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1 - Introduction and notations

A lot of work has been devoted to duality principles in the Monge-Kantorovich
theory of mass transport. In particular L. Hanin wrote a series of papers on the
characterization of the dual of Lipschitz classes (see [6], [7]). Very recently a lot of
attention has been focused on infinite sum of dipoles as elements of the dual of
Lip(X)" X beeing a complete metric space). Such dipoles appear as natural objects in
the description of singularities of maps occuring in the theory of liquid crystals (see
[5], [10]). As emphasized by H. Brezis, these infinite sums are not measures of finite
total variation but can be viewed as particular distributions of order one.
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In order to simplify the presentation, we will work on a compact subset K = Q
where Q is a bounded connected open subset of R? with C*! boundary and we will
denote by

— | - | the Euclidean norm in Rd, d(x,y) the associated geodesic distance on Q
extended to K, 14 the characteristic function of a subset A in RY.
— C°%(K) the space of continuous functions on K endowed with the sup norm

I Moo

— Lip(K) the Banach space of Lipschitz functions on K endowed with the norm
. p(y) — p(x) 2 }
Li =sup s ———, (x,y) € K*,x ,
p (p) p{ i@y (@, ) 7Y

— Lipy(K) := Lip(K)/R its quotient by the constants,

— Lip1(K) :={u € Lip(K) : |Vu| <1 a.e. on Q},

- M(K; Rd) (resp M, (K)) the space of R%valued (resp. positive) Borel measures
on R? compactly supported in K. Every element 2 € M(K; R?) can written as
)= ou where u € MT(K), o € Llll(K; R%). In particular we may choose |o| =1

A
u-a.e., so that 4 = || the total variation of 1 and o = j—” (polar decomposition).
— M(K) the space of signed Radon measures u supported in K such that Jﬂ =0.

it is endowed with the Kantorovich norm defined by:

(K, d)): [|ull; = sup {Jq)dﬂ S Lipl(K)}.
K

It is well known that on subsets of My(K) which are uniformly bounded in total
variation, the topology induced by || - ||; is equivalent to the weak star topology on
measures. It can be easily checked (see [6]) that the dual space M(K)* is isomorphic
to Lipo(K) through the map: L € My(K) +— ¢ where ¢(x) = L(J, — d4),0 € K.
Therefore My(K) can be identified with a subspace of its bidual, thus with a subspace
of Lipy(K)*.

Now we claim that the normed space (My(K), || - ||;) is non complete: indeed let
(an, by) a sequence in K2 such that > |b, — a,| < +oc and a,, # by, V(n, m). Clearly
the finite sum of dipoles yx,, = > (d, — Jd,,) is a Cauchy sequence whose limit as an
element of Lipy(K)* is not a measure of finite mass. Our aim is to characterize the
completion of My(K) or equivalently the closure of M(K) as a subspace of Lipy(K)*.
As will be seen later, the main feature of an element f in this space is that the su-
premum in the dual Kantorovich problem

(1.1) sup {(f,0) : ¢ € Lipi(K)} (= |fll,

has at least one solution (called Monge-Kantorovich potential).
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In all the paper we will denote by M,yi(K) the completion of My(K) in
(Lipo(K)", || - ||;)- We emphasize that it is a strict subspace Lipy(K)* since otherwise
Lipo(K) would be a reflexive Banach space. To our knowledge a characterization of
My 1(K) is known only for d = 1. This appears in [6] where the case d > 1 is pre-
sented as an open problem.

The paper is organized as follows: in section 2, we give a characterization of
M 1(K) (see Theorem 2.4); in section 3, we give an alternative representation by
introducing a suitable class of tangential vector measures in M(K; R9).

2 - The Banach space M ;1(K)

First we show that M, ;(K) can be identified to a subspace of D} (K) the dis-
tributions on R? of order one supported in K. For every f € Mg 1(K), the bracket
(f,p)is well defined for every ¢ € Lip(K). We denote by 7' the distribution obtained
by setting (Tr,¢) = (f, ¢) for every p € C>*(K).

Lemma 2.1. The map: f € Mo1(K) — Ty € D\(K) is injective. Furthermore
a distribution T € Dy (K) is of the form Ty for a suitable f € Mg 1(K) if and only if,
for every sequence {p,} in C*(K), such that the following implication holds:

(2.1) v, — ¢ uniformly (ceR), sup|Vep, <C = (T,¢,) —0.
K

Proof. Let f € Mg 1(K) and let us show that 7' satisfies (2.1). By definition,
for every J > 0, there exists ameasure f5 € My(K) || f — f5]|; < J. Let ¢, be as in the
left hand side of (2.1). Then:

(Trson)l < {0l + 0lIVoulle < [fs00l + Co.

Since (f5,¢) = 0, the conclusion follows by letting #n — oo, then § — 0.

In fact the same argument works if we assume simply that {¢,} is a equi-
Lipschitz family in Lip(K) converging to a constant: we still obtain that (f,¢,) — 0.
Therefore if 7y = 0 and ¢ € Lip(K), by applying the previous property to {p, — ¢}
where ¢,, is a smooth approximation of ¢, we infer that ( f, ¢) = 0. The injectivity of
the map f'+— T follows.

Conversely we need to show that if 7 € D;(K) is such that (2.1) holds true, then
T = Ty for asuitable f € My 1(K). First by (2.1), T can be extended in a unique way to
Lip(K) and the resulting linear form on Lip(K) can be identified as an element
f € (Lip, (K))" such that T' = T}. To prove that this element f belongs to M ; (K) we
use the following
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Claim: There exists a sequence of linear operators: Ss : C°(K)— C(K) and
suitable constants C, Cs such that
i) Lip(Ssp) < Csll¢l|.., for every ¢ € C*(K),
ii) Lip(Ssp) < C Lip (p) for every ¢ € Lip(K) ,
iii) 1S5 — 9|l < 0C Lip () for every ¢ € Lip(K).

Then we set f5 := T o Ss. By i) and ii), it is an element of My(K). Choose ¢4 in
Lip1(K) so that (f5 —f,0s) > |lfs — fll; — 0. We may rewrite this inequality as

(2.2) 1fs —flly < 0+ (f,¥s),  where ¥5:=S50;,—¢5.

By ii) and iii), {¥s} is equi-Lipschitz and converges uniformly to 0 on K. It follows
from (2.1) and (2.2) that f; — f in Lipo(K)*, and thus f € M, 1(K) (notice that by iii),
S is invariant over constant functions).

It remains to prove the claim. By a very nice result to be found in [11], Theorem 3
p. 174, there exists a linear continuous extension operator = : C°(K) — CO(Rd) which
also maps continuously Lip(K) into Lip(Rd). Notice that a priori no regularity as-
sumption is needed for the existence of such extension provided K is metrized by the
Euclidian norm. In our case we are allowed to choose the geodesic distance which is
equivalent since 0K has been assumed to be Lipschitz. Note also that in case K is
convex, the map = : ¢p+— ¢ o p where p is the orthogonal projector on K fits to our
purpose. Now we set S; ¢ to be the restriction to K of Z(p) x p; where p; is a usual
convolution kernel with support in B(0,d). It is easy to check that S; as a linear
operator satisfies i), ii) and iii). [ |

Remark 2.2. The fact that M ;(K) is strictly embedded in (Lipy(K))* implies
that there are elements f € (Lipo(K))" such that f # 0 and 7y = 0 (this not sur-
prising since C* functions are not dense in Lip(K)). The required property (2.1) for
T in order to be in M 1 (K) is nothing else but the continuity with respect to the weak
star topology of W1>=(Q).

The existence of a Monge potential associated with ' € M 1(K) is obtained in

Lemma 2.3. Let f e Moi1(K). Then there exists a Lipschitz function
u € Lip1(K) maximizing the problem (1.1).

Proof. Let {¢,} be a maximizing sequence in Lip;(K). As (f,1) =0, it is no
restrictive to assume that ¢, (xy) = 0 at some point xy € Q. By Ascoli’s theorem,
there exists ¢ € Lip;(K) and a subsequence {¢,, } such that ¢, — ¢ uniformly on K.
By applying the property (2.1) established in Lemma 2.1 to {¢,, — ¢}, we derive that

(f.0) = lim(f.0,) = sp{A.D}. .
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In the following, given an element T € D'(R%; R?), we denote by divT the
distribution defined by (div T, ¢) = — Zi<Ti,%>. Obviously if T is compactly

supported in K, so is div 7. Thus the divergence operator maps D'(K; R% into a
subspace of D'(K). We will denote by div A (resp div o) the divergence of T if T is
associated with a vector measure 1¢ M(K; Rd) (resp a vector density
o e LNQ; RY).

We recall (see for example the proof of Lemma 2.5) that for every f € My(K), the
problem

(2.3) inf{J A+ ie ME;RY , div A= u} ,

has at least a solution (optimal transport flux) and moreover we have
inf (2.3) = sup{(1.1)} =Wi(f:,f),

where Wi(fy, f2)(= ||f|l;) denotes the Monge-Kantorovitch distance on (K, d) from
the non-negative part to the non-positive part of f.
We are now in position to state the main result of this section.

Theorem 2.4. The following equality holds between subsets of D'(K):
{Ty : f e MuB} = {~divo : g e LI@RN} .

Futhermore, if Vi denotes the closed subspace Vy := {o € L}(Q; RY) : dive = 0},
the linear map: o € LY (Q; Rd)/VO — —dive € M1(K) is an tsometry, i.e.:

||O-||L1(Q;Rd)/VO = |[divel; .

The proof relies on the following approximation result

Lemma 2.5. Let u € MyK) and ¢ > 0. Then there exists ¢ € L'(Q; Rd) such
that

(2.4) —dive = u, Jlaldm < lully + e
K

Proof. Following [2], we use a p-Laplace approximation of the problem (1.1).
For every p > d, we set

p = —inf{;J [Vul? de — J%dﬂ s ue Wl’p(g)} :

Q K
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It turns out that the infimum in the right hand side is attained at a unique point u,

such that Jupdac = 0. Set:

. 6y = |Vaup|” 2V, on @, 6, =0o0n R*\ Q.

There holds:
1 /
(2.5) —dive, =pu, ap= —,J lop/” de  (p’ conjugate of p).
b Q
Then by applying [2], Theorem 4.2 and (4.15), we have that:
-l = .
o llell4

— For a suitable subsequence {p; }, u,, — uin C%K) and ap, — Aweakly (star) in
M(K; Rd), where u, A solve (1.1) and (2.3) respectively.

In particular, as p — +oo (thus p’ — 1), we deduce from (2.5) and Hélder in-
equality that

p—00

1/p'
limsupJ|op|doc < limsup (J|ap|pldx) QM = lull, .
p—0o0
Q

Therefore o, satisfies (2.4) for large p. ]

Remark 2.6. According to Theorem 2.3, the conclusions of Lemma 2.5 can be
extended to all u € Mg 1(K).

Proof of Theorem 2.4. We first prove the inclusion
{Ty : f e Mou®)} ¢ {~dive : g€ LN&RD} .

Let feMp1(K) and let {f,,n >1} be a sequence in MyK) such that
Ifw —fll; — 0. Possibly after extracting a subsequence, we may assume that
en = ||fus1 — fully satisfies 3 &, < +oo. Thus setting fo = 0 and 1, := fr1 — fo, We
have written f under the form

f = Zﬂn where My € MO(K)’ H:uw” =én -

n=0

Now by applying Lemma 2.5 to x,, we find ¢, € L(; R%) such that

(2.6) —div¢, = g, and J|én|dx < 2g,.
K
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Then we define o := Z &, . By (2.6), it is an absolutely convergent series in
0

L1(Q2; RY). As the divergence operator is continuous with respect to the convergence
in the sense of distributions, we deduce immediately from (2.6) that

—dive = iﬂn ~f.
0

This finishes the proof of the first inclusion; the reverse inclusion is a straightfor-
ward application of Lemma 2.1 and the first assertion of Theorem 2.4 follows. It is
easy to check that the linear map £ : o € L1(Q; ]Rd) — dive € (Lipy(K))* is con-
tinuous. More precisely:

@7 |divel, = sup{ j (c-Vo)da | weumm} < ol -
K

Now as shown before, the range of £ is exactly M, ;(K) which by construction is a
closed subspace of (Lipo(K))*. By the closed graph theorem, we induce that there
exists a suitable constant C' > 0 such that

(2.38) ||O'HL1(Q;‘RCZ)/VO < Cldival];.
We claim that in (2.8) we can take C' = 1, so that combining with (2.7) we deduce the
required equality. To prove the claim for a given ¢ € L}(Q; R?), we set f := —dive

. L 1
and we consider any approximating sequence f,, € My(K) such that ||f, —f|l; <—.
Owing to Lemma 2.5, for every & > 0, there exists o, € L'(Q; R?) such that

2.9) _dive, = f,, J|an|doc < Iflh + e
K
On the other hand, by (2.8), there exists &, € LY(€; R%) such that
(2.10) —dve = ffi [llde < CIF-fillve.
K
Therefore, from (2.9) and (2.10) it follows that div (¢, + &,) = div ¢ so that
HG”Ll(Q;]Rd)/VO < low +én||[41(g;;[ad) < ||f||1 + C|f *fn”l + 2¢ .

The claim hence the proof of Theorem 2.4 is achieved by letting 7 — oo and ¢ — 0.
|



134 G. BOUCHITTE, T. CHAMPION and C.JIMENEZ [8]
3 - Optimal transport through tangential vector measures

In this section, we want to answer the following question: let 1 be a vector
measure in M(K; Rd), do we have that — div 4, as a distribution on Rd, belongs to
M 1(K)? Owing to our Theorem 2.4, this is cleary true for those 4 which are abso-
lutely continuous with respect to the Lebesgue measure on Q. However, it cannot be
true in general as shown in the following example:

Example 3.1. Let d=2, K=[—-2,2F and Sp=[—1,1]x {0}. Then
J:=(0,1)H'LSpis an element of M(K; R?) but —div(2) does not belong to
M 1(K). Indeed the condition (2.1) in Lemma 2.1 is violated if we choose the se-

1
quence in C*(K) defined by ¢, (x,y) = ;Lsin (ny). Clearly this sequence converges

uniformly to 0 on K, satisfies the upperbound supg |V, | < 1, whereas (4, ¢,,) = 2 for
every n > 1. We notice that, in this example, the direction of the measure 1 is or-
thogonal to the segment S, where it is supported. In contrast choosing a measure
like 2 = (1,0)H'L Sy would lead to the conclusion that — div (1) does belong to
M 1(K). This latter fact falls in the framework of tangential measures described
below.

Take 1 € M(K, R?) and consider a decomposition . = ou with u € M*(K) and
oE Li(K , Rd). As noticed in the above example, if — div (1) € M 1(K) then Lemma
2.1 implies that for any equi-Lipschitz sequence (g,) in C*°(K) such that ¢, — 0
uniformly on K one has

3.1) (—div(d),e,) = (4, Ve,) = JJ-V% du — 0.
K

This suggests the introduction of the following set:

N = {f € L?(K, Rd) : 3(@{/")’”’ Uy, € COO(K)7
(3.2)
Uy, — 0 uniformly , Du,, — & im o(LS° L,ll)}

o

The orthogonal of N in L}t(K , Rd) defined by

Nt o= {neLi(K,Rd) : Jnfu(dy) =0 fOl"aHfGN}»

K

is a closed vector subspace of L}l (K, Rd). Following [1], [3], [4], we introduce the notion
of tangent space T, to the measure x through the following local characterization of

N (see [9] for further details related to the L>-case under consideration here):
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Proposition 3.2. i) There exists a u-measurable multifunction T, from K to
the subspaces of R? such that:

EeNt = &a)eT ) paexeRe
ii) The linear operator u € Cl(K)HP/l(x)Vu(x) € L;C(K; Rd) where P,(x)

denotes the ortogonal projector on T, (x) can be extended in a unique way as a linear
continuous operator

V. : Lip (K) — V,u € L (K; RY)

where Lip (K) is equipped with the uniform convergence on bounded subsets of
Lip (K) and L7 (K; RR?) with the weak star topology.

Remark 3.3. The second assertion of Proposition 3.2 asserts that a Lipschitz
function admits, for every measure g, a tangential gradient defined y-a.e. In the case
where u is the k-dimensional Hausdorff measure on a smooth k-dimensional mani-
fold in RY, this tangential gradient coincides with the one which is obtained by using
Rachemader Theorem on local charts representing the manifold.

Proof. i) We first showthat AV is a vector subspace of L7 (K, R%) satisfying the
property
(3.3) VEEN, Yo e CUK), EpeN.
Let ¢ € NV, and ¢ € C'(K). There exists a sequence (u,) in C'(K) such that:
U, — 0 uniformly, Du, — & a(L/jO,L/ll).
Then one readily checks that the sequence (pu,,) satisfies

o, — 0 uniformly, D(uynp) = pDuy + (Dp)uy, — o& in o(LS° L/ll).

no

Thus ¢ € N and the claim (3.3) follows. We deduce immediately the following so
called “decomposability property” of the space N :

(3.4) Vo e N7, VA u-measurable C K, olg e Nt
Indeed take a smooth sequence (¢,,),, converging to 14 for the weak star topology of

L (K). For such a ¢ and for all £ € NV, we get thanks to (3.3)

(14, &)

J Li@)o) - &) duty)

K

lim J 0, (o) - o) duy)
K

lim (£¢,, o) = 0

N—00
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which concludes the proof of (3.4). Then by applying [8] (Theorem 3.1 p. 158), there
exists a closed valued ;— measurable multifunction 7', such that:

Nt = {oe LB o@ e T, pae..

Clearly T, (x) is a vector subspace of R? (tangent space at « to the measure ).

ii) We have to show that given an equi-Lipchitz sequence (u,,) in C*(K) con-
verging uniformly to u, then the sequence (P, Vu,,) does converge weakly star in L7°.
Since the set {Va,} is uniformly bounded in R, it is enough to check that all its
clusters points in L7° weak-star share the same orthogonal projection on T, Given
&1, & two such points, we clearly have by (3.2) that & = & — &; belongs to A/ and then
by i) P, =0.Thus P& = P,é p-ae. u

Recalling (3.1) (3.2) and in view of the Proposition 3.2, it is natural to consider
measures A = oy such that ¢ € N Therefore we introduce the space of tangential
measures on K defined as follows

(3.5) Mrp(K, ]Rd) = {i =ou : ue M (K), olx) € T,(x) ,u—a.e.} .

It can be shown that the property i € Mp(K, R?) is independant of the chosen de-
composition 4 = gu (see for instance [1]).

Remark 3.4. If o € LY, Rd), then the measure ¢ £?_K is an element of
MK, R?) since T.i(x) = R a.e. on Q. On the other hand, if / € My(K, R?), the
A . .
condition % € T}, (x), |A|-a.e implies that dim(T);(x)) > 1, |A|-a.e.
Asa conéequence elements of M (K, Rd) are atomless.
The following proposition gives an equivalent definition for M(K, R?) and solves

the question raised in the introduction of this section:

Proposition 3.5. Let 1 € M(K, RY), then —div (1) € Mo 1(K) if and only if
A e Mp(K, RY). In this case, writing A = o 1, we have for every u € Lip (K):

(3.6) (—divi,u) = JJ~Vﬂud,u.
K

Proof. Let 2 e M(K,R? such that — div (1) € Mo 1(K). Let 1 € M (K) and
o € LMK, R%) such that /. = ou. We are going to show that ¢ is in A'*. For any ¢in
it exists a sequence (u,,), in C*(K) such that

u, — 0 uniformly, Du, —¢& in a(Lff,L/ll).
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As —div (1) is in My 1(K), according to Lemma 2.1, the condition (2.1) is satisfied for
(), SO We get:

Ja & du = lim JJ-V@LH dyp = lim (— div (1), u,) = 0.

n—oo nN—00
K K
As the above equality holds for any ¢ in \V, o belongs to A" and thus, by Proposition
3.2 1), o(x) € Ty(x) p-a.e. thatis 1 € Myp(K, Rd).

Conversely, let 4 in Mp(K, R?Y), u € M*(K) and ¢ € L(K, R?) such that 2 = op.
Then by definition, there holds o(x) € T\ (x), u-a.e. Now if the sequence (u,),, is
equilipschitz and converges uniformly to some u, by Proposition 3.21i), the projected
gradients P, Vu, do converge weakly star to V,u and therefore:

(8.7) lim (—div(4),u,) = lim Ja -Vu, du = lim Ja -V dp = Ja -V, du.
Nn—00 N—0o0

Nn—00

K K K

So if u is a constant, the previous limit vanishes and the implication (2.1) holds true.
By Lemma 2.1 it follows that 4 belongs to M 1(K). Eventually, if  is an arbitrary
Lipschitz function, we see that the left hand side limit in (3.7) agrees with
(— div (1), ). That yields (3.6). ]

We are now in position to state the main result of this section:

Theorem 3.6. The following equality holds between subsets of D'(K):
{Ty: f e Mp1(K)} = {—divi:ie Mp(K; R} .
Futhermore, for any f € Mo1(K), there exists . € MT(Rd; Rd) such that:

Il = ) =  min {J|/1|:—div/1:f}.

AeMp(K;RY)
Proof. Asa consequence of Theorem 2.4 and Remark 3.4, we have:
{Ty: f e Moa(B)} € { —divi: e MpK;RD}.

The reverse inclusion is a consequence of Proposition 3.5. It remains to show that for
any f € My 1(K):
Ifl; = min . {JW :—div A f}.
AeMyp(K;RY)

Notice that by Proposition 3.5, the infimum in the right hand side could be taken as
well over all M(K, R?). The existence of a minimal 7 follows then by the lower
semicontinuity of the total variation and the fact that the distributional divergence
constraint is closed under the weak star convergence of measures. The value of the
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minimum A(K) is clearly below the infimum taken over absolutely continuous mea-
sures A = odx (see remark 3.4) and by Theorem 2.3 this latter infimum agrees with
If1l;- To prove the converse inequality we simply notice that, for every u € Lip; (K),
we have |V, u| < 1. Thus, recalling (3.6), it follows that for every admissible 1 = o u:

Jw > J(o-vﬂ)du — (diviu . n
K K
Example 3.7. Let us consider again the infinite sum of dipoles discussed in
section 1, thatis f' = ", (6, — da,). It is difficult to explicit a representation of f as
established in Theorem 2.3. However it becomes straightfoward in the framework of
lower dimensional tangential measures. Indeed consider any geodesic curve S,, C K
joining a,, to b,. Then, if 7,, denotes the oriented tangent vector of S,,, we obtain an
element 4 € My(K, R%) such that — div /. = f by setting

hi=> tH'LS,.
n
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Abstract

In this note we propose a new characterization of the completion of the set of balanced
bounded measures compactly supported in R® with respect to the Monge-Kantorovich norm.
This extends the well known case d = 1 (see [6]). Different issues connected with the existence
of Monge dual potentials and tangent spaces to measures (see [1], [3], [4]) are also discussed.
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