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1 - Introduction

In the regularity theory for solutions to second order non-linear parobolic sys-
tems a crucial step is the comparison of a given weak solution to a solution of a linear
homogeneous second order parabolic system of partial differential equations with
constant coefficients. For RY-valued functions h(x,t) of n spatial variables x € R"
and the time ¢, such systems are determined by a bilinear form A on R™ which is
strongly elliptic with ellipticity constant 4 > 0 and upper bound 4 € (0, c0); this
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means that

Alp,p) > 2pl*, 1A, | < Alpllg] ¥ q,p e R™Y.

The constant coefficient parabolic system may be written, in a weak formulation on a
space-time cylinder Q7 = Q x (— T, 0), as follows

(1) J (h(ﬂt —A(Dh,D¢)> dz=0 forall p € CQr, RN).
Qr

The subscript «c» indicates compact support of the test functions ¢ in @r; Q denotes a
bounded domain in R" and z = (x,t). The solutions % to (1) will be called A-caloric
functions, because in the case that A is the canonical inner product on R™ they are
simply the classical RY-valued caloric functions on Q.

In the context of second order non-linear parabolic systems

wy = div a(x, t, u(x, t), Du(x, t)

for RN -valued functions u(x,t) defined on a space-time cylinder Q7 the form A is
usually obtained by computing the derivative of the coefficients a(x,t,u,p) with
respect to the variable p at suitable points (2o, to, %o, po), i.e. A = Dpalxo, to, uo, po). If
2 1s a solution of the non-linear parabolic system, then one can deduce estimates for «
near (xg, ty) by comparing u to suitable A-caloric functions on space-time cylinders
Q, (0, to) = B,(wo) x (ty — p?, ty) centered a (2o, o).

Following the techniques which have been utilized in the regularity theory for
non-linear second order elliptic systems there are different methods to define the
A-caloric functions suitable for the comparison argument in the regularity proof.
One method is the blow-up technique. Here one considers a sequence of non-
degenerate parabolic cylinders Q) (2x) € Qr, 2 = (¥, %), and considers the re-
scaled functions

w@ey, + ppy, te + P20 — W), — pr(DU), Yy
Prek

uk(y7 T) -

where (y,7) € Q1 = B1 x (—1,0) and ¢ | 0. (Here (v), , denotes the mean value of v
on Q,(z).) Each of the rescaled functions u is a solution of the associated rescaled
parabolic system. Then, under appropriate hypothesis, one should be able to show
that the rescaled functions u; converge, in some sense, to an A-caloric function.
From this convergence and standard estimates for solutions to constant coeffi-
cient linear parabolic systems one might deduce, by a contradiction argument,
corresponding estimates for the uy, for k sufficiently large. For the original solu-
tion these estimates then should imply a decay property for the excess. This ex-
cess decay estimate finally should lead to a partial regularity result. In the setting
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of geometric measure theory the blow-up method was introduced by DeGiorgi [8]
(see also Almgren [3]).

Another method to define an A-caloric comparison function £ for the solution of
our non-linear parabolic system u near zy = (29, %) is the solution of an initial
Dirichlet problem for (1) on a small parabolic cylinder @,(zo) centered at zo with
boundary condition 2 = u on the parabolic boundary d,6,(zo). In order to compare
the solution « with the A-caloric function £, the non-linear parabolic system solved by
u must been exploited to obtain further information about u; to be precise, higher
integrability |[Du| € LIZO(C”") for some o > 0 (when a is of linear growth with respect to
D, i.e. |a(z,u,p)| < L + |p|)) is needed to deduce excess decay for u at zy from an
argument comparing u with . Such higher integrability can be derived by use of a
(parabolic) Gehring type lemma from a reverse Holder inequality for « which itself is
based on a suitable Caccioppoli inequality which can be derived by testing the
parabolic system with a suitable testfunction obtained from a direct construction.
This approach has been introduced in the calculus of variations by Giaquinta and
Modieca [21].

In the present note we want to give an exposition of a third method of con-
structing A-caloric comparison functions. This method is based on the fact that one is
able to obtain a good approximation of certain function v e L3(ty — p?, to;
W'2(B, (9, RY)), where Q,(20) = B,(w) x (to — p?, to) is a parabolic cylinder, by A-
caloric functions h € L2(ty — p?, to; W'2(B,(xp, RY)) in the L2-topology. The re-
quirement is that the functions v are in a certain sense approximately A-caloric,
i.e. that

(wp, — A(Dv, Dp)) dz
Q,(20)

is sufficiently small for all testfunctions ¢ € C1(Qr, RY). The precise statement is given
below in Lemma 1. In the applications of this lemma one chooses for v a suitably re-
scaled version of the solution « of the parabolic system. The required approximate A-
caloricity of v is then a direct consequence of the fact that « solves the parabolic system.
The comparison argument relating v and 4 yields in combination with a Caccioppoli
type inequality the desired excess decay estimate. This is, of course, a very rough
description of the method. In Section 2 we concentrate on giving an exposition of the
results obtained in [16] via this method.. We will formulate the optimal regularity result
(see [16], Theorem 8.1) and give a detailed outline of its proof.

The current approach, which we call method of A-caloric approximation has
some conceptual and technical advantages. The method is direct and all the steps can
be carried out with complete control of the sensitivity of the estimates on the
structural data. For example, the method yields an explicit modulus of continuity for
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the spatial derivative Du with respect to « and ¢. The method requires minimal
smoothness assumptions for the coefficients a and the obtained modulus of con-
tinuity for the spatial derivative Du is optimal with respect to required smoothness
assumptions. Moreover, the method avoids the technical difficulties associated with
applying «Reverse Holder inequalities». This will be a crucial point in the treatment
of non-linear parabolic systems with super-linear growth, ie. |a(z,u,p)|
< L1+ \p|s_1) for some s > 2, by a further variant of the method of A-caloric ap-
proximation (see [19]). For such parabolic systems, «Higher integrability» of solutions
has been proved by Kinnunen and Lewis [30] (see also Misawa [35] for a refinement);
however, the proofs do not yield a «Reverse Holder inequality» for Du. Therefore the
application of the second method to the partial regularity problem for non-linear
parabolic systems with super-linear growth seems to be not immediately possible.

Harmonic approximation has been used for a long time in the regularity theory for
elliptic problems. The technique finds its origin in Simon’s proofs [42], [43] — via
DeGiorgi’s harmonic approximation — of the Allard regularity theorem [2] and the
regularity theorem for minimizing harmonic maps of Schoen-Uhlenbeck [39]. This has
been later generalized to degenerate elliptic problems by the author and Mingione, see
[17], [18]. The first application of the A-harmonic approximation lemma was given in
[20], where new and optimal interior and boundary regularity theorems were proved
for almost minimizing rectifiable integer multiplicity currents to general elliptic
parametric variational integrals. Subsequently it was shown in [12], [14], [11], [13], [24],
[25], [32], [15] that the method can also be used to derive new and optimal regularity
theorems for almost minimizing functions to quasi-convex integrals in the calculus of
variations and for weak solutions to non-linear elliptic systems.

We conclude the introduction with the precise statement of the A-calorie ap-
proximation lemma.

Lemma 1 (A-caloric approximation lemma). There exists a positive func-
tion d(n, N, A, A, &) < 1Lwith the following property: Whenever A is a bilinear form on
R™ which is strongly elliptic with ellipticity constant 2 > 0 and upper bound 4, e1s
a positive number, and u € L2(— 1,0; W'2(B, RM)) with

J (|u|2 + |Du|2> dz <1
Q

1s approximatively A-caloric in the sense that

J (u(pt — A(Du, qu)) dz
Q

< dsup |Dy| for all p € C*(Q, RY)
Q
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then there exists an A-caloric function h such that

J (|h|2 + \Dh|2>dz <1 and J|u —hfPde <.
Q Q

Proof. Supposing the lemma to be false we have existence of a sequence of
quadratic forms (4;) on R™Y, with fixed ellipticity constant A > 0 and uniform upper
bound A < oo, and a sequence of functions (vy)yex With v, € L2( — 1,0, W2(B, RY))
satisfying

@) J (1osf + 1De ) de < 1
Q

J ('Uk(ot — Ay(Dvy, Dfﬂ)) dz
Q

1
< Z
< ksgp |Dg|

for all p € CX(B, RY) and k € IN, such that for some ¢ > 0 the inequality
(4) Jm — hffdz > ¢
Q
is valid for all k and & € H},, where here
[ is an Ag-caloric
_ 20 . 1,2 Ny .
Hie= S €LA=LOWEB RO g tion on Q, J(W Dz < 1
Q

Passing to a subsequence (also labelled with k) we obtain the existence of
ve L2 —1,0;W2(B, RY)) and A such that there holds

Ve — weakly in L2(Q, RY),

(5) Dv, — Dv weakly in L2(Q, R™),

A, — A as bilinear forms on R™.
Then
(6) J (1of + Dodz) <1,

Q
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and by rewriting

J (wt — A(Dw, D(p)) dz = J ((v — w9, — A(Dv — Dy, Dq))) dz
Q Q

- J(A — ADvy, Do) dz + J (2601 — Ax(Dv. Dp)) d
Q Q

and using (5), (2) and (3) we see that the weak limit v is an A-caloric function on Q.

In order to get compactness in L2(Q, RY), i.e. v, — v in L2(Q, RY), we estimate
the time derivatives of vy. For this we let ¢ € C°(@Q, RY) and compute, using in turn
(3), the Cauchy-Schwartz inequality and (2):

0
1
(7) Hkaﬂtdz’ < Ay J HD(O('J)HiZ(B)dt‘f‘E sup [|Do|l1~m, -
~1<t<0
Q -1
Now, for —1 < s; < s2 < 0 and u > 0 small enough we choose
0, for —1<t<s —u,

1
;(t—sl+u) for s —pu <t <syp,

POES 1 for s; <t < sy,

1
——(@t —sg—p) forsy <t<sp+u,
u

0 forse+u<t<1,
and let g(x,t) = {,(Oy(x) for y € C(B, RM). Testing (7) with ¢ we obtain

s1 Sptu
'J(l J vk(ac,t)olt—l J vk(ac,t)dt> w(x)dw
B s g

S1—H 52

0 1

2
1
< |Ag] (J Cy(t)zdt> 1D 2) + A 1D 1) j‘jtgo ¢
) <t<

1
< <|Ak| Sp — 81 + 2u +E> 1Dl ) -

By the Sobolev embedding theorem we have

n+2

1Dl < ¢, Ollllywezgy,  €>—5—,
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which implies

I

B

S1 Sa+1
(1 J vk(ac,t)dt—% J vk(ac,t)dt> w(x) da

S1—H S2
1
< c(n,ﬁ)(|Ak| 8o — 81 +2/1+E)||l//||wé/.2(3).

Passing to the limit x | 0 we obtain for a.e. —1 <581 < s2 <0

1
“ (Vi (-, 82) — v, 81)) - w dae| < e, f)<lAk|v82 —s1+ lc) W llyweza)
B

97

for any y € C:*(B, RY). By the density of C>*(B, RY) in Wi (B, RY) the last in-
equality is also valid for any y € W§’2(B7RN ). Taking the supremum over all

y € Wy(B, RY) with [Wllwe2gg vy < 1 we infer
1
[0k (-, 52) — V(- SO yyragp gy < €€, ) <a\/32 -8+ k) ,

where supy.; |Ax| < a. From the previous estimate we easily obtain
~h

1
J ||?]k(',t+ ]’L) - Uk(', t)HWJ.Z(BJRN) dt < C((l\/ljb + E) y

yielding
—h
1}%1 J [kt 4+ 1) — 0, Dl rzp vy dE — 0 uniformly in £ € .
-1

Therefore we are in a position to apply Theorem 5 of [41] with the choice
X = W'3(B,RY), B = LAB,RY), Y = W 2B, RY), F = (0)rexn, p = 2 to conclude
that (v)pex is relatively compact in L2(Q, RY) = L2(— 1,0; L3(B, RY)), ie. there

exists a subsequence (vy)ren (again labelled by k) such that

v, — v strongly in L*(Q, RM).

To deduce the desired contradiction we denote by wy: @ — RY the unique solu-

tion to the following initial-Dirichlet problem and possessing the properties listed
below; the existence of wy, can be shown using standard arguments from [33], [34]:

wy € CO — 1,01, LA(B, RM) N LA(— 1,0; Wy *(B, RY)),
Ay, € LA(— 1,0, W 2B, RY)),
wk('v _1) == O )
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J (wkgot —Ak(Dwk,D(p)> dz = J(A —A)(Dv,Dp)dz ¥ ¢ € C(Q,RY);
Q Q

%H@Uk(',t)HiZ(B) + J Ak(DWk,DU)k) dz

Bx(~11)

= J (A — A)(Dv,Dwy)dz for a.e.t e (—1,0).

Bx(-1)
By ellipticity of the Aj’s the left-hand side of (8) is bounded from below by

A J \Dwk\z dz. Moreover, using Cauchy-Schwarz inequality, the bound
Bx(-1}%)
J |Dv|2dz < 1 from (6) and Young’s inequality the right-hand side of (8) is estimated

A
2
Bx(~1%)

Q 2
from above by }|A — AP+ |Dwy|? dz. This implies in particular for

ae.te[—1,0]and k € N that:
1 ) 2
—J (-, £)2dae + 2 J \Dwy.[*dz < 2| A, — AP
2 2 A
B Bx(-1%)

Taking the supremum over ¢ € ( — 1,0) we arrive at

9) sup %J|wk(-,t)|2 dw+§J|Dwk|2 dz — 0 as >k—oo>.
te(—1,0)
B Q

Letting gi. := v — wy € L2(— 1,0, W'2(B, RY)) we easily see that g;, agrees with v on
the parabolic boundary 9,@Q of @ and satisfies

J (gk% *Ak(ng,Dﬁﬂ)) de=0, Y gpecCQ,RY).
Q
From (9) and the definition of g;, we see that
J (\gk — v’ + |Dgj. — Dv|2> dz — 0 as k — oo,

Q
and the same assertion is true when we replace g; by the scaled function

3

Ok = g—k € Hy, where by, := max{l, ( J \gx* + [Dgy.[? dz) }, contradicting (4). O
3

Q
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2 - Second order parabolic systems

In this section we discuss how the A-caloric approximation lemma can be used to
prove a partial regularity theorem for weak solutions of non-linear, second order
parabolic systems. We give an outline of the results contained in the paper [16] where
new and optimal results have been obtained. We do not intend to give full proofs, but
we will give precise formulations of the results. Moreover we want to explain how the
A-caloric approximation lemma is applied in the proof.

In the following Q will denote a bounded domain in R", and @7 will denote the
parabolic cylinder 2 x (— T,0), T > 0. We consider non-linear, second order para-
bolic systems of the type

(10) uy — divale, t,u,Du) =0,

for z = (x,t) € Qr, u mapping Qr into RY and coefficients a(z,u,p) € R"™ for
(z,u,p) € Qr X RY x R™,

Our structure conditions for the coefficients a(z, %, p) and its first derivative
Dpa(z,u, p) with respect to the variable p € R™ are the following: We assume that
the functions

(z,u,p) — alz,u,p), (z,u,p)— Dpalz, u,p)

are continuous on Qr x RY x R™. Moreover, there exist constants 4> 0 and
L < oo such that for all z € Qr, w € RY and p, p € R™ the following inequalities
hold:

(11) latz, u, p)| <LA + |p)),
(12) |Dpa(z7 ua p)| SL )
(13) (Dpatz, u, p)p, p) =PI

With respect to the variables (z,4) we shall assume that the function
(z,u)»—>(1+|p|)_1a(Z,u, p) is Holder continuous with respect to the metric

dp(z,20) + |u —uo| (Where d,((x,1),(y,s)) :=/|¢ — y[> + |t —s| stands for the

parabolic metric) with Holder exponent f € (0, 1);i.e. we shall assume that we have a
modulus of continuity of the form (¢, s) := min{1, K(¢)s”}, where K: [0, c0) — [1, o)
is a given non-decreasing function, such that

(14) la(z,u, p) — alzo, uo, Po)| < LO(Ju| + |uol, dp(z, 20) + |1 — uo))A + |p|)

for all z, zo € Qr, u, uo € RY and p € R™. Since (14) is a bit difficult to handle, we
replace (14) by the following weaker requirement that

(15) |az, u, p) — azo, uo, po)] < K(|lu|)(dy(z,20) + | — uo)’( + |p|)
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for all 2, zy € Qr, u, uo € RY and p € R™. Here K: [0, 00) — [L, 00) is a given non-
decreasing function.

Finally, from the fact that D,a(z,u, p) is continuous we can deduce the existence
of a family of non-decreasing functions w:[0, c0) x [0, 00) — [0, co) with w(t,0) =0
for all ¢ such that t—w(t, s) is non-decreasing for fixed s and s—w(Z, s)? is concave for
fixed ¢, and such that

(16)  |Dyatz,u,p) — Dpatao,uo, po)| < (M, dy(z,20° + [ = uof” + |p = pol?)
for all z, zo € Qr, u, up € RY and p, py € R™.
Definition 1. For given coefficients a satisfying (11) we say that a function

we L2(—T,0,W'2(Q,RY)) is a weak solution of the non-linear second order
parabolic system (10), if

(17) J (uqat — a(z,u,Du)D(p) dz =0
Qr
holds for all ¢ € C(Qr, RY). O

Consider now a weak solution u € L2(— T,0; W'2(Q, RY)) of the non-linear
parabolic system (10), where the coefficients satisfy the structural assumptions (11)-
(13) and (15). The aim of the interior regularity theory is to prove that, for a large
set of points z € Qr — the regular set — the spatial derivative Du is locally re-
presented by a continuous function; i.e. we have

Reg(u) = {# € Qr : Du is continuous on a neighbourhood of z},

and the singular set is the defined by
Sing (u) = Q7 \ Reg (w).

Moreover, one wants to establish the best possible modulus of continuity for Du with
respect to parabolic metric, which is allowed by the structural assumptions for the
coefficients a. Simple examples show that Du € C/#/2-regularity locally at regular
points is best possible if the coefficients are Holder continuous in the the variables
(z,u) with respect to the parabolic metric with Hélder-exponent 5 € (0,1). Here
CPF2(U) denotes the space of functions which are Holder continuous with exponent
S with respect to the space variable x and with exponent /2 with respect to the time
variable t, i.e. they are Holder continuous with exponent  with respect to the
parabolic metric d,,.

We are now in a position to state the main partial regularity theorem, which is
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taken from Theorem 8.1 of [16]. We shall denote the mean value of a function v on a
parabolic cylinder Q,(zo) by v, or (v),, .

Theorem 1. Let u € L2(— T,0;W'2(Q, RM)) be a weak solution of the non-
linear parabolic system (10), where the coefficients a satisfy the structural as-
sumptions (11)—(13) and (14) and denote by Sing (u) the singular set of u. Then

Sing (u) C 21 U2,

where

21 ::{Zo €Qr: hrnl%)nf J: \Du - (Du)zo.,p|2 dz > 0}
p
Q,(z0)
U {zg € Qr : liminf ][ I — 1y ,|* dz > o} ,
p
Q,(z0)
and

+ [(Duw)., ,

2o ::{zo €Qr: liml%up (|(u)z07p
P

) < oo} 3
m particular |Sing (u)| = 0.

In addition, in a neighbourhood of any zy € Qr \ Sing (w) Du is Holder con-
tinuous with exponent  with respect to the parabolic metric dp, i.e. Du € CHIZ ona

neighbourhood of z. O

Before discussing an outline of the proof of Theorem 1 we want to make some
remarks concerning related results. Partial regularity of solutions to non-linear
parabolic systems have been established for quasi-linear systems —i.e. for system of
the type u; — div(a(x,w)Du) = 0 in Q@ — in [45], [22], [23], [4], [31]. Non-Linear
systems with p-Lapalcian structure have been considered in [35]. Moreover, in low-
dimensions the problem has been investigated in [38], [28], [29], [37]. The general
case was treated in [48] assuming that the solution is a priori bounded or even Hélder
continuous. Everywhere regularity was shown under special (diagonal type) struc-
tures for the coefficients; for example the case of p-Laplacian systems was treated in
[10], [36]. Counterexamples to everwhere regularity are constructed in [46], [44], [27]
(in the case of elliptic systems we refer to [9], [26], [47]). Finally, we want to mention
[40], [1] for partial regularity results for weak solutions to Navier-Stokes type sys-
tems resp. parabolic systems with coefficients satisfying a non-standard growth
condition of p(x, t)-type. In these papers the coefficients a(x, t, Du) are assumed to be
more regular then Holder continuous with respect to (x, t) and therefore the methods
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are not suitable to treat the low regularity assumptions we consider. In any case the
optimal regularity — i.e. the assertion that the modulus of continuity of the spatial
derivative Du is exactly the one of the coefficients a(x, u, p) with respect to (x,u) —
was never achieved even under stronger hypothesis due to the different techniques
used before this paper.

We are now going to give an outline of the regularity proof describing the
various steps. In the rest of the paper C € [1, co) will denote a constant that may vary
from line to line. The relevant dependencies will be indicated by writing
C=C,N,...).

The first step of the proof is to establish a suitable Caccioppoli inequality. The
following lemma is a version taken [16], Lemma 5.1. We define H(s) = K(s)(1 + s)
where K is from (15).

Lemma 2. Leta satisfy (11)-(13) and (15) and let M > 0. Then there exists a
constant Cegee = C(4, L, HM)) such that for every Q,(20) € Qr with p <1, every
affine fuction £(z) = (x) independent of t satisfying |0(z0)| + | D¢ < M and every
weak solution u € L2(— T, 0; W2(Q, RM)) to (10) we have

2
(18) } Du— DU dz < Conee f ‘“T?‘Z de+ 2

Q,/2(20) Q,(z0)

Proof. Since the proof is close to the proof of similar Caccioppoli inequalities
given in the elliptic setting we only explain the choice of the suitable test-function
which yields the result after a lengthy but straightforwad computation.

In (17) we take ¢ = qzéz(u — ¢) where g € Cé(Bp(mo)) is a cut-off function in space
such that 0 <# <1, n=1in B,j»(x9) and |Dy| < 4p~! while { € C}(R) is a cut-off
function in time such that, with 0 <e< p?/4 being arbitrary, (=1 on
(to— p2/4,tg— &%), (=0 on (—o0,tg—p?)U(tg,00), 0<(<1 on R, & <0 on
(to — p2/4,00), |&| < 8/p? on (ty — p?,ty — p?/4). To proceed in a rigorous way, one
should also use a smoothing procedure in time via a family of non-negative mollifying
functions or via Steklov averages. O

A crucial role in the regularity theory of solutions « to non-linear parabolic
systems is played by an excess functional measuring the mean square deviation of
Du from its mean value (Du),, , on small parabolic cylinders Q,(z9) € Q7. For an
affine function 4(z) = ¢(x) independent of ¢ we define:

@2(20,[),D€) = J; \Du — Dé‘z dz,
Q,(z0)



[13] OPTIMAL REGULARITY FOR SECOND ORDER PARABOLIC SYSTEMS... 103

u— 0

Wiz, p, 0) = f dz.

Q,(20)

An essential next step in our method of A-caloric approximation is to establish
approximative A-caloricity of 4 — /¢ on small parabolic cylinders Q,(zo), where
£(z) = #(x) is a suitable affine function independent of ¢. Here

Ap, p) := (Dpalzo, £z0), DO, ) p,p e R™Y,

and the deviation of w — ¢ from being exactly A-caloric on Q,(zo) is measured in terms
of the excess-functionals @, and ¥s. We note that A is strongly elliptic with ellipticity
constant A by (13) and bounded by L by (12). The following lemma is the version of
approximative A-caloricity taken from [16], Lemma 6.1.

Lemma 3. Under the same conditions as Lemma 2 there exists a constant
Ciu = C(HM), L) such that for every weak solution uw € L2( — T, 0; W2(Q, RY)) to
(10), every parabolic cylinder Q,(z0) € Qr with p <1 and every affine function
U(z) = U(x) independent of time, satisfying [€(zo)| + |DE| < M we have

} ((u — g, — A(Du — DE,Dgo)) dz
Q,(z0)

< Chu (w(M +1,P2)\/ D2 + Pp + ¥ +pﬁ) sup |Dg|,
Q)(20)
for all ¢ e CF(Q,(20), RY ). Here we have abbreviated @y = Pa(zy,p,DYE),
Vo = Y220, p,0) and A(-, ) = (D,a(z0, U(z0), DY)-, ). 0

The idea of the proof of Lemma 3 is to use the first order Taylor expansion

1
a(29, £(20), Du) = a(zo, £(29), Du) — J<Dpa(zO, Uz0), Dl + 1(Du — DO)YDu — ¢, -)dt
0

1

and to compare J(Dpa(zo, Uz0), Dl + ©1(Du — DO))YDu — £, Dyp)dtr with A(Du — D¢,
0

Do) using the modulus of continuity w of Dpa from (16). This gives a connection of A

to the non-linear parabolic system.

As is well known from partial regularity theory the crucial step in the regularity
proof is excess improvement. If % is a weak solution to non-linear parabolic system
(17) with small excess ¥a(u, 2o, £) in some parabolic cylinder Q,(z9) € Qr for some
affine function /(z) = 4(x) independent of ¢, then one shows that the excess of u in
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some small parabolic cylinder Qg,(z0), 0 < J < 1, with respect to some suitable
chosen affine function close to /, is substantially smaller than ¥s(u, 2y, £). Iterating
this one obtains a decay rate of the excess in concentric parabolic cylinders of radius
r with respect to some fixed affine function independent of ¢ as » | 0. From this the
regularity of « in a small parabolic cylinder eventually follows.

The idea here is to apply Lemma 3 on @, 2(z0) to v: = u — £, where Q,(20) € Qrisa
fixed parabolic cylinder with radius p <1 and #(z) = 4(x) is an affine function in-
dependent of ¢ satisfying |¢(z¢)| + |D¢| <M (M > 1 given). From Caccioppoli’s in-
equality (18) we infer

(19) ®s(20, /2, DO) < Ceaee (P20, p, 0) + p?) = CeueeP2(20,p,0).

From an application of Lemma 3 we therefore get for any ¢ € C°(Q,/2(20), RY) that

(20) ][ (v(pt — A(Dv,Dw)) dz
Q)/2(z0)

< C[w(M + 1,';172) \/5172 +, +pﬂ S 1Dy,

where C = C(4,L, f, H(M)). Here we have set A(.,-) = (Dya(zo, {(zo), D?)-,-) and
Wy = Wy(z0, U(z0), DC). We are now in a position to apply the A-caloric approximation
lemma. More precisely, keeping in mind the notation and hypothesis of Lemma 1 we
consider

u—/

C\/¥2+ 07 2p2

with C > 1 suitably chosen to obtain with the help of (18) that

-2
(%) } ol dz + f Dwfdz <1.
Q)/2(20) Q,/2(z0)

nw =

Using (20) we then apply Lemma 1 (in a suitably scaled version) to obtain for a given
¢ > 0 an A-caloric function 4: @, 2(z0) — RY satisfying

-2
(21) (g) f P dz + }[ IDh%dz < 1
Q,/2(20) Q)/2(20)
and
)
(22) () ][ o — WP dz < e

Q,/2(z0)
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provided the smallness condition
WP(M + 1,220, p, ) + P20, p, 0) < 1°(n, N, 1, L, e)

is satisfied. Denoting by /., , the unique affine function (in space), ie. ¢, +(2)

= 4, »(x), minimizing m — ][ lu — m|* dz amongst all affine functions m(z) = m(x)

Qa‘(z(])
independent of ¢, one infers from (22), (21) and the standard estimate [5], Lemma 5.1,

for the A-caloric function ~ a bound

C } [ — Ly pargPdz < CE" e+ 192>(/f2 } e — ¢Pdz + pZ”)
Q,(20) Q(20)

1 . .
for 0 <9< > This means that we have estimated the excess ¥» over Qg,(zo) with

respect to the affine function £, », by a small quantity times ¥>(2o, p, {) + 2P This is
the desired excess improvement. The result, given as Lemma 7.1 in [16] is the
following:

Lemma 4. Consider u satisfying the assumptions of Theorem 1, M > 1 and

1 .
a € (B,1). Then we can find positive constants 9 € (O, E) and o € (0,1] depending

only onn, N, 4, L, a, § and H(M) such that the smallness condition

(23) P (M +1,%50,p, L) + Paleo, p, ) < %52

on Q,(z0) € Qr for some 0 < p <1 and

(24) CzopR0)| + [Dley | < M,

together 1mply the excess improvement

(25) V20, 3, Legusp) < 5220, p, oy ) + Cp .

Here C:=14062 O

The last step to prove excess decay is to iterate (25). This is standard. In order to
make the iteration work one has to check that conditions (23) and (24) are satisfied on
each scale @ &7'/)(20), j € N once they are fullfilled on Q,(zo). The result, given as
Lemma 7.3 in [16], is the following:

Lemma 5. For M > 1 there exist py(M) > 0 and lf’o(M) such that if the con-
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ditions
(1) |€zu,p(z0)| + |D€Zmﬂ| < M?
G po< p),
(111) YIZ(Z()7 P> Zzo,p) < yIO(]‘4) ’

are satisfied on Q,(zo) € Qr, then for every j € N we have
Voo, Ip, L, g,) < W0, p, Ly ) + s WS )P

and

[0, g (z0)| + |DL

20 ,&7 p

|<2M.

20 ,&j p
Furthermore, the limit

Y,, := lim (Dw)
J—oo

20,9p

exists, and there exists a constant C(a, f, M) < oo such that for all 0 < r < p/2there
holds:

2 r 2a
f Du— Y., [P dz < c[(m) Wal2o.p, ey + 7). 0
Qr‘(z())

An immediate consequence of Lemma 5, the integral characterization of Holder
continuity (with respect to the parabolic metric d,) of Campanato-Da Prato [7] and
the elementary estimate

|(Du)z0x7 - D€z0,r7|2 < n(n + 2)072 :|: |u - (u)z[,,a - (Du)zo,a‘zdz
QG(ZO)

from [32], we immediately get a first regularity result which is formulated in
Theorem 7.5 of [16].

Theorem 2. Let u € L2(— T,0;W'2(Q, RM)) be a weak solution of the non-
linear parabolic system (10), where the coefficients a satisfy the structural as-
sumptions (11)—(13) and (14) and denote by Sing (u) the singular set of u. Then
Du € CPPI2(Qr \ Sing (u)) and

Sing (1) C Xy U 2y
where

2o = {zg cEQr: limui)nfp‘2 ][ [ — (), , — (Du)y, )@ — 900)\2 dz > 0} ,
p
Qp(z(])
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and
2= {Zo € Qr : limsup <|(u)zo-ﬂ| + |<Du)z°’/’|> = OO} . i
»10

While it is clear from Lebesgue’s theorem that | 25| = 0 it is far from being ob-
vious that the same is also true for 2. In the case of elliptic systems this would follow
via Poincaré’s inequality, i.e.

p2 } I — W)y, ) — (DU)y, (& — 10)|*dec < C ][ \Du(w) — (Du),, ,[*dec .
Bp(xo) Bp(xo)
However, such a Poincaré inequality is not known in the parabolic case since the

solution u is not assumed to be differentiable with respect to time; to be precise, we

do not a-priori assume that ,u € LIZOC(QT, RY). Therefore Theorem 2 is not a partial

regularity theorem in the sense that it does not imply that |Sing (u)| = 0. It only
gives a characterization of the points contained in the regular set Reg ().

The last step in the proof of the partial regularity theorem is to establish that
Sing (u) C 21 U X3g; see Thereom 1 for the definition of 2. This would follow if we
could show that in points zy € Qr satisfying

(26) limui)nf ][ \Du — (D), ,[?dz =0, limlionf ][ lu — (w),, ,[*dz = 0
P P '
Q,(z0) Q,(zp)

and
(27) sup (20)zy| + D)) < M < 00
p>0

we would have

(28) liml%nfp*2 :F [ — (), , — (Du),, (@ — x0)|2dz =0.
p
Q,(z0)

To obtain the desired conclusion we need a suitable Poincaré type estimate for the
solution u at points z( satisfying (26) and (27). The proof is carried out in two steps. In
the following we fix a parabolic cylinder Q2,(z0) € Qr around z, and we denote by
v € LA(ty — 4p%, to; WH2(Bg,(ao), R™)) the unique weak solution of the initial boundary
value problem:

(29) J (Wt — a(zo, (u)zo.,Zp,Dv)qu) dz =0
QZ/)(ZO)
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for every ¢ € C2*(Q2,(20), RY), and
(30) v =u on 0Q2,(2o).

For g > 0 we define y(o) := } |u — (), 5|dz. Moreover, keeping in mind (14) we

abbreviate: Qo (20)

L () == K@M + w(@))o + /w(@) +1,

ow(@) = (K@M + yp(@)o + V@) + /(@)1 +M?).
The following comparison estimate is (8.5) in [16].

Lemma 6. Letu € L?(—T,0;W'2(Q,R™)) be a weak solution of the parabolic
system (10) under the assumptions (11)—(14) and let zy € Qp such that (27) is sa-
tisfied. Furthermore, for Qs,(20) € Qr let v € L2(ty — 4p?, to; WH2(By, (), R™)) be the
unique solution of the initial boundary value problem (29), (30). Then there holds

(31) f \Du — Dvf*dz+ sup p2 f (e, t) — v, t)|* dae
to—4p?<t<ty
Q2 (20) By, (20)

< C[ﬂM(zp) ][ 1D — (D)., o, 2dz + UM(Zp)] —. E©p)
Qz/z(Zo)

where C = C(4, L). O

We observe that in points zp € Q7 satisfying (26) and (27) we have that
limui)nf w(p) =0, liml%nf ty(p) =1and lim“i)nf vy (p) = 0. Taking also into account that
p p. p

liml%nf ][ |[Du — (Du)zO_p|2dz = 0 it follows that:
p

Q,(z0)
(32) liminf £(2p) =0.
pl0
The proof of Lemma 6 starts with the identity
(33) J ((u — )¢y — (az, u, Du) — alzo, (u)zo,zp,Dv))D§0> dz=0,
QZ/?(ZO>

which follows immediately from (17) and (29). In (33) we choose ¢ := y()(u — v) with
sS+e—1

x=1for (—oo,s), x =0 on (s+ ¢ 00), and y(t) = for s <t < s+ ¢, where
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[s,s + ¢l € (tg — 4p%, ty) and then let ¢ | 0. Rewriting the resulting identity by adding
and subtracting a(20, (W), 25, Du)D(u — v)dz und using the mono-

Bo, () x (tg—4p?,5)
tonicity of the vectorfield p+— a(zo,(u), 2,,p) we easily infer that for a.e.

s € (to — 4p%, to):

1
é”%(’ t) — 1}(~7 t)”iz(sz(xo)) + A J ‘Du — D’U|2 dz

Ba, (o) x (fg—4p% 1)

IN

(a(zo, (1) 2, Du) — az, u, Du))D(u — v)dz .

Ba, (o) x (tg—4p%,5)

Using the modulus of continuity 6 of (x,u)+— a(x,u,p) from (15) and Young’s in-
equality the right-hand side of the previous estimate can be estimated by

)
5 J \Du — Dv|* dz + CI
Ba, (o) x (tg—4p% 1)

where

I< j 012000, 2] + 16 — W)y ], 4p + 1t — () 2,1+ (D) d.
QZﬂ(z0>

The first term is absorbed as usual on the left-hand side. The main idea to estimate
the second integral I appearing on the right-hand side is to split the domain of in-
tegration @2,(z0) into two parts: A;:={z € Q20 :|u—(u),, >t} and
Q2,(20) \ Ay, wheret > 0. Then |4;| < |Q2,|t"'w(2p). OnA; weuse O( .. .) < Lwhile on
Q2,(20) \ A; we use instead 0(...) < ALK@2M + Hp+ ). The desired result then
follows by suitably choosing t = /y(2p). For the somewhat lengthy calculations we
refer to [16], Section 8.

To obtain the Poincaré type inequality for « we need a Poincaré inequality for v.
Recalling that v is a weak solution of the parabolic system (29) we see that
v:=v — (Dv), 2,(x —xp) solves v —diva(Dv) =0 weakly on Qz,(20) where
a(p) := a(2o, (), 2, (DV),, 2, + ) for every p € R™ . Then the Poincaré inequality is
a consequence of the relevant regularity theory for parabolic systems with coeffi-
cients independent of (z,u); see [6], Theorem 3.1. Indeed, we have

p2 J: |at'l)|2 dz < C J: |D'U - (D/U)zo.Zp‘z dzv
Q,(z0) Q2,(20)



110 FRANK DUZAAR [20]

and from the usual Poincaré inequality we therefore infer that

2 f [0 — (W), ) — (DV)sy (@ — w2z < C ][ Dv — (Do), 5, dz,
Q)(z0) Q2,(20)
where C = C(n, A, L).

By comparison, i.e. by adding and subtracting v, we finally obtain the Poincaré
type inequality for « from the previous estimate and (31):

(34) p 2 ][ [u — (), , — (Du),, (@ — 9co)|2 dz < CE@2p).
Q,0)
Now the proof of partial regularity theorem easily follows from (34) and (32).

Indeed, if 2y € Qr satisfies (26) and (27) then we have (28) finishing the proof of
Theorem 2.
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Abstract

We discuss a new approach to the reqularity theory for solutions of second order non-
linear parabolic systems. This method is direct, exhibiting the dependence of the regularity
estimates on structural data of the coefficients of the parabolic system in explicit form; it
requires only weak growth and smoothness assumptions on the coefficients, and it leads to
new reqularity results which give the best possible modulus of continuity for the spatial de-
rivative of the solutions. The present note is a summary of parts of the results obtained in [16].
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