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1 - Introduction

Recently higher order variational problems have attracted a great deal of at-
tention due in part to their relevance in the study of problems emerging from ma-
terials science and engineering, including the Blake-Zisserman model for image
segmentation in computer vision, singular perturbation approaches for phase
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transitions in elastic materials, the treatment of ferromagnetic and micromagnetic
materials, and thin structure models leading to membrane, shell, and plate theories
(e.g., see Conti, Fonseca & Leoni [21], Choksi, Kohn & Otto [18], Carriero, Leaci &
Tomarelli [17], DeSimone [25], Kohn & Miiller [45], Miiller [52], Owen & Paroni [58],
Riviere & Serfaty [60]).

Several attempts have been made to reduce these problems to the first order
setting, where nowadays there is a considerable mastery of techniques within the
realm of the Calculus of Variations. Here we highlight the work in Dal Maso,
Fonseca, Leoni & Morini [24] (see also a preceding work by Miiller & Sverak [56])
where it is proved that, up to mild regularity conditions, a higher order quasiconvex
function with superlinear growth is simply the restriction of a (one-)quasiconvex
function to the appropriate linear subspace of matrices. The linear growth case re-
mains open as the techniques used in [24] do not apply. Indeed, it is now clear that
first order techniques often cannot be naturally extended to tackle certain higher
order problems, and the analytical and geometrical constraints that higher order
derivatives are endowed require new theoretical arguments, as it will be illustrated
below.

In this paper we pursue this avenue of thought now directed to Jacobians of
higher order. Here we will draw a parallel between the theory developed for the
distributional generalization of the notion of determinant of a gradient, Ju, to
the determinant of the matrix of second order derivatives, Hu. The need to
search for the least integrability spaces where Ju is well defined and where
weak continuity and mild regularity properties still hold, is motivated in part by
issues in nonlinear elasticity and vorticity effects in Ginzburg-Landau type
models (e.g. see Alberti, Balso & Orlandi [3], Ball [8], Bethuel, Brézis & Heléin
[11], Fonseca, Leoni, Maly & Paroni [31], James & Spector [42], Jerrard &
Soner [44], Miiller & Spector [55]). A considerable progress in this regard has
been achieved merging ideas from partial differential equations, continuum
mechanics, the caleulus of variations and geometric measure theory (e.g. see
Ball [7], Brézis, Fusco & Sbordone [13], Brézis & Nirenberg [14], [15], Coifman,
Lions, Meyer & Semmes [19], Dacorogna & Murat [23], Fonseca, Fusco &
Marcellini [27], [28], Fonseca, Leoni & Maly [30], Giaquinta, Modica & Soucéek
[35], [36], Hajlasz [38], Iwaniec & Sbordone [41], Miiller [51], [52], [53], Miiller,
Tang & Yan [54]). It all starts with the observation that (see Morrey [49] and
Reshetnyak [59])

Uy — U IN Wl’N(Q; RN) = detVu,, 2 detVu in the sense of measures,

where Q is a bounded domain in R™. This is consequence of a simple integration
by parts and of the fact that if u € W'N(Q; RRY) then the Jacobian determinant
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detVu agrees with the distribution

N
i 0 8(%2,...,%1\7)
Jiuw=DetVu:=Y (-1)""— (u )
! ;( ) 3961' 18(901,...,xi_l,aciﬂ,...,xN)
i.e.
(1) (Detu, ¢y = — Jul det(Vo, Vug, ..., Vuy)dx
Q

for ¢ € C(Q). The treatment of such a distributional form of Jacobian was initiated
by Ball [7]. The spaces WIV/®N+D(Q: RY) and WIV-1(Q; RY) N L>(Q; RY) are
commonly adopted as domains of definition of the operator 7.

We want to discuss and compare various choices of domains and weak forms of J,
the classical pointwise Jacobian operator, well defined on W (Q; RY). This leads us
to the following general definition.

Definition 1.1. A topological or convergence space X of measurable func-
tions % : Q — R™ is said to be an admissible domain for the weak Jacobian J if
G CY(Q; R™)N X is dense in A
(ii) the mapping J:u — detVu from C1(Q; R™)N X to T’ has a unique con-
tinuous extension J: X — D'.

Here the framework of «convergence space» stands for a set X endowed with a
notion of sequential convergence (e.g. strong convergence, weak convergence,
weak™ convergence or BV -strict convergence).

It turns out that WN-1(Q; RN) N L>*(Q; RY)) is an admissible domain with the
weak convergence on W'V-1(Q; RY) and the strong convergence on L>(Q2; RY).
Another admissible domain is W2(Q; RY) for p > N2/(N + 1) endowed with the
weak convergence, and, more generally, we may consider W'P(Q, RM) N L@, RY)
with

equipped with the weak convergence on W17(Q, RY) and the strong convergence on
L2, RY). In all these cases it is easy to see that Holder inequality (and Sobolev
Embedding Theorem in the case p > N?/(N + 1)) ensures that the products in-
volved in the definition of DetVu are well defined in L1, and for p > N2/(N +1)
Rellich-Kondrachov Compactness Theorem yields strong convergence in L° with s

p

N T Thus (1) is the formula for the weak Jacobian .7 in

the conjugate exponent of
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these spaces. For this approach to weak Jacobians see e.g. Ball [7], Ball & Murat
[10], Ball, Currie & Olver [9], Dacorogna & Murat [23], Fonseca, Leoni & Maly [30],
Olver [57].

Not all notions of weak Jacobian involve integration by parts. Alberti & Ambrosio
[2] proved that C' N Mon(R) is an admissible domain for the weak Jacobian, where
Mon(2) is the class of functions in Q which agree almost everywhere with some
(maximal) monotone function % whose domain includes €2, and here it takes the form

Jw)(B) = [u(B)|

for every Borel set B CC Q.

But we must move beyond first order determinants. Indeed, several geometric
problems involving Gaussian curvatures and issues in the theory of nonlinear partial
differential equations ranging from the equations of gas dynamics for subsonic flows
to minimal surfaces or the p-harmonic equation div (|Vu|’2Vu) = 0, call for the
mastery of weak forms of the Hessian.

In this paper we search for a weak form, Hu, of the Hessian of amap u : Q — R
where Qis bounded open set in R¥, that will allow us to draw a parallel with the study
of the weak Jacobian .7, and to make some progress toward answering the following
questions:

— when can we ensure that u,, — u implies Hu,, — Hu in the sense of distribu-
tions, for an appropriate notion of weak convergence?

— when can we recover detV2u as an «absolutely continuous part» of Hu (see
Miiller [51]) for the Jacobian)?

— can we characterize the relaxed energy

Fu,U) = {mf} {1;;3 }r&fj |det V2u,,(x)| dx : u, € C(Q),u,, — u}
Q

for an appropriate notion of weak convergence (see Fonseca, Fusco & Marcellini

[27], 28], for the Jacobian)?

There are many different ways to define a distributional Hessian, and their
significance and properties depend greatly on the choice of domain. Among all these
forms one stands out as capturing the good properties that we have come to expect
by analogy with the study of DetVu. To illustrate this, and following Iwaniec [39], we
consider the two dimensional case where % : Q — R, Q is an open bounded subset of
IR?, and we arrive at four distributional notions of the Hessian:

— zero order Hessian Hy : Wp2(Q) — LL,

(Q) C Dy(Q),

2
Ho(u) 1= Uy Uy — (o
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— first order Hessian H, : W22/3(Q) — LL (@) C D}(Q),

loc

Hi(u) = (uxuyy)x - (uﬂcuxy)y(uyum)y - (uyuxy)m

— second order Hessian Hy : W21 (Q) — Dy(Q),

loc
1
Ha() = 5[tk ), + Wy )y — Uy ) ],

— very weak Hessian Hj : WE2(Q) — D)(Q),

loc
. 1 1
Hy(u) == (u%uy)wy ) (uxuw)yy ) (UyUy)

where Dj(Q stands for the space of distributions in Q of order k, £ = 0,1,.. ..
Clearly, any two of these functionals coincide in the intersection of their domains.
Here we focus on H;(u) as it is the weakest formulation among all four above.
In the three dimensional case, the very weak Hessian H; : WIZO’S/ Q) — Dy(Q) is
defined by

1
2 2
Hyu = A [@ayusrye — vy Uy — WUy )
2 2
+ QU Uy — U U — uxuzz)yy
2 2
+ Cupty ey — WUy — uyuxv)zz
2
+ 20U Uy Uy + U Uy — UUep Uz — U Uy Uoze )y
2
+ 2(uyuzum + U Uyy — UgUzUgy — uxuyuw)yz
+2( + Uy, — - )ye]

It can be shown that, in contrast with the two dimensional case, it is not possible to
find a clever way of using integration by parts that will lead to a formula involving no
derivatives of order two.

All the forms of weak Hessian considered above in dimension two have their
counterparts in higher dimension (we follow Iwaniec [39], see also Ball, Currie &
Olver [9], Dacorogna & Murat [23], Olver [57], among others). The operator H, as-
signs to u € leoév the pointwise Hessian Hu. The operator H; is the weak Jacobian
applied to the gradient, namely, H;u = DetV(Vu), u € W2N/NHD 1 the space

loc
leoév ! the operator H takes the form

1 N
(Hou, ¢) = N E Ju det(VDyu, ..., VD;_1u,VD;¢,VD; 1u, VDyu) de.
=

The very weak distributional form of the Hessian is Hsu : WZ’NZ/ W+2) (Q) — Dy(Q)

loc
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given by

. 1
<H2u7 ¢> = ﬁ sgnpsgng JDP17”’DQI7”’DP2Q2¢DP3Q3M ce DquNu d'%
"pgep o

3)
1

= - sgnp J det(Dp, uNVu, VDp,¢, VD u,. .., VD, u)der,
' peP o

where P be the set of all permutations of {1,...,N} and ¢ € C(Q).

As in the case of weak Jacobians, there are several choices of domains for weak
forms of H, the pointwise Hessian operator « — det V?u, and we are led to the fol-
lowing definition.

Definition 1.2. A topological or convergence space X of measurable func-
tions u : 2 — R is said to be an admissible domain for the weak Hessian H if
(G C2%Q)n Xis densein X;
(ii) the mapping H:u — det V?u from C%(2) N X to D’ has a unique continuous
extension H: X — D',

We start by showing that

Theorem 1.3. IfN = 2 then W'2(Q) endowed with the strong convergence is
an admissible domain for the weak Hessian, and the extension of H to W2(Q) is
the operator H;.

If N > 3 then W?P(Q) N WY3(Q), with the weak convergence on W>P(Q) and the
strong convergence on WY5(Q), and with

@ N-2. 24
P s

is an admissible domain for the weak Hessian. Precisely, if u, € W?N(Q) are such

that u, — w in W5(Q) and u, — u in W2P(Q) then

detV3(u,) — Hu inD'.

Furthermore, Hu acts on test functions as in (3).

We remark that, in view of Sobolev’s Embedding Theorem, (4) is satisfied if
N2
p= N1 s = p*, and here Hu is well defined as a distribution of order 2. Moreover,
2
if w, —u in WP with p >NL+2’ then by Rellich-Kondrachov Compactness
p

!
Theorem we are in position to apply this theorem with s := Z(H) , Where in
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general 7 stands for the conjugate exponent of 7. This result was previously obtained
by Dacorogna & Murat [23]. They also showed that WN*/&+2) is not an admissible
domain when equipped with the weak convergence «only». Also, Iwaniec [39] proved
that for N = 2 the functional H; is not weakly continuous, precisely there exists a
sequence {u,} converging weakly to zero in W'2(Q) (even in W'?(Q) weak with
p > 2, so this phenomenon is not a «borderline»-type result) such that H3(u,) does
not go to zero in D'(Q), i.e. W'2(Q) with the weak convergence is not an admissible
domain for the weak Hessian.

Jerrard & Jung [43] showed that BVZ(Q) N W1>°(Q) with the strict convergence
on BV? and weak* convergence on W is an admissible domain for the weak

Hessian, where BVZ(Q) := {u € W'(Q) : Vu € BV(Q; R™N)}.
2

Clearly, ifu € leo’f (Q)withp > NLH’ then Hu = Det V(Vu). In Theorem 1.3 it

was important to exploit the structure of second order derivatives. Had we looked
only at Det V(Vu) we would have needed Wz’%(!)) in order to draw a similar
conclusion.

In connection with the Monge-Ampere equation, several authors have introduced
measure-valued Hessian operators on the family of convex functions equipped
mostly with the topology of locally uniform convergence, see e.g. Alexandrov [4],
Bakelman [6], Trudinger & Wang [61], Alberti & Ambrosio [2] and references
therein. In fact, the weak Hessian of a convex function is the weak Jacobian of its
subgradient in the sense of [2].

Next we compare H(u) with the pointwise Hessian. We will regularize the weak
Hessian by a standard family {,},., of mollifiers, i.e. y, are nonnegative functions
from CL?O(RN ) with support in B(0, ) such that [w,dx =1, and they obey the scaling
rule

(5) w, @) = Ny, (/e), weRY e>0.

Theorem 1.4. Let N =2 and uwec W2(Q)NBV23Q), or let N >3 and
. N2

u € W2P(Q) with p > NiZ
for a.e. x € Q (Hu xw,)(x) — det V2u(x), where V?u stands for the absolutely
continuous part of D*>u with vespect to the 2-dimensional Lebesgue measure
when N =2. In particular, if Hu is a Radon measure then its absolutely
continuous part with respect to the N-dimensional Lebesgue measure 1is
det V2u.

Let {y.},., be a standard family of mollifiers. Then

Iwarzliec [39] established this result for « € W2¥-1(Q): note that W2¥-1(Q)
C Wz’K\’TZ(.Q). For the case of the Jacobian, we refer to Miiller [51] (see also Iwaniec &
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Martin [40], Iwaniec and Sbordone [41], Greco [37], Miiller, Qi and Yan [54], Fonseca
and Leoni [29] for other so called det = Det results).
It is interesting here to call the attention to the fact that different admissible

domains do carry different properties. We know from Miiller [51] that the analog of
2

Theorem 1.4 holds for DetVu provided p > NLH This is false in the admissible

space WHN=1(Q; R™) N [L>2°(2; RY). We observe that if the admissibility of the space
is based on the duality pairing between adj Vu € LP/®-D and u € L* and W'? is not
embedded to L* (such is the case of WN-1 0 L), then the weak Jacobian loses a
part of its stability. Precisely,

Theorem 1.5. Let N—1<p <N2/(N+1). Then there exist a bounded
function w € WH(Q(0,1), RY), a standard family {w.} of mollifiers, and a set
E c RY of positive measure such that u = 0 on E, with

lim sup (DetVu * w,)(x) > 0, rxe k.

e—0+

Similarly to Theorem 1.5, we can prove

Theorem 1.6. Let N-2<p< Nz/(N—|—2). Then there exist a Lipschitz
SJunction u € W22(Q(0,1), RY), a standard family {y.} of mollifiers, and a set
E c RY of positive measure such that w = 0 on E, with

lim sup (Hu * w,)(x) > 0, rx ekl
e—0+

Theorems 1.5 and 1.6 will be proved in a subsequent paper [33].

At this point, we may ask what can we say about the dimensionality of the singular
part of Hu when this is a Radon measure. Miiller in [53] proved that if a € (0, N) then
there exists u € W'P(Q; R™N) N C(Q; RY) for all 1 < p < N such that

Det Vu = det Vul™ [ Q + g

where g, is a positive Radon measure, singular with respect to £~ and such that
supp 4, is a closed set of Hausdorff dimension a. The a-dimensionality of x is sup-
ported by the fact that y, is absolutely continuous with respect to 7“. The Hessian
counterpart of this existence result is also true, and it was established by Alberti &
Ambrosio [2].

Next, we move on to relaxation results for the weak Hessian. We first extend to
the k-th order context the relaxation results obtained for first order problems (see
Fonseca & Maly [32], Bouchitté, Fonseca & Maly [12]; see also Marcellini [48],
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Fonseca & Marecellini [34]). Precisely, let

(6) Fu,U) = J F(VFu) da
U

where U is an open subset of the open bounded set Q C R, f: E}CV *d 5 R is a
continuous function and E¥ *? denotes the space of all symmetric k-linear maps from
RY to RY. Consider

Fu, U, (WEP_p)) = {inf {limian(um U):u, € C(U), y — u in W’W(U)}.

un}
The following theorem has been proven in the particular case where k > 2 and
Nk —N . . N Nk-N
q < NE_N 1 p by Esposito & Mingione [26]. We note N1 > NE_N_1 if
k> 2.

Theorem 1.7. Let F satisfy

) YEP <f(E) <CA+ [¢9).
with
N

If u € We(Q, RY) and F(u, Q,(WEP w)) < oo then there exists a Radon measure
R(u,-) on Q such that

R(/M/7 U) - f(uv U7 (Wk7p7 7/()))

for every open set U C Q. Moreover, the absolutely continuous part of R(u,-) is

Qrf (VFu).

We recall that by Q. f we denote the k-quasiconvex envelope of f, namely
Qrf(&) = inf{ff(é + VEp)da, ¢ € Cé"’(B)},
B

here B is the unit ball in RY.

The method of Bouchitté, Fonseca & Maly [12] is based on extension and trace
preserving operators. Here we modify the method to avoid the use of extension
operators and the argument is now based on trace preserving operators. Not only
this renders it more transparent, even in the case where k = 1 thus simplifying
earlier work in [12], but also for higher order problems the advantage is notable. In
particular, we do not need to differentiate boundary traces when dealing with k& > 2!
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With this in hand, we take d =1,q¢ = N, k = 2, set

Fu,U) = J |det V2u| dex,
U
and denote the corresponding relaxation and relaxation measure by Fy, Ry, re-

spectively. We draw a parallel with the work of Fonseca, Fusco & Marcellini [27],
[28], by establishing

Theorem 1.8. Letu € W?P(Q). If p > N — 1 and if Fru, 2, (W?P, w)) < co
then there exists a Radon measure Ry(u,-) such that
Ru(u, U) = Fru, U, (W, w))
NZ
N +2
Hu = Hu is a Radon measure and its total variation measure satisfies the in-
equality

for every open set U C Q. If p > and if Frlu,Q, (WP, w)) < co then

|Hu’| < ]:H(u’a ,)(WZ,P,W)).

Again here we remark that often we cannot reduce these second order problems
to the first order setting. To illustrate this, we exhibit two examples on which

F(Vu, BO,1), W, w) = 0 < Hu)(BO, 1) < Fpu, BO,1), (W, w),

where for ¢ = d = N, k = 1, F; stands for the relaxation of

U— J |detVu| dex.
U

Theorem 1.9. Suppose that N —1>p > N?/(N +2). Then there exists a
function u € W?P(B(0,1)) such that

If p = N — 1then the first inequality in Theorem 1.9 was established by Acerbi &
Dal Maso [1] with w(x) := || (thus V() = % ) while if p < N — 1 then Maly [47]
proved that the first inequality holds for the smooth function u(x) = \x|2. In both
cases the inequality H(u)(B(0,1)) > 0 is obtained by direct inspection.

Finally, we recall the class of functions considered in Fonseca, Fusco & Marcellini
[28]. Let B(0,1) C R? be the unit ball, and suppose that u: B — R? is a zero

homogenous function of type

u(re™) == &(t),
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where ¢ : R — C is a 2n-periodic function. Then it can be shown that

9 Detu = ¢dy, with ¢ = J Indez dz; dzs,
RZ

whereas F;(u, -, (WY w) with p > 1is a Radon measure R;(u, -) and

(10) Ry, ) = c'dy with ¢ > J |Ind:z| dz; dzs.
R2
It is clear, therefore, that cancellations may occur when computing |Det u| and an
example of strict inequality
|Det u|(B(0,1)) < Rj(u,B(0,1))
may be easily found.

Notice that the inequality in (10) can be strict. The example is based on an «eight
like curve» invented originally in connection with the theory of Cartesian currents,
see Maly [46], Giaquinta, Modica and Soucek [35], [36], Mucci [50].

There is a two-dimensional example of a function v € W2P(B), p > 1, the so-called
«fish-like example» such that

Vu(re ") = &),
where ¢ is a 2n-periodic curve,
Hu = ¢y, Ru(u,-) =c'dy

and
¢ >c>0.

As a consequence we obtain

Theorem 1.10. Suppose that N =2 and 1 < p < 2. Then there exists a
Sunction u € W2P(B(0,1)) such that |Hu| # Ry(u, ).

The fish-like example will be explained in a subsequent paper [33].
2 - Continuity properties of the distributional Hessian. The Proofs of Theorems 1.3
and 14

The proof of Theorem 1.3 is identical to that of Dacorogna & Murat [23] for
p > N2/(N + 2). For completeness we recall it below.

Proofof Theorem 1.3 Suppose first that N = 2 and let {u,, } be a sequence of
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functions converging to u strongly in WL2(Q). If ¢ € C*(Q) then clearly
(Huy, ¢) — (Hu, 9).

If N > 3, then let {u,} be a sequence of functions converging to u strongly in
W15(Q) and weakly in W2P(Q). Fix ¢ € C(Q) and write

(Hky, @) = sgnpsgngq JDm UnD g Ui Dy 0D pags Ui - - - Dy gt dic.

1
NI
pgeP o
We have
T2
Dy, uyDguy — DpuDgu in L*2,

and, using the well know theory of weak convergence of minors, we obtain

dDp,uyn A ... NdDpyuy — dDpu A ... NdDpu

weakly in LP/N-2 (or weakly* in the sense of measures if p = N — 2). Thus we
conclude immediately that

(Hun, p) — (Hu, p). O

Next,
Proof of Theorem 1.4. Ifp > N then the result is trivial as H(u) reduces to
detV2u € LP/N(Q). Suppose now that p < N.

Step 1. We treat first the case where N =2. Let xy € Q be a Lebesgue
point for u, for the absolutely continuous part V?u of D?u and is such
that (D?u),(B(xg,¢)) = o(e) as ¢ — 0. We write wu(x) =: u(o) + V)@ — xo)

+ % V2uo) (@ — ) - ( — x9) + v(x), so that

|D*v(B(xo,¢))|
bbb b

&

1
a1 lin(}— J Vo) de =0 and lin(} 0.

&2
B(xo,¢)
We abbreviate

Ax) == wlxo) + Vulxo)(@ — xo),
Q) == L

évzu(aco)(w — x9) - (x — o).
Thenu = A + @ +v and

2

1
(Huxw,)(xp) = — = sgnpsgnq JDPI uD g uDp,q, v (00 —) do
p.qeP 0

=HQ*w)(xy) + R,

= det V2u(xy) + R,
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where

R, = —% > sgnpR,, with R,, =L} +L:+L}+ L+ L},
peP

and for a fixed permutation p of {1,2} we have

L! = | Dy, Adu A dDp,y,,
L?:= | D,,Q +v)dA AdD,,y,,

L?:= | D, QdvAdD,y,,

L' = |D,vdQAdD,y,,

and

L} = JDplvdv ANdDp,y,.
Q
We claim that R, — 0 as ¢ — 0. Indeed,
L'=0

because

Jdu Ndn =0 for ally € C*(€Q),
Q

and since

L% = JDplu dA A dDp,y,,
Q

collecting all terms of type IZ together we notice that

ngnp sgnq JDzl,luD(hADpzqzz//‘9 dx = Z sgnq JDqlAdu ANdDgw, =0,

p.geP 0 qeP

where in the last equality we used the same argument as for L!.
Using the fact that | V2|~ < C/e* and that || VQ)||,~ < &, we have
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2
L3 + |L}| < % ][ Vo@)| o < Clim %M Y

B(xo,e)

by (11), and where we used Poincaré’s inequality in BV (see [5] (8.42)), and the fact

that in L? we could have written v — f v(y) dy in place of v (the same applies to L?
and L?). Finally Blroe)

D*v(B
)< | ivowitae < ctim DB, )| _
& e—0 &2
Bao,e)

by the Sobolev-Poincaré inequality since here p* = 1* = 2.

2

N
. LetN > h
Step 2. Let N > 3 and assume that N2

is a p-Lebesgue point for u, Vu and V?u. As in Step 1 we write u(x) =: u(xo)

< p < N.Consider a point xy € Qwhich

+Vaux)(x — o) + %Vzu(xo)(ac —x0) - (x — xp) + v(@) = A(x) + Q(x) + v(x), so that

(12) lim iN J |V2u(@)|P dac = 0, lim lzv J |Vo(e)|” de = 0.
e—0 & e—0 &

B(x0.6) B(wo.¢)

Just as above

!
pgeP 0

= HQxy)(xo) + R,

1
(Hu ) (@) = — N Sgn p sgn q JDplqulquzqzy/e(xO—x)Dpsqgu . Dpygyuda

= det V2u(xo) + R,

where now

1
Re=—372_ Sgnp Rey and By =L+ I+ I+ I+ 1)+ 1),
' peP

and for a fixed permutation p of {1,..., N} we have

&

II = JDplA du A dDp,y, NdDpu A ... AdDpu,

Q
2= JDm(Q +v)dA AdDpy, ANdDpu A ... \dDpyu,
Q
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B = JD,,IQ dQ AdDyy, NdDpu A ... \dDpyu
Q

= JDpleQ ANdDpw, NdDp,Q A ... NdD,,Q,

Q
I} = JDPIQ dv AdDp,w, NdDpu A ... AdDpu,
Q
r.= JDM dQ A dDp,y, NdDpu A ... AdDyu,
Q

and

- JD,,lvdv AdD,y, NdDyu A ... AdDpyu.
Q

In order to prove that R, — 0 as ¢ — 0, we observe first that

I'=0
because
Jdu Ndp ANdDpu A ... NdDpyu =0 for ally € CZ(Q).
Q
Also, since
JDplA dANADp,w, NdDpu A ... NdDpu =0,
Q
we have

= JDpludA ANdDp,w, NdDpu A ... ANdDyyu,
Q

and collecting all terms of type I together we notice that

ngn psgngq JDI,1 uD G AD 0, Dypgstt - . Dyt d
pgeP 0

= Z sgnq JDqlA du NdDgw, N dDgu. .. NdDgu =0,
qeP

where in the last equality we used the same argument as for I..

59
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Using the fact that | V2y,||;~ < C/eN*? and that |VQ||; . < ¢ we have
N-2
IHEODY JL V2@ dr — 0

F=1 B e)

by (12). Also, noting that in 14, I? and I° we could have written v — ][ v(y) dy in place

1 N-2 " N
of v, using Poincaré’s inequality and the fact that —~ + < 1, with px := N—p’
we have p p
4 C 2, |N—2
II;| < - |Vo||V2ul|” = da
B(xg,e)
C 1/p* WN-2)/p
el p* 2,,|P
gg(]ﬁwm dac) (]Mvm dx)
B(x,¢) B(,8)
1/p (N-2)/p
< C( ]ﬂ V2| dac) ( ]ﬁ V2P d.oc) .
B(xo,¢) B(xo,2)
The boundedness of J» |V2u|p dx and (12) yield
B(.%‘(),S)
lim I' =0
. 5 4 . 2 N-2
It can be seen easily that I? may be treated as I3, and since P + ’ <1,
C
1<g | wofvt
&
B(x,e)
1 1/p+ ]2 W-2)/p
2 px 2,1
<CL( ]f\w dx) } ( ][|VM| dac)
Blwo,2) Blwo,2)
2/ (N-2)/
<c( ]ﬂ V20 de) ”( ]t V2l de) "o,
B(xg,¢) B(xy,e)

and this concludes the proof.

3 - Relaxation of variational integrals. The Proofs of Theorems 1.7 and 1.8

In this section we follow the arguments introduced in Fonseca & Maly [32] and in
Bouchitté, Fonseca & Maly [12], and we divide the proof into the two propositions
below.
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Proposition 8.1. Let F satisfy (7) with (8). Suppose that u € W*»(Q; R?) and
Fu, Q,(Wk? w)) < co. Then there exists a Radon measure R(u,-) on Q such that

R, U) = Fu, U, (W, w))
for each open set U C Q. Moreover, if y > 0 then there exists a «minimizing» se-
quence {uy,} of smooth functions such that w, — u in WhP(Q; RY and
F(uy,,-) = R(u,-) in the sense of measures.
Proposition 3.2. Let F satisfy (7) with (8). Suppose that u € W"P(Q, R and
Fu, Q,(Wk? w)) < co. Then

dch

() = Qy, f(z) a.e. in Q.

Proof of Proposition 3.1. There is no novelty here as compared with the
results of [32], and so we limit ourselves to present a road map of the proof following
that paper: Reproduce Theorem 3.2 in [32] with the obvious adaptations. This the-
orem uses the subbaditivity established in Lemma 3.4 in [32], and, in turn, this needs
a delicate process of gluing to energy bounded sequences converging to the same
target on a small layer with vanishing energy. This is accomplished in Lemma 2.4 in
[32], and here is where we must replace the then used projection operator by our new
trace preserving operator 7. The positive exponent 7 in Lemma 2.4 now reads

N N-1
Ti=— O
q p
Concerning now Proposition 3.2, and in order to prove the inequality

dR(u, - .
#(m) > Qrf(x) a.e. in Q,

we could have tried to show directly that if u, — u in W ?(Q; R?) then

JQ;C F(VFu)de < lierrlinf J F(V*u,) da.
Q Q

Here we are tempted to use the results in [24] to reduce this to the 1-quasiconvexity
setting and then apply the lowersemicontinuity result of Fonseca & Maly [32] for 1-
quasiconvex functions within the gap range of (8). However, this is not possible as
(see Theorems 1.2 and 1.3 in [24]) in order to obtain the (approximate) extensions of
the k-quasiconvex envelope of f to 1-quasiconvex functions, we would need to con-
sider g-coercive perturbations of f, f, :==f + ¢ - |%, and we do not have an uniform
bound for || V¥u,, -

An important tool to prove Proposition 3.2 will be the trace preserving operator T
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that will play the role of the projection operator introduced in [32] and later used
in [12]. This operator could be constructed via an argument similar to that of
Th. 3.6.2 in [62], however here we opt for a method using Whitney balls. In what
follows, we denote p(x) = dist (x, RV \ Q). We recall that a countable collection
W = {B;}, of open balls is called a family of Whitney balls for €, if (see e.g. [20])
(W1) if B(x,r) € W, then 10r = p(x).
(W2) the family W covers Q;
(W3) the family {B(x,4r): B(x,7r) € W} has a bounded overlap multiplicity by a
constant depending only on N.

Let {w;}; be a partition of unity subordinated to W, i.e. w; are nonnegative

smooth functions, > w; = 11in Q, B(x;,r;) C sptw; C B(x;, 2r;), and
1

13) V| < CiJri,  j=1,2....

The construction of w; is the following: Let @ be a smooth cutoff function between
B(0,1) and B(0,2) and set

() = w(x ;ixi), i=1,2,....

Define

w1 ‘= (;)17

wi::cbi(l—cbl)...(l—&)iq), i=2,3,....
The estimate (13) follows from the bounded overlap multiplicity of W, so that the
product defining w; has a bounded number of factors different from 1.

Denote Q, := {x € Q : dist (x,02) > ¢}, ¢ > 0, and consider a family {¢,},., of
mollifiers such that ¢, are functions in CSO(RN ) with support in B(0, &), as it is usual ¢,
obey the scaling rule

p,@) = Vo,(x/e), reRY e>0,

and the property
(14) g, xP=P

is satisfied for every polynomial P of degree < k and all ¢ > 0 (for the existence of
{p.} see Lemma 3.5.6. in [62]). Remark that, in view of (14), we cannot assume that
these mollifiers are nonnegative. Given u € W*(Q), for each i € N let

@, xu in Q.
Tl-u = !
0 elsewhere,

and set

1
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Notice that the jump of T;u is far from the support of w;, so that Tu is smooth in Q.
Indeed,

supp w; C B(x;, 2r;) C B, 9r;) C .

Theorem 3.3. Let 1<p<g<
lowing properties:

N
N1 p. Then the operator T has the fol-

(T1) |VlTu(x)\ <C ][ |Vlu\ dy if w € WEP(Q), x € B(a;, 7)), 1 =0,1... k;

B(;,31;)

1/ 1/
x2) ( ][ v'ruftdz) " < o f Vil d) it e WERQ), 1= 0, k;

B(;,r;) B(;,37;)
(T3) T : WrP(Q) — WkP(Q) is a bounded linear operator;

(T4) if u € WEP(Q) then Tu — u € Wy (Q);

1/ /N-1 1/
(T5) ( |VE Tu|? dx) ! < Cer 7 sup 5*1/”( | VP dac) pfm" u € WhP(Q).
0<0<2¢
Q\Q, - Q\Q;

Proof. Step 1. Suppose that B(x;, 2r;) N B(x;,2r;) # (0. Then
107"]' = p(ﬂCj) < play) + |o; — 9()j| < 107; + 27r; + 21"]',
and it follows that

3
7/'j S Eqﬂf,?

B(x,r;) C B(w;,r; + 1j) C B, 3ry), v € B(w;,ry).

(15)

Interchanging the roles of ¢ and j, we also have
(16) r<or
Suppose that x € B(x;,7;) and that

j€1G) = {j: Blaj,2r) N Bw;,r;) # 0}.
Notice that by the property (W3) of the Whitney covering,
amn #1(1) <C.
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Then for ! € {0,...,k} we have

l
ViITu@) = Y Y Co V" aj@)p,, * V" u)(x)

m=0 j
!
=> > CuV " @)p,, + (V"u — Pp))(@)
m=0,€lG) ‘

for some constants C,, € R and certain polynomials P,, of order [ — m — 1 for which
the Poincaré inequality

18) J [V"u — Pyl dy < Crf’m J |Vlu| dy
B(x; 3r;) B(x;,3r;)

holds (set P = 0 if m = [). Note that here we used the fact that, by virtue of (14), we
can write

Z Vl_mwj(x) (¢7‘5 * Py (@) = Z vl—mwj(x) Py ()

JEI@) Jel@

=P, @V " wj@) = P,@V""1 = 0.
J
Using (13), (16), (17) and (18) we now have

l
IVITu@)| < C> D [V wyp,, « (V"u — Pp))| @)

m=0 jel(i)

!
<cy St fivru-palwdy

m=0 jel(@) Bl
i

l
<Cy ! ]L IV™u — Py |(y) dy

m=0 s

<C ][ |Viu|dy.

B(x;,3r;)
Step 2. (T2) is an obvious consequence of (T1).

Step 3. A standard application of the properties of the Whitney covering and of
(T2) with the choice g = p yields (T3).

Step 4. Property (T4) follows from (T3) and from the fact that

J
Tu —u = lim Z w;(Tu — ).
=1

J—0o0 “—
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Step 5. To prove (T5), set

1/p
M = sup 5’””( J |Vku|pdx) .
0<0<2¢
\Q,

If & € Bwx;, 7)) \ €, then
107; = dist(x;, 0Q2) < dist(x, 0Q) + |o; — x| <7 +¢
and so 9r; < &. We have by (T2)

( J |VF Tu|qu)1/q < <§: Z J |V* Tu|qdac>l/q

2\, J=8 {271 <3< By

o) q l/q
gc(Z 3 rjm"")( J |vku|de)q/P)

Jj=3 {i:QTf’1<i—'?<2’«f} B(;,3r7)

IN

0 1/q
C(Z (2-fg)N<1%>< > J VEul? dx)q/p)
=3

(i:271<lico) B(x;,3r;)

0 , . 1/q
C (Z @gNtD ( J [V ul? dx)q/P>

—
J A\,

IN

0 ) . o 1/q
< oS e Peii)
j=1

N-1 1

< Cer 7 My

)

where we used the facts that if & € B(x;, 3r;) for some #; such that 271 < % <27
then ’
dist(x, 0Q) < dist(x;, 0Q) + |x; — x| < 107, + 3r; < 24,

and
0 <N N-—
Z 2755 « + 0
=1
in view of (8). O

The proof of Proposition 3.2 follows closely the proof of Theorem 3.1 in [12] with
the obvious modifications, where (3.17) is

dR(u, ) . m(u7B(m03T)
(xp) = lim ————

1
(19 acy r—0 LN(B(xo, 7))’
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and where the limit is taken on a «good» sequence of radii. Here, when B CC Q1is an
open ball, we set

m(u, B) = inf {F(v, B):v € W(B; RY), v — u € W(B; RY)}.

Proposition 3.2, similarly to Theorem 3.1 in [12], now seats on Proposition 3.1, and on
the analogs of Lemmas 3.6 and 3.7 in [12], that now read as, respectively

Lemma 3.4. Suppose that we WEP(Q;RY) and F(u,Q, (W, w)) < .
Let B(xy, Ry) C Q. Then
(20) m(u, B(xo, ) < F(u, By, ro), W, w))

holds for Lrae ry € 0, Ry).

Lemma 3.5. Suppose that u € WkP(Q; Rd) and Fu, Q, (WP w)) < co. Let
B(xg,Ry) C Q. Then L' a.e. roe(0,Ry) has the following property: If
v € WRI(B(xg, 70); R and u — v € Wg’p(B(xo, 70); R then

(21) R(wv 8B('%‘O; TO)) = 0;

where

©2) " {v in B(xo,70),

u outside B(xy, ro).

So we are left with the proofs of Lemmas 3.4 and 3.5, and they both rely on a
careful choice of radii provided by the following result.

Lemma 3.6. Suppose that u € W*(Q) and u,, € Wff)g (Q), Uy, — uin WEP(Q).
Let B(xg,Ry) C Q. Then L' a.e. vy (0,Ry) has the following property: For
J=1,2,..., there exist integers n; — oo, radit v; /" 7, 7}’. \\ o ond functions
vj € W{Z‘Cq(Q) such that v; = wu,, on Q\ (B(ac_aﬂ]’.) \ B(xo, 1)), vj —u € Wg'p(B(aco,ro))
and

V¥ dae — 0.

Blao,r)\Bo,r;)

Proof. Using the Rellich-Kondrashev compact embedding theorem and pas-
sing if necessary to a subsequence (not relabeled), we may find a,, — oo and a Radon
measure v on 2 such that

Ve P + VUl + |V — )P+ ..+ |t — ulP =0

in the sense of measures.
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We define a Radon measure y on (0, ;) by
w(l) = v({x: | — xo| € E}), E c (0,Ry),
and denote
s = | IVupds, 0<r<R.
OB(y,r)

Let 7y > 0 be a radius such that the maximal functions of ¢ and  are finite at r, i.e.

r9+0

Me(ry) = sup 1 J #(s)ds < +o0,
0<(5<7‘0
7‘0—(3
Ml//(’}”()) = sup l//([/'/‘0 - 57 To + 5]) < +00
0<o<ry 0

We abbreviate
M := max{M¢(ry), My(ry)}.
We first choose R;, R € (0, Ro) \ {ro},
Rj /m, RjNom, Bj—r=7r—R;.

Define
(\V*u, P + |VEulP
N R + @ |VEy, — 0P+ A u, —uf’)do 7 € [R), R,
0 r¢ (R, Rl].
Set

E,;={re (O,RO):M%J(V) > 1}, where A:=25(M + 1).

Choose n; so large that

23) ay, > (R} — Ry ™
and

E;

[susmar= [ (9w 9
(24) E Blwo,R)\B(xo.R)

+ dn, |Vk’1(unj — WP+ . Aty [u, — ul”) dee

< W([Rj,R],-]) + R]’- —-R; <M+ 1)(le~ —R)).
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By the Hardy-Littlewood maximal theorem, we deduce

R

’ 5 1

J 8,1 dr <M+ DR, — B = S (B, Ry,

R;

(25) LY E,;) <

> Ot

so that there exist
1 / 1 / /
7 € Rj, E(Rj + 7)), 7 S é(Rf + 79), Rj

such that »;, 7"]/~¢En’j, and thus

26) max{Mg, ), M, ()} < 1.

With the choice n = n;, define

Aj := B(wo, 7)) \ B(wo, 7)),
D] = A] \ 83(900’ 7/I())a

U, on Q\ 4,
) w4+ (=) T, — ) on A,

where T is the trace preserving operator for A;, T™ is the trace preserving operator
for D; and 7; is a smooth cutoff function such that

1

|y
n;(x) =0, | —ao| > 79 + Z(Rj —R)),

O =) [V <€, i=1, k.

Note that the support of #; is contained in A; and that nearby dB(xo, 7o) the function
n=1,s0 that v; € WHP(Q) and vV — U € W(’)“’p(B(xo, 79)). We have

(J |kt dm)p/q < C(J (Ve 7 dx)p/q
Aj D;

/
+ (J VR = )T, — u))lqdac)p !
4

We observe that dist(x,0D;) < dist(x, 04;) < V]’- — 7; for every x € D;. Appealing to
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the properties of the trace preserving operator, and using (26), we estimate

/
(J et dx)p !
D;
< C(r; — 1/']')N§*(N’D sup o' |VEulP du

0<o<2(r;—1;)
o {xeD;:dist(x,0D;)<0}

< C(r; — r]-)Ngf(N*D sup [0} J \VEulP da

0<o<2(ri—r;)
T Bleo,)\B(o,/~0)

+0! J \VEulP doc + 57 J |VEuP da]
B(xo,70+0)\B(o,1—9) B(xo,r4+0)\B(xo,r)
< O, — N VDM, () + Mlro) + Mg, (7))

< C0j =N V@14 M) — 0.

Similarly, we have

p/q
(j VA — )Ty — )" dx)

J

p/q
< C(J (VT |7 + |V Tul?) dac>

J

k . ) p/q
+ C<Z r—m)* J (VF T, —w)|?) dac)
=1

J

P_(N— _
<CO—r)NT NP qup 577 J (V| + [VFulP) dae
0<a<2(~1;)

A\A)s
+CY 0=y PN sup 57 J (V5 — w)|) dav.
i—1 0<I<2(r;—7;)
T A\A))s

Since A;\ (4;)s = B(wo, r]’-) \ B(xy, 7’ — 0)UB(xg,7j + 9) \ B(xo,7j), using (23) we
deduce that the last sum may be estimated from above by
k Mg, i(r)) + Mg, ()
Cl} =™ NV M, () + M8, j0i) + Y el
' " P (¥} — 1)

< COp =m0,

and this concludes the proof.
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Proofof Lemma 3.4 and Lemma3.5. Asin Lemma 3.6 in [12], without loss
of generality we may assume that f is p-coercive, i.e. y > 0 in (7). Appealing to
Proposition 3.1, there exists a «minimizing sequence» {u,} of smooth functions such
that

w, — u in WEP(Q; RY)
and
F(u,,-) R R(u,-) in the sense of measures.

Let 7y be a radius which satisfies the properties described in Lemma 3.6 in this
paper. Then for j = 1,2,.. ., there exist integers n; — oo, radii r; /" 7o, 1"]'- \\ 7o and
functions v; € Wk’q(Q; R?% such that Vj = Uy, ON Q\(B(xj;)\B(xO,@-)), v —u

loc

e WEP(B(o, m); RY) and
@7) j Vil de — 0.
Bao,r)\Bo,r;)

We may also assume that R(u, 0B(xo, 19)) = 0). The functions v; are legitimate test
function for m(u, B(xg, 1)), and thus, using (7) and (27),

m(u, B(xy, 7)) < inf F(vj, B(xo, 7))
j
< lim sup F(u,,, B(xo, 7))
n

< R(u, B(xg,70)) = R(u, B(xo, 10)).

This proves Lemma 3.4. Now, given a function v € W*9(B(x, 7o); RY withu —v €
Wg’p(B(xo, 7r0); RY), we set

v on B(xy, 1),
1/{)7' =

v outside B(xyg, 7).
Choose J > 0. Since w; — w in WEP(B(wy, 79 + J) \ B(wo, 79 — J)), we have
R(w, 0B(xg, 1p)) < limjian(w,-,B(xo, ro + 6) \ B, 70 — 6))
< limnsupF(un,B(aco7 ro + 6) \ Blo, 10))
+ F(, B(xo, 7o) \ B, 70 — 9))
< R(u, B(xo, 7o + 6) \ B(xo, 1))
+ F(v, B(xg, r0) \ B, 79 — 0)).

Letting § — 0+ we easily observe that R (w, dB(wo, 79)) = 0, and thus Lemma 3.5 is
proved. O
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Proof of Theorem 1.8. The first part of the statement when p >N -1

follows immediately from Theorem 1.7 with ¢ = N.
2

If now p > N1 we choose ¢ > 0 and consider a sequence u,, € WN(Q) such

that %, — « in W2P2(Q) and

28) lim J |det Vzun(x)| de < Fy(u, Q, (WP w) +e.
n—00
Q

By Theorem 1.3 we have that Hu = H;u, and for all ¢ € C°(Q) and by (28)

[(Hu, p)| =

lim J p(x) det VZu,(x) da
Q
S ||(0HL°@(-7H(M7 Qv (W27p7 ’ll)) + 6)

Letting ¢ — 0 we obtain the assertion. O
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Abstract
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