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1 - Introduction

In this paper we outline an elementary method for constructing quasiconvex
functions. The method is based on the observation that given any suitably rank-1
convex function R and any strongly quasiconvex function P the function R + tP is
quasiconvex for sufficiently large numbers ¢. We regard the function R as the
function that we ideally would like to show is quasiconvex and the term tP as a
perturbation.
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The method is illustrated on a remarkable family of functions that was first
considered by Dacorogna and Marcellini in [9], namely

(1.1) " — 2y[¢fdet e,

which is defined for real two-by-two matrices ¢ € R**%, and where y € R is a para-
meter. Here |¢| designates the Euclidean norm of the matrix £, and the above
function is therefore in particular a homogeneous polynomial of degree 4. It is
polyconvex precisely when |y| < 1 and rank-1 convex precisely when |y| < 2/+/3 (see
[9], [11]). The precise range of y for which it is quasiconvex is still unknown. A result
of Alibert and Dacorogna [1] states that there exists a positive number ¢ > 0 such
that the function is quasiconvex whenever |y| <1 + &. We shall recover this result as
an application of our construction.

If we replace the Euclidean norm | - | in (1.1) by the spectral norm || - ||, we obtain
the function

(1.2) IE11* = 2yl1¢]*det &.

This function (up to a multiplicative constant) was considered in an apparently dif-
ferent context by Burkholder in [5]. Quasiconvexity of the function (1.2) and its
generalizations turn out to be closely linked to some deep questions in harmonic
analysis and geometric function theory (see [2] and [18]). The construction as we
present it here does not apply to the function (1.2), which in this connection has some
quite bad features, nondifferentiability being one of them. It is however possible to
modify the construction and thereby show quasiconvexity of an interesting function
related to (1.2). These results, that rely on alocal version of polyconvexity (see [6] and
[24]), will be published elsewhere.

The paper is organized as follows. The definitions of poly-, quasi- and rank-1
convexity are recalled in Section 2. The construction is given in an abstract set-up in
Section 3, and Section 4 provides some useful examples of strongly quasiconvex
functions that can be used as perturbation functions. The proofs for strong quasi-
convexity rely on elementary results from harmonic analysis. Sections 5 and 6
contain examples with explicit construction of nontrivial quasiconvex functions.

2 - Three definitions

A continuous function F: RV — Ris polyconvex (see [3], [6] and [25]) if it can be
written as a convex function of minors. In particular, when » = N = 2 this means
that there exists a convex function #: R2*2 x R — R such that F(& = ﬁ’(é ,det &) for
all ¢ € R®2,
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A continuous function F: R¥" — R is quasiconvex (see [25]) if for all & € RN
and all smooth compactly supported maps ¢: R” — RY the inequality

J (FE+ Vo) — F(©) dx > 0

R"

holds. Here Vg(x) denotes the usual Jacobi matrix of ¢ at «.

A continuous function F: RN*" — R is rank-1 convex if for any & ne RV
where rank(y) = 1 the function R 3 ¢t — F(¢ + t7) is convex.

We refer the reader to [10] and [26] for the elementary properties and inter-
relations of these convexity notions. More recent developments related to this paper
include [4], [7], [8], [14], [21], [22], [27], [29], [30] and [33].

3 - The construction

Throughout this section we let R: RV — R denote a C3-smooth function which
is positively homogeneous of degree p > 3, that is,
(3.1) Rt =t"R(©)

for all & € RV and all t > 0.
We also assume that for some positive ¢ > 0 the following inequality holds

(32) R"©)ln,nl > 0[P~

for all ¢ € RV*" and ne RY*" with rank(y) < 1. The left-hand side stands for the
second differential of R and is defined by

d ~ -~ PRE)

R'©n,nl = 55 RE + ), = -

dt? L; a%:jl ¢; 35? o
The inequality (3.2) is a strict form of the well-known Legendre-Hadamard condi-
tion. Observe that this inequality extends to complex rank-one matrices of the form
n=A®a, where A € CY and @ € R". It then reads as

(33) ROy, 7l > P2 |nl,

where 77 denotes the (component-wise) complex conjugate of 5 and 7> = (7, 7).
We say that a continuous function P: RV** — R is strongly quasiconvex of de-
gree p if for some positive ¢ > 0 we have

(3.4) jw@+VWW—P@»mzejwmmwm

R" R"
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whenever ¢ € R¥*" and ¢ € D. Here, and throughout the paper, we denote by ® the
space of maps ¢ = (¢y, ..., (oN)T: R" — RY for which each coordinate function ;
vanishes outside a bounded set and has continuous partial derivatives of any order.
Observe that there are functions P satisfying (3.4) for an ¢ > 0, but for which
P — p| - | is not quasiconvex for any p > 0. In particular, for p > 3, the condition (3.4)
at amatrix & # 01is a strictly weaker condition than strict, uniform quasiconvexity as
defined by Evans in [13].

Theorem 3.1. Suppose that R is C® and that (3.1), (3.2) hold. Then for a
Sfunction P satisfying (3.4) there exists a constant ty such that the function
R +1tP

1s quasiconvex for each t > t.

Remark. It follows from the proof that we may take

p
to = max{1, 209021 & qup |72,
26 -1

Here and in the remainder of the paper || - || denotes the operator norm, so that for
the tri-linear form R (&) we have
IR (O = sup B (Ol 12, 1],

where the supremum is taken over all matrices 7, #,, #75 of (Euclidean) norm one.

RN XN

Proof. Fix an arbitrary ¢ € and a test map ¢ € D. To simplify notation

let @ = V¢. By Taylor expansion

(35) R(E+ @) — RE = R(O®] + %R”(é)@, @41,

where
1

IEJG—&XR%6+8¢)—R%®ﬂé¢ﬂd&
0

The last term can be estimated with the aid of the following elementary lemma.

Lemma 3.1. Foreach é > 0 define

5*r
70 = max{1,2°~9r-21 —5—Sup |IR"(&)||P~2.
[¢]=1
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Then
(3.6) IR"(E +O) — R"©)| < S~ + 2L P>
for &, { € RV,

We omit the standard proof of this inequality, and only remark that it follows from
the homogeneity and the smoothness of R. Therefore, for 0 < s < 1, we can write

IR"(E + 5®) — R < 3[¢"2 + 2y,
which yields the inequality
3.7 1> =01l .
Next, we integrate identity (3.5) over the entire space R". Integration by parts

shows that the integral of R'(&)[®(x)] vanishes. The integral of the last term at (3.5) is
estimated from below by use of (3.7) as

.
~ler® [l de -y, [l0@P de
R" R™

We are left with the task of estimating the integral

L( o 1 L PRQ) (99t o
5 JR @), d@)de =5 > > Jaxia_xjd”

5
259 55 35?35]/- |

R" R™

To this effect we follow a classical idea (see [16]). Accordingly, by orthogonality
properties of the Fourier transformation,
8(pa a(pﬂ .
= de = [ Fo® Bl dy.
Jaxi o v Jyzy,[fw ILF¢"1dy
]RN ‘Rﬂ

By virtue of the Legendre-Hadamard condition (3.3), applied to the complex rank-
one matrix n = Fp @ y = {y;F¢"}, we obtain

: jR"(é)[@(ac), D de >0 P J w1 Fo@)f* dy
R" R"

0 p
S
R"
Collecting the above estimates we arrive at

J(R(é @) — RO)de > — 7, J 8@ de.

R" R"
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Finally, if we choose ¢y = 7,/¢, then in view of (3.4) we conclude with the desired
estimate

j((R LUPXE + B@) — (R + IPYO) dr > (te — ) j D@ de > 0

R" R"

for all ¢ > . O

4 - Some strongly quasiconvex functions

Let A: RV*" — RN*" pe a linear transformation. We assume that the kernel of A
contains no matrices of rank one. Using the LP-theory of the Riesz transforms
(see [31]) one obtains for each p € (1, 00) and any map ¢ € D the bound

(4.1) 1ALVl =kl Vol

where k, = k,(A) is a positive constant depending on p and A only.

Lemma 4.1. The function P: RN — R defined by P(&) = |AE|P is strongly
quasiconvex of degree p for each 2 < p < <.

Proof. Itiswell-known thatforp > 2 and for vectors X, Y in an arbitrary inner
product space the inequality

(4.2) XP— Y] > p|YP2(Y, X - Y) +25P|X — Y|’
holds (see for instance [28], Prop. A.1). In particular,
J(P(é + Vo) — P(&)) da > p| Al 2<«4€, A J Vo(x) dw>
]Rﬂ :Rﬂ,

o2 J AV (@) dac

R”

=22P|| AVl
and invoking (4.1) we obtain (3.4) with ¢ = 227Pk}. O

The functions of Lemma 4.1 are convex, but not strictly convex since they are
constant on translates of the kernel of A.
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Two examples of particular relevance to Lemma 4.1 are the functions

(4.3) EETP and & |ETPP, 1<p<oo)

~ (<u 512)
é5_(521 <A

Recall that the conformal part ¢™ and the anticonformal part &~ of & are given by

defined for square matrices

(4.4) o]

1 ( Entéee 12 F 521>
=5 )

Eo1 Féip Coptéyy

Lemma 4.1 applies to ¢+— || because the kernel of the linear transformation
¢ & is precisely the conformal matrices that, apart from the zero matrix, all have
rank two. A similar remark applies to & |ET|P.

Using complex notation inequality (4.1) reduces to the familiar Beurling-Ahlfors
inequality for the Cauchy-Riemann operators

o o

4.
(4.5) oz oz

<aZ .
§7, )7

More precisely, the complex notation is facilitated via the isomorphism i: R*? — (2

defined as
NN ESTREST _
1<<ém 522>):<z1,z2),

1 .
7= é((fn + Co2) + &a1 — 12)),

where

1 .
2o = é((fn — &99) + & + &12)).

With the usual identification C~R? we have for f = u + iv: C — C the real Jacobi

matrix
_ Uz Uy
VI = <vm vy>’
and i(Vf) = (9f / 0z, Of | 0Z).
We will derive (4.5) for p > 2 by means of elementary properties of harmonic
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functions and well-known inequalities for the sharp function. (Note that it follows by
partial integration that ||0f /0z|| ;. = ||0f /0Z||;..) We do not suggest that this method
is easier than the approach based on Riesz transforms mentioned above, however, it
has the virtue of also giving a pointwise version of the inequality.

Recall that for a square integrable function f: C — C the (centred, quadratic)
sharp function is defined as

1

2

f#(z)zsug) J:|f(95)_f3(zm)|2dx ;

B(z,r)

where fp(.,) denotes the average of f over B(z,r) and the bar on the integral
means average. The Hardy-Littlewood-Wiener maximal inequality and the
Fefferman-Stein sharp inequality imply that for each p > 2 there exist constants
dp, B3, such that

(4.6) apll flly < I F N < Bpll £l

holds for all f € LP(C, C). These inequalities can be obtained by means of [31],
pp. 146-148. In the statement of the next result we adopt the shorthand notation

o and 528—f

=% A

Lemma 4.2. For smooth and compactly supported functions f: C — C the
mequality

(4.7) @NH* () <8N * )

holds for all z € C.

Proof. Fixz e C and a disk B = B(z,r) centred at z. Let 7: B — C denote the
Poisson integral of f|,z. Then

J|8h|2: inf JWZ and J|5h|2: inf J|5W|2,
yef+W,* A yef+wy* 5

where Wé’z = Wé’z(ﬂ () designates the L2-Sobolev space of complex valued func-
tions that vanish on the boundary of B. For 0 < ¢ < 1, denote 6B = B(z, or). Then by
standard properties of harmonic functions (in particular, [17], (6.2) p. 610),

ﬁ%~®mﬁsﬁfﬁ-®mﬁs£ﬁ@—@ﬁﬁ
oB B B
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Integration by parts yields f|8f dh? = j|8f oh|>, and since |9f — Oh|
< |0k — (Ol)g| + |0f — (Bf)B|Weget

fiar —an < % fror — @l
B B

(f@'f—(éf)f,glz) < (f |5f—vl2) :
oB oB

so with v = (0h),5, the triangle inequality and the above inequalities we find

(‘Jﬂaf—(af)aﬂz) < (][|8f—(3h)03|2)
oB oB
i(}mf <af>B|)
+U(f|8f— (3f)B|2)
B

< § @) + o0 @).

Now for any v € C,

1 1
2 2

The proof is concluded if we let ¢ = 1/2 and take supremum over B. O

Finally, the Beurling-Ahlfors inequality (4.5) is an immediate consequence of
Lemma 4.2 and the inequalities (4.6).

5 - Examples

We return to the function (1.1):
R(&y) = 7€ — 2y det &)

defined for ¢ € R*? and where y € R is a parameter. In view of the identities:
IEF = | + | |% and 2 deté = |EF* — €7 %, it takes the form

R(E ) = |EP1A = pIET P + A+ p)E L.
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We know that R(; y) is polyconvex if and only if |y| < 1 and rank-1 convex if and only if
ly| < 2/+/3, see also [19], [20]. Observe that for |y| < 2/+v/3 the function R(-;y) sa-
tisfies condition (3.2) with p = 4. This follows from the decomposition

o= (17 e n( )

However as previously mentioned, the question whether R(-;y) is quasiconvex for
the above range of the parameter y remains open. We fix 1 < y < 2/+/3 and consider
the following perturbation of R(:;y):

R(E ) + e [N

For sufficiently large ¢ this new function becomes quasiconvex. It is not polyconvex,
as it changes sign and is 4-homogeneous.

Another interesting example (announced in the Introduction) follows by per-
turbing R(-;y) with the polyconvex function

P©) = R 1) = 2P|

It will be shown in Section 6 that P is also strongly quasiconvex of degree 4. Observe
that

R(E ) +tP©) = (1 + )| (Iél —2y+t de té)

If we take ¢ sufficiently large we recover a result of Alibert and Dacorogna [1] saying
that the Alibert-Dacorogna-Marcellini function remains quasiconvex for some
parameters larger than 1, namely

j>1.

~

/

V

—
~~

6 - A polyconvex function

In order to establish strong quasiconvexity of P(¢) = 2|¢[*|¢~ |* we shall prove the
following.

Proposition 6.1. The polynomial Q: R*** — R given by
(6.1) QO =4PO - "

is polyconvex on R*2.
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The polyconvexity of P has previously been established in [9] (see also [1], [12],
[15], [18], [19], [20]). To prove Proposition 6.1 it is sufficient to establish the in-
equality

QU+ 1) — Q) >16]¢ [*(&,n) + 16, n7)
—4e (e ) — 8¢ dety
forall &, 5 € R?*2 The proof of (6.2) is divided into two steps. Let us remark that

since @ is rotationally invariant the result of [12] implies that it suffices to prove
polyconvexity on diagonal matrices. We do not use this result here and the proof

(6.2)

below is self-contained; however, at a stage we use the rotational invariance to
simplify to the case of diagonal matrices.

Lemma 6.2. Forall matrices & n € R%*2 e have

P(E+ ) — P©E) > 4|E P(E n) + 41E2(E, n) — 2/¢Pdet

(6.3)
+ (P2, ) 21 Pl

Lemma 6.3. Wuith the above notation
64) | | e < AEE )+ Al P8 )+ 81E Pl

We begin with the easy estimate (6.4). The left-hand side minus 4|¢~ [*(¢~, 5) takes
the form:

UE )+ 20 Pl P+ dln PE ) + [
By Cauchy-Schwarz inequality this latter expression is not larger than
O F +4(E )+ Pl
The factor in the parentheses is nonnegative and not larger than
8¢ +8(& )+l [
Hence inequality (6.4) is immediate. The first lemma is more involved.
Proof of Lemma 6.2. After computing P(¢ + ) inequality (6.3) reduces to

2Py [P+ 4l P(E ) + 4l (&) + 2lnflE

(6.5)
HEPIE + 8 ) (&) — ([P +2¢E ) + 21 P > 0.
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By use of the commutation rules (Oy)* = Oy* and (50)* = 5*0 for O € SO(?2), it
follows that it suffices to prove (6.5) when 7 is diagonal.

The left-hand side of (6.5), denoted by L(&,#), is a quadratic polynomial with
respect to the variable & € RZ2 If we decompose this variable as & = &; + &, where
&1 and & are respectively the diagonal and the anti-diagonal part of &, i.e.

a=(5 p)maa=(g o)

L&, m = L&, m + &L > LE, ).

Let us remark that this inequality would fail if # was not diagonal. In this way we are

then

reduced to showing the inequality L(&, ) > 0 for diagonal matrices ¢ and 7, say
a 0 x 0
¢ = (0 b) and 7 = (0 y)
This inequality takes the form
@ + y2)@ — y)? + 2@ — y)(ax + by) + 2@* + Y@ — y)a — b)

(6.6) +@? + )@ — b + @ + yA)(@® + b%) + d(ax + by)@ — y)a — b)
1
> 5@ =y’ + @ - pa—b+@— b | @ +y?).
When the terms are grouped properly we look at the left-hand side as a quadratie
form
(6.7) Ax® — 2By + Cy?.
Here the coefficients A, B, C still depend on « and y:
A=(@—y+2a—Db*+a®+ (a— by,
B =(a—b)x—y+2a—2b),
C=@—w+20—af +b*+(b-a’

Lengthy, but elementary verification of these formulas is left to the interested
reader. The following estimate for quadratic forms is known.

2 _ 2 2
Ax® — 2Bxy + Cy >A+C_ (A C) LB

(6.8) x2 +y? - 2 2

We compute the terms in the right-hand side as follows:
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A+C
2

A—C (@t by + 20— 2b),

,/ A C FB? = \/2(a2 + )@ — y + 20 — 2b)

< a? +b2+§(ac—y+2a—2b)2‘

= a4+ 0> +3(a — b)* + 3(a — b)x — y) + (& — y)*,

Hence we find that the right-hand side of (6.8) is not smaller than
1
5= Y+ (a— D)@ —y) + (@ — b,

establishing inequality (6.6). This also completes the proof of Lemma 6.2. O

Inequality (6.2) follows by subtracting (6.4) from (6.3), completing the proof
of Proposition 6.1. In view of Lemma 4.1 it follows in particular that the poly-
nomial

PE) =2(¢P|E P ——Q(é)+ 1< !

is strongly quasiconvex of degree 4 on R?*2,
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Abstract

We present an elementary method for constructing quasiconvex functions. It is based on
the observation that given any suitably rank-1 convex function R and any strongly quasi-
convex function P the function R + tP is quasiconvex for sufficiently large numbers t. The
method is llustrated on a remarkable family of functions defined on real two-by-two ma-

trices.






