cell
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Fig. 26. — An efficient way to store the index of the particles belonging to each cell is through
the use of a linked list. The latter, in turn, is efficiently managed by an array of indices: the
indices from I(j) to I(j + 1) — 1 correspond to the indices of the particles belonging to cell j
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the approximation of the distribution function at time n4t. It is completely de-
termined by position and velocity of the particles: {(x;,v;),7=1,...,N}.

To compute (ac?”, v?*l) we first apply the collision step. In each cell j, we perform
the collisions of all particles which belong to cell j, by one of the techniques seen
before, for a time At. An easy way to find the particles which belong to a given cell j in
1D is to sort all particles according to their position, before starting the collision step,
and to store, for each cell, the index of the last particle of the cell. For more com-
plicated geometries, the indices of the particles associated to each cell can be stored
in a list (see Fig. 26). Clearly the collision step will change the velocities of the

particles, leaving their position unchanged.

10.1 - Transport step

Each particle moves according to free flow for a time step 4f. A tentative position

Z"*1 is computed

!

=l + oAt

i
where ¥ denotes the particle velocity after collision. If the particle does not exit the
computational domain, then

7'2+1 _ ~’{z+1
i

! ¥ 7}+1 _ @70+1

X A P

otherwise boundary conditions are applied.

The convection time step 4t is the same for all particles. It is assigned in such a
way that the fast particles travel approximately one cell per time step. In each cell,
the space homogeneous Boltzmann equation is solved for one time step 4¢. This can
be obtained in a single step (4. = At), or, more generally, with several steps. In the
method of Bird, the collision step ends when the time counter becomes larger than
-+ At

Typically, a single step is possible if the Knudsen number is very large, or, in the
case of TR schemes, if it is extremely small. For intermediate cases one has
At = At/ny, where n; is chosen by accuracy and positivity considerations.

10.1.1 - Boundary conditions

Inflow and outflow boundary conditions

If a particle leaves the computational domain (absorbing boundary) it is
just deleted from the list of particles, and the particle number is decreased by
one.
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In some simulations (e.g. shock wave calculation, flow past a body) particles have
to be injected into the domain, in order to simulate the inflow of matter from regions
external to the computational domain.

In this case one assumes that the distribution function of the incoming particles is
known.

v At

Fig. 27. — Inflow boundary condition on the left boundary: the distribution outside the
computational domain is assumed to be a Maxwellian. The injected particles are sampled
according to the flux of incoming particles

Let us consider a simple 2D problem. Assume that the computational domain is a
2D rectangle (see Figure 27). In this case one assumes that particles enter from the
left part of the domain, with a distribution function which is a Maxwellian with mean
velocity u = (ur,,0,0), density p;, and temperature 77;,. Let is we by f,(v) such a
Maxwellian. Notice that if the problem is 1D in space, then [f7,(v)dv denotes the
density of particles per unit length, if it is 2D in space [ f7,(v) dv denotes the density of
particles per unit surface.

The expected number of particles which enter the domain in a time step 4,
through one cell edge of size 4x, will be equal to

< Np >= MAx J f,(v) dw.

V>0

To reduce fluctuations it is better to sample the particles that enter from each cell edge,
rather than sampling a total number of incoming particles entering from a random
position of the left boundary. Then one can chose an integer N, = Iround (<N >),
samples N,, particles from the Maxwellian f7,, and inject them into the computational
domain.
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Fig. 28. — Cells subdivision of the computational domain

The distribution of sampled particles is obtained by the following consideration.
In a time step 4t, particles with x-velocity v, will enter the domain only if they lie in a
strip of width v, 4t. Therefore the density of particles entering the domain in a time
span At with velocity v has to be proportional to

V2| f1.0),
and not just to f7,(v).

Solid walls

If the particle hits a solid wall, then it is injected into the domain according to the
scattering law of a solid wall. The most commonly used boundary conditions are
specular reflection, diffusive boundary condition, or a convex combination of the two.
For diffusive boundary condition, the particle is emitted according to a (half)
Maxwellian distribution, with zero mean, and temperature equal to the (prescribed)
wall temperature.

This is easily obtained as follows (see Figure 28). The normal component is
sampled from a distribution proportional to the flux, as in the case of inflow boundary
conditions, while the two transversal components are sampled from a 2D
Maxwellian, with mean velocity equal to the transverse wall velocity, and tempera-
ture equal to the wall temperature. In practice, one considers an auxiliary systems of
coordinates in which the z-component is normal to the surface. One samples the z-
component by 1D Maxwellian flux with zero mean (%), and the x and y component

(®) We assume that the boundaries of the computational domain do not change, therefore
in the frame of reference of the computational domain, the normal component of the wall is
zero. If this is not true, then the normal component of the wall velocity has to be taken into
account in the sampling.
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from a 2D Maxwellian. A final rotation of coordinates will assign the three compo-
nents of the velocity to the laboratory frame.

The location & (and time ?) of the impact between the particle and the boundary
can be obtained by solution a nonlinear scalar equation. With reference to Figure 28,
for example,

HA+1—-0OB) =0,(eR,ABeR?

ifp(P)=0,P € Rz, denotes the boundary of the wall. Thenwe setx = (A + (1 — {)B.
After the particles is generated with the new velocity v, then the new location and
velocity are set as

=T+ 0t — D).

Remark 11. Monte Carlo methods can be used for both time dependent and
stationary problems. In both cases, some averaging process is needed in order to
decrease the fluctuations intrinsic in the stochastic nature of the method. They can
be computed by solving the time dependent problem, and waiting until the system
1s close to the stationary state (a more efficient technique are based on the appli-
cation of MC to the solution of the stationary problem directly, but we do not
consider this approach here).

In the case of stationary problems, time average can be used to improve the
statistics, and decrease the fluctuation. Typically one sets two times: ts and tpax.
Assuming that the solution reached the steady state at timet = tg, then the rest of the
time is used to accumulate statistics, and improve the estimation of the parameters
we are interested in the calculation (typically moments of the distribution function,
or sometimes the distribution function itself).

In the case of time dependent problem, this procedure can not be used, and
one has to perform several runs of the same problem, with the same data, but
with a different pseudo-random number sequence. Because of this reason, MC
method is more effective for stationary problems than for time dependent
ones.

10.2 - Numerical results

10.2.1 - 1D Shock wave profiles

As a prototype problem, we illustrate how to use MC methods for the computa-
tion of 1D shock wave profiles. Let us consider a stationary 1D shock travelling with
constant speed V.
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At the left and at the right of the shock one assumes that the gas is in local
equilibrium, distributed according to a Maxwellian with parameters, respectively,
(pL7 ur,, TL), and (/)Ra UR, TR).

These parameters and the shock speed Vg are not arbitrary, but satisfy the so
called jump conditions, also known as Rankine-Hugoniot conditions [131].

Let V = Vs — u. Then the states on the far left and on the far right satisfy the
condition

[pV1=0

[p+pV4=0
1
[Vipe +5pV +p)]1 =0

where Vh, [1] = hy, — hg denotes the difference between the left and the right state,
p = RpT denotes the pressure, and e is the internal energy. For a monatomie gas
e = (3/2)RT. Here R = kp/m is the gas constant, and kp is the Boltzmann constant.

For a more general polytropic gas one has e = RT/(y — 1), where y = ¢, /c, is the
polytropic constant, ¢, and c, are specific heat at constant pressure and volume
respectively (see Table 8). FFor a perfect gas one has ¢, = ¢, + R, and

Cv—2R7

where 7y is the number or excited degrees of freedom of the molecule.

TABLE 8. — Excited degree of freedom and polytropic constant of common gases

ng gas Y
3 monatomic gas in 3D 5/3
2 2D model of monatomic gas 2
5 biatomic gas (air) /5

Jump conditions are very general. They are a consequence of conservation laws, and
they do not depend on the detailed relaxation process that happens in the shock zone.

For a polytropic gas the solutions of the Rankine-Hugoniot conditions can be
expressed in terms of the Mach number

_Vs—ug
==

M

where a = /yp/p denotes the sound speed.
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Fig. 29. — 1D shock profile: NB(+) and first order TRMC (x) (top), second order (x) and
third order (o) TRMC (bottom) for ¢ = 1.0 and 4t = 0.025. From left to right: p, u, T The line
is the reference solution

Assuming one knows the state on the right of the shock (unperturbed state), and
the Mach number, then the state on the left can be computed from the relations
u, —up  2(M? —1)
ap G+ DHM’
P _ G+ DM
PR (y—DM? +2
PL — PR :2V(M2 -1)
PL y+1

At each time step, the expected number of particles entering the domain is com-

puted by integrating the flux over the interesting range of velocities. For example, on
the left the average number of particles entering the domain in a time step 4t is given by

T At -
< N >= vaML(v)dv—NL
Ax
0

where Ny, is the number of particles per cell of the equilibrium distribution which is
on the left of the computational domain. The theoretical fluxes

9 0
F;, = vaML(v) dv, Fp= J |ve| MR () dv
0 —0Q

are computed once at the beginning of the calculation.
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Fig. 30. — 1D shock profile: NB(+) and first order TRMC (x) (top), second order (x) and
third order (o) TRMC (bottom) for ¢ = 0.1 and 4t = 0.0025 for DSMC, 4t = 0.025 for TRMC.
From left to right: p, u, T. The line is the reference solution

A similar expression can be used for the particles entering from the right. The in-

tegral J v.M1,(v) dv can be computed analytically.

The0 average is then converted into an integer: N; = Iround ( < Ny, > ). The
particles are injected with a velocity whose & component is sampled from v, M}, (v), and
the other two components of the velocity are sampled from a Maxwellian with zero
mean and temperature 7'7,. The position is given by x = v, 4t, where ¢ is a uniformly
distributed random number in [0, 1]. The presence of ¢ is due to the fact that the time
at which the particle enters the domain is uniformly distributed in [Z,, t,, + 4t].

A similar procedure is used for the right boundary.

We compare here the following schemes: NB, TRMC1, TRMC2, TRMC2

The initial data is assumed to be a local Maxwellian f(x,v,t) = M(p,u, T), in the
whole computational domain, with

p=10, T=1.0, x> 0.
The Mach number is M = 3.0. The mean velocity is

Uy = —MVOT), uy =0, u,=0,

with y = 2 since we consider a 2D velocity space.
The values for p, u and T for x < 0 are given by the Rankine-Hugoniot conditions.
In our test we use hard sphere molecules with 50 space cellson [ — 7.5,7.5] and
500 particles in each cell on « > 0. After the stationary stat has been reached the
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Fig. 81. — 1D shock profile: First order TRMC (x) for ¢ = 1075 and 4t = 0.025. From left to
right: p, u, T

solution is averaged for 1500 time steps. The reference solution is obtained with 200
space cells and 500 particles in each cell on x > 0, averaged for 8000 time steps.
The collision time step At is assigned empirically by 4t. = At/n;, with n; = 1,10
respectively for ¢ = 1,0.1, in the case of NB schemes. For the TRMC scheme the
collision step has been taken equal to the convection step. Observe that all the
methods give essentially the same results for the shock profile. However, time re-
laxed methods are much more efficient for very small values of the parameter ¢. The
results shown in Figure 31 are produced only by first order TRMC, while the con-
tinuous line represents the shock profile for the limit ¢ = 0. It would be very ex-
pensive to produce such profile by standard MC methods (either NB or Bird).

10.2.2 - 2D Flow past an ellipse

In this section we show some computation of two dimensional stationary flow past
an ellipse. The system configuration is illustrated in Figure 32. More detail about
these computation are shown in [112].

Euler or Navier-Stokes region

___________ = Boltzmann region

Fig. 32. — 2D flow past an ellipse
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DSMC Method TAMC | Method TRMC Il Method

Fig. 33. — 2D flow: ¢ = 0.1 (top) and ¢ = 0.01 (bottom). NB (left), TRMC1 (center) and
TRMC2 (right), solution for the mass p
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Fig. 34. — 2D flow: ¢ = 0.1 (top) and ¢ = 0.01 (bottom). Transversal and longitudinal sections
for the mass p at y = 6 and = = 5 respectively; NB (o), TRMC1 (+), TRMC2 (x)
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TRMC | Method TRMC Il Method
— -

T

Fig. 35. — 2D flow: ¢ = 0.001. NB, TRMC1 and TRMC2 solution for the mass p

We compare NB, TRMC1 and TRMC2 schemes. The physical parameters of the
flow are M = 20, p;,,r = 0.01, Tyr = 200, Ty = 1000, & = 0.1,0.01,0.001.

The model is the Boltzmann equation for hard sphere. The computational domain
is a rectangle divided into 75 x 60 space cells and 100 particles in each cell at “in-
finity”, i.e. at a large distance from the obstacle. Full accomodation boundary con-
dition have been used.

As in the case of the stationary 1D shock, since we are computing a stationary
shock wave, the accuracy of the methods can be increased by computing averages on
the solution for large time.

The numerical results of the computation are illustrated in the figures, which
show the 2D density distribution (Figures 33, 35) and the density profiles for long-
itudinal and transverse cross sections (Figures 34, 36), for various values of the
Knudsen number ¢ (more precisely, for ¢ = 0.1,0.01,0.001).

0.041 0.06

0.041

Fig. 36. — 2D flow: ¢ = 0.001. Transversal and longitudinal sections for the mass p at y =6
and x = 5 respectively; NB (o), TRMC1 (+), TRMC2 (x).
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Fig. 37. — 2D flow: Number of “Collisions”. Top to bottom and left to right ¢ = 0.1,0.01,0.001;
NB (o), TRMC1 (+), TRMC2 (\greenx)

It appears that all the schemes provide approximately the same answer, although
the computational cost of the various methods can be very different, as is illustrated
in figure 37, which shows the total number of collisions per time step, as a function of
time. The first picture corresponds to ¢ = 0.1, the second to ¢ = 0.01, and the third to
& =0.001. When the system is far from local equilibrium, very few particles are
sampled from the Maxwellian, and TRMC2 is the methods that requires more col-
lisions, while NB and TRMC1 are of comparable cost. For ¢ = 0.01, the most ex-
pensive method is NB, while the least expensive is TRMCI. In the case ¢ = 1073, the
number of collisions required by NB scheme (higher curve) is roughly one order of
magnitude larger that the that required by TRMC (lower curve).

11 - Recursive Monte Carlo methods

11.1 - Preliminaries

There are several directions in which the effectiveness of Monte Carlo methods
can be increased for the numerical solution of the Boltzmann equation. Here we do
not describe extensions of the methods to other physical contexts, such as Boltzmann
equation for polyatomic gases, Boltzmann and Boltzman-Vlasov transport equation
for charge carriers in semiconductors, and so on, which are very important topics,
but which are beyond the scope of the present paper.

Among the most popular strategies that can be used to improve the Monte Carlo
methods for the standard Boltzmann equation for monatomie gas, we recall

e High order Monte Carlo in time

e Hybrid Monte Carlo methods
e Weighted particle methods

Here we will describe only some recent developments in the first direction. For
the second topic we refer to [99], [100], [101], whereas for the last topic we refer to
[118], [119].
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11.2 - Recursive TRMC methods

The Wild sum expansion of the solution recalled in Section 8.1 has a natural
probabilistic interpretation which leads to a recursive implementation of the Monte
Carlo method. We rewrite here the starting equation (107)

o 1
117 g_ip _
(117) o=~ [PCLD) — .
with f(v,0) = fo(v), 1« > 0, and P(f,g) a positive bilinear operator.
Let now consider in a time interval [0, 4¢] the sum at the basis of TR schemes

f,4)=1-1> &),
k=0

where 7 = 1 — e ##/? is the relaxed time. Because P is a positive operator, then all
the coefficient f;; are positive functions, and, because of the properties of the Wild
sum expansion, their integral is equal to the integral of f,(v), which we may assume to
be 1 without loss of generality.

The sum has a very clear probabilistic interpretation.

e f(-, 4t) is the velocity distribution of particles at time A4¢. Taking a particle at
random from this distribution, it might happen that it has not collided one single
time. The probability of this event is e #4"/?, and the velocity distribution given this is
So).

e The first term in the sum corresponds to those particles that have been in-
volved in exactly one collision. The probability that a particle has such a history is
e Hl/E(1 — ¢=#41/?), and the velocity distribution is exactly fi(v).

A

n=0 n=1 n=2 n=3 n=3

Fig. 38. — McKean graphs

e In the same way, f, is the conditional velocity distribution given that exactly
n + 1 particles have been involved in its collision history back to the initial time. The
coefficient in front of f, represents the probability of such an event, i.e. that n + 1
particles have been involved in the collision history. Such number of particles follows
a geometric probability distribution.
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An obvious algorithm follows from this probabilistic interpretation:

Algorithm 15

o sample an integer k with geometric distribution p;, = (1 — 1)t as is described in
FExample 4.
e sample from fi(v) (as shown below)

Such an algorithm, however, would become extremely inefficient if ¢ ~ 1, since
the geometric series converges very slowly, and, very likely, one has to sample from
[, with a large k, which may be very slow, as is evident from the recursive algorithm.
Such recursive algorithm would sample from the “exact” solution of the Boltzmann
equation. In this respect it is quite similar to the Bird algorithm, which has no time
discretization error.

One can, however, make use of the asymptotic properties of the Wild sum coef-
ficients, in order to provide a systematic way of truncating the series. This can be
done as follows.

Let us start now from the TR schemes

(118) [ =0 -0 MR+ T M),
k=0

where
1 <1

(119) Jier1(v) = k—H;;P(fh,fk—h)~

Given a set of N particles distributed according to f, then, at time (n + 1)4t one
tries to split the particles into

e aset of N(1 — 1) particles sampled from fj,
e foreachk =1,...,m, aset of N(1 — 7)7* particles sampled from f;, and
e N7"*! particles sampled from a Maxwellian.

This can be done in a recursive way making use of equation (118) and of the ex-
pression of the Wild sum coefficients (119). A naive implementation is obtained as
follows

Algorithm 16

o sample an integern from the geometric distribution p, = (1 — 1)7" (see Example 4)
o Ifn <m sample from f, otherwise sample from M.
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Fig. 39. — Generation of particles in the algorithm (left) and recollisions (right)

The sample from f,, is obtained recursively as

Algorithm 17 (v = sample from f,)

1. ifn=0
2. v = sample from fy
else
choose k uniformly in [0,...,n — 1]
v1 = sample from fj,
vy = sample from f,_j_1
v = outcome of colliston between vy and vs
end if

The very first step in this calculation is to compute a first pair of particles (ve-
locities) distributed according to f,,. This involves the collisions of m + 1 particles,
and hence this number of particles are drawn at random from the initial distribution.
Obviously this sets a limit of the number of terms of the Wild-sum that can be es-
timated with a finite number of particles at the initial time. All m + 1 particles must
be kept in order that the conserved quantities remain exact. From a practical
viewpoint, the number m can be very large. Thus a maximum allowed value 1m,,q,, is
fixed (which represent the maximum depth of a possible tree) at the beginning of the
computations. Note that, at variance with Bird’s method, recollision of particles is
not allowed.

The algorithm described above, however, is not conservative. Conservation can
be preserved by a suitable use of pairs of particles rather than individual particles, in
the recursive sampling. This can be done as is described in detail in the following
recursive algorithm in the VHS case:
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Algorithm 18 (conservative TRMCR for VHS molecules)

1. Forn > 0 compute N,, = Iround (N exp ( — udt/e)(1 — exp (— udt/e))") and stop
for n=m+1, where m is s.t. Ny =5 " (N, <N and Np+ Ny1 > N. Set
Npy1 =N — N,

2. Set counters co =N and c, =0forn=1,... m+ 1.

3. Forn =m,..., 0take N, samples from the distribution with density f,. Ifn = 0,
take v from fy and decrease the counter cy by one. Else proceed as follows.

(a) Choose k € {0,1,2,3,...,n — 1} with equal probability.
(b) Choose v from the density fi, and v, from the density f,,_r_1. This is done
as follows.

1. if ¢, > 0 use a previously stored particle with a random choice and
decrease the cj, counter by one. Otherwise take a sample from fi;
this will produce two particles distributed as fi, so one is stored
and the ci, counter increased by one.

1. if cy_r—1 > 0 use a previously stored particle with a random choice and
decrease the c,_j_1 counter by one. Otherwise take a sample from
Jo—k_1; this will produce two particles distributed as f,__1, so one is
stored and the c,__1 counter increased by one.

McKean graphs for k=0, 1, 2, 3
0 1 2 3 3
’ A
1 2 1 1
0 0 0 0
1
0 0 0 00 00 0
0 0

Generation of particle from 5

Particle 5 is near equilibrium Particle 5 is far from equilibrium

Fig. 40. — Different possible collision trees
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(c) Compute a dummy collision between particles v and v, to get two random
variables distributed according to the density f,.
(d) Sample N,, 1 particles from the Maxwellian.

The above algorithm deserves some remarks.

Remark 12.

e [fthe algorithm is used with no a priori bound on My, then basically one is
sampling from a representation of the exact solution. Therefore, in the space
homogeneous case, there is virtually no error due to time discretization.

o Ifthe Knudsen number ¢ is small, then t is very large, and the geometric se-
quence decreases very slowly. Thus the computation becomes expensive, since many
collisions are involved. On the other hand for large values of k it would be natural to
sample from a Maxwellian, since f;, — M as k — oo, therefore one can fix an arti-
ficial Mgy, smaller than the one given by the finite number of particles, and sample
from M(V) ifk > Muyae. Note however that a large number of collisions is not enough.
To be sure that a particle thermalizes one has to check if the McKean graph is ba-
lanced (i.e. close to equilibrium) or unbalanced (i.e. not necessarily close to equi-
librium). In fact fi, can come from the collision of particle from fi,_1 with a particle

from f.

11.3 - Numerical results

In this section we present some numerical tests that show how the recursive
TRMC methods can improve the efficiency (by reducing the number of collisions)
when compared to traditional DSMC methods.

11.3.1 - Space homogeneous case
Here we consider the following test cases

1. Kac equation (comparison with exact BKW solution);
2. Maxwell molecules (comparison with exact BKW solution);
3. Hard spheres.

The exact solution used in the first two tests is the classical Bobylev-Krook-Wu
solution [10], [76] that we already used to test other methods. The number of par-
ticles used in all the calculations is N = 5 x 10*.

We show the comparison between the recursive implementation of Time
Relaxed Monte Carlo methods and Bird’s scheme. We perform the computation
up to a certain time, using just one single time step 4t = t. Then we compute the
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TABLE 9. — Kac equation: Relative Ly error norm in time for TRMCR vs BIRD

Monaz 1000 100 25 Bird

t=0 0.010390  0.010390  0.010390 0.010390
t=1 0.007169  0.007169  0.007169 m =20 0.007923
t=2 0.005421  0.005421  0.006588 m = 52 0.009389
t=3 0.006266 ~ 0.007841  0.010110 m =118 0.006489
t=5 0.005971  0.006217  0.021790 m = 550 0.004985
t=" 0.008950  0.014841  0.019492 m > 1000 0.007836
t=10 0.007481  0.010583  0.010218 m > 1000 0.007019
t=15 0.006202  0.006202  0.006202 m > 1000 0.006637

relative L? norm of the error for the Bird method and the recursive TRMC
scheme for several values of the maximum allowed number of terms (mmax) in the
Wild sum. The result of the comparisons are reported in Tables 9 and 10. For
large enough values of 7., recursive TRMC and Bird’s scheme give comparable
results, while for small values of my.x a systematic difference is observed. The
fifth column in the table represents the actual number of terms of the Wild sum
required in the computation. Whenever m < mmax no particle is sampled from the
Maxwellian.

TABLE 10. — Maxwellian case: Relative Ly error norm in time for TRMCR vs BIRD

Mopaz 1000 100 25 Bird

t=0 0.013312  0.013312  0.013312 0.013312
t=1 0.012055  0.012055  0.012055 m = 22 0.011709
t=2 0.012209  0.012209  0.012114 m =64 0.012401
t=3 0.012389  0.013130  0.013446 m = 156 0.012213
t=5 0.012737  0.013762  0.016806 m = 881 0.012407
t=" 0.011303  0.012881  0.014775 m > 1000 0.011802
t=10 0.011896  0.012847  0.012998 m > 1000 0.013440
t=15 0.012479  0.012479  0.012479 m > 1000 0.012513

The number of collisions required as a function of the final time is represented in
Figure 41. Notice the gain in computational efficiency, even for quite large values of
Mmax-

The last test case refers to the hard spheres model. The initial condition here is
the sum of two Gaussian. A simple adaptive truncation techniques of the trees based
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on the evaluation of the fourth moment of the solution has been implemented. At
each time step the method evaluate

grin _ MM

4 | MZ+1,1¢| ’
where MZJC is the result for the fourth moment obtained with TRMCR of length
k. If the variation is below a certain tolerance o; then k = 2k, if it is above a
tolerance Jz then k = k/2 and the solution is recomputed with the new value of k.
Otherwise the result is kept. As a starting value we choose ky = 10 and k¢ = 3500.
Note that in this simple technique if EZH’k > 0 we discard the whole compu-
tation. A better strategy would consist in computing only the fractions of sam-
ples from f;.1, ..., for taking advantage of the collision samples f1,. .., f; already
produced. We refer to [113] for further details, and other tests for adaptive
strategies.

We compare Bird’s method and recursive TRMC with a maximum length of the
trees set to mmax = 3500, which is approximatively the average collision length of the
trees in Birds method in a time step 4t = 1. The results are reported in Figures 42
and 43.
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Fig. 43. — Hard spheres: 4th order moment in time. Maximum length of the trees in time for
TRMCR with ky = 10 (left) and TRMCR with %, = 3500 (right)

11.3.2 - Space non homogeneous case

Next we apply the adaptive method for the homogeneous step to the computation
of stationary shock waves. We consider the same initial data as in Section 10.2.1. The
Knudsen number here is ¢ = 0.01 and we take 500 particles in each downstream cell.
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Fig. 44. — Stationary shock: Density (left), mean velocity (center) and temperature (right) for
BIRD (o) and TRMCR with ky = 20 (x)

The reference solution has been computed with Bird’s method and 1000 particles per

cell. The results are reported in Figures 44 and 45. The gain of computational effi-
ciency of TRMCR methods is evident.
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Abstract

The different aspects of the numerical solution of the Boltzmann equation and related
kinetic models are analyzed and discussed from a deterministic as well as from a prob-
abilistic viewpoint. In both settings after a review of classical methods like discrete velocity
modelling and direct simulation Monte Carlo, the emphastis is addressed to the most recent
developments in the field, such as (fast) spectral methods and time relaxed Monte Carlo
methods. Besides the algorithmic aspects and the efficiency of the methods, considerations on
stability, accuracy and consistency of the various schemes are reported.
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