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1 - Introduction

This paper presents both a survey and a generalization of results obtained by the
authors in the articles [19], [20], [21], [22], [23], [24] which deal with Plateau’s problem
for Cartan functionals and with the closely related question of finding conformal
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representations of surfaces or two-dimensional Riemannian metrics. Here a Cartan
Sfunctional means a two-dimensional parameter invariant integral

(1.1) FX) = JF(X,XM A X,) dudv
B

defined for surfaces X : B — R", B C R?, with a Lagrangian F(x, z) that is positively
homogeneous of first degree in z.
The one-dimensional analogue

(12) FE) = jF(é, bt

B

on curves ¢ : I — R" I C R, appears in Fermat’s principle of geometric optics, in
Jacobi’s formulation of the least action principle of point mechanics, and as arc length
in Finsler geometry.

In his memoir [4] Elie Cartan has introduced metric spaces whose “angular
metric” ds® = gjyda’/da is based on the notion of area defined by an integral of the
kind (1.1). For n = 3, the fundamental tensor (g;.) is given by

I 1 .
(gir) = (@) with ¢g/* = ﬁajk’

; ; >’ 1
a := det (@’*), and a/* := Se.0m 2 F? =FF . +F,F,.
j
Therefore it might be permitted to use the notation “Cartan functional” instead of
the lengthy “two-dimensional parameter invariant variational integral”.

The prototype of a Cartan functional is the area functional

AX) = J|Xu A Xp| dudv
B

whose regular (i.e. immersed) extremals are the surfaces of zero mean curvature, the
minimal surfaces. The classical problem of Plateau consists in finding a minimal
surface spanning a given closed Jordan curve I"in R", % > 2. Closely related, but not
equivalent, is the problem of minimizing .4 among surfaces of a prescribed topolo-
gical type which are bounded by I'. In Section 2 we treat a generalization of these
problems, the minimization of a given Cartan functional among surfaces X : B — R"
of disk-type which are bounded by I". The first general results for integrals of the
type [ F(X, A X,)dudv were obtained by E.J. McShane in 1933-1935. The Plateau
B

problem for general Cartan functionals (1.1) was treated in the fifties by A.G. Sigalov
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[50], [51], [52], L. Cesari [5], and J.M. Danskin [7]. They proved the existence of
continuous minimizers. Somewhat later C.B. Morrey [41], [42] and Y.G. Reshetnyak
[46] found other and simpler methods that even provided the existence of (in the
interior) Holder continuous minimizers. However, it seems to us that in none of these
papers the existence of (in the generalized sense) conformally parametrized mini-
mizers is established, although this is occasionally claimed. Yet minimizers X of (1.1)
have to satisfy

(1'3) ‘Xu|2 = |X’U|23 Xu 'Xv =0

if one wants to establish some higher regularity, similarly as one cannot prove higher
regularity of minimizers £ for functionals (1.2) without the normalization condition
|é| = const that fixes the parametrization of the geometric object “curve” in an
appropriate way. Here we treat the problem “F — min” even under the additional
constraint that the range X(B) of a competing surface X is contained in a prescribed
closed set K of R", say, in a submanifold of R". In Section 2 we establish the existence
of conformally parametrized minimizers and, under appropriate assumptions on K,
the Hoélder continuity of these minimizers is shown in Section 5. Higher regularity
can so far be verified only for the special class of Cartan functionals the Lagrangians
of which possess a perfect dominance function. Following C.B. Morrey [41], [42] we
introduce in Section 5 the notion of a dominance function and exhibit a condition that
guarantees the existence of a perfect one. Then we show that any conformally
parametrized minimizer of F bounded by a contour I" € C* is of class H>2(B, R")
NCY(B,R™) for some 8 € (0, 1).

We note that the well-known partial regularity results for minimizers of integrals
[fX,VX)du!.. . duF with strictly quasi-(or poly-)convex Lagrangians f(x, p) can-
Q

not be applied because they require C2-regularity of the integrand. Moreover, work
by B. Kirchheim, S. Miiller, and V. Sverdk [29] shows that there are smooth, strongly
convex functions f(p) such that divf,(VX) = 0 has weak solutions X € Lip (B, R2)
which are not C! in any open subset of B. Recently, L. Székelyhidi [53] improved this
result in the following way:

There exists a smooth, strongly polyconvex f(p) on R? x R% with bounded second
dertvatives such that the elliptic system in divergence form div f,(VX) = 0 admits
weak solutions X € Lip (B, R%) on the unit ball B of R? which are not C in any
(nonempty) open subset of B. Moreover, f can be chosen so that these weak solutions
are weak local minimizers of the corresponding functional F(X) := [ f(VX) dudv.

B

So the regularity question for weak solutions of strictly polyconvex systems is
even in two dimensions a rather difficile problem, and no general regularity theory
seems to be available (see also J. Bevan [3]).
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With the Lagrangian F(x,z) of a Cartan functional (1.1) we link the associated
Lagrangian f(x, p) := F(x, p1 A p2) for p = (p1,p2) € R" x R". Convexity of F(x,z)
in z means polyconvexity of f(x,p) in p, and the best one can hope for F(x,z) is
convexity of Fi(x,z) — A|z| in z for some 1 > 0 which is equivalent to

C Pt 2 A~ 2] for 20,

i.e., F . (x,#) is (uniformly) positive definite on the orthogonal complement {z}L of
the one-dimensional space spanned by z. This means that f(x,p) — Alp1 A p2| is
polyconvex, which is a kind of strict polyconvexity that is slightly weaker than the
standard strict polyconvexity which requires that f(x, p) — )v|p|2 is polyconvex in p.

In consideration of Székelyhidi’s example the reader might find the regularity
results presented in Section 5 to be of some value.

In Section 3 we use the technique developed in Section 2 to derive sufficient
conditions for Fréchet surfaces to possess a conformal representation. For instance,
as one consequence of our investigations we present a simple proof of MeShane’s
theorem that a Fréchet surface with a Lebesgue monotone representative can be
represented conformally. Let us note that (1.3) implies the inequality

IVX|* < ¢|X, A X,

with some constant ¢, in fact even equality with ¢ = 2. Therefore, conformally
parametrized mappings X : B — R", B C R%, n > 2, are mappings with bounded
distortion.

Section 4 deals with the regular conformal representation of Riemannian metrics
and regular surfaces. In particular, we prove a generalization of the Riemann
mapping theorem where the Euclidean metric is replaced by a Riemannian one. Our
approach consists in minimizing area whereas Jost’s method in [27], [28] minimizes
Dirichlet’s integral in the weak H2-closure of diffeomorphisms.

Finally in Section 7 we discuss some further results and several open questions
that are to be raised in connection with the preceding results.

2 - Minimizers of Cartan functionals

Let I" be a closed rectifiable Jordan curve in R”, n > 2, and denote by B the unit
disk
B = {(u,v) =we R*: u® +* <1}

in R%. We consider the class 7 (I') of mappings X : B — R" bounded by I” which is
defined as follows: #'(I") consists of those mappings X € H“?(B, R") whose Sobolev
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trace on OB (denoted by X|,;) is a continuous, weakly monotonic mapping of 9B onto
I’ (seee.g.[8], vol. I, p. 231). We recall the well-known fact that Z(I") is nonvoid as I”
is assumed to be rectifiable.

Let K be a closed set in R” containing I". We introduce (1", K) as the set of
surfaces X € Z°(I") whose range X(B) is contained in K, i.e., X(w) € K a.e. on B for
any representative of X (which is again denoted by X). Clearly # (I, K) can be
empty; so we have to assume that there is at least one surface Xy € ' (I") with
Xo(B) C K. This holds true if K is the diffeomorphic image of a convex set in R"; in
fact it suffices that K is bi-Lipschitz homeomorphic to a convex set. Among others we
want to study the variational problem

FX)— min in £(I",K)
for Cartan functionals F : 2 (I', K) — R. These are integrals of the kind

FX) = JF(X,XM A Xy) dudv
B

with a Lagrangian F € C%(K x RY ), N := n(n — 1)/2, such that F(x, 2) is positively
homogeneous of degree one with respect to z, i.e., we assume

(H) F(x,tz) =tF(x,z) for t >0 and for all (x,z) € K x RY.

We also suppose that there are numbers m; and ms with 0 < m; < mg such that the
definiteness assumption

D) male| < F(x,z) < mglz| for all (x,2) € K x RN

is satisfied. If K is compact the assumption F(x,z) < mg|z| follows from (H) and the
continuity of ' whereas the assumption m; |z| < F'(x,z) with m; > 0is automatically
satisfied if we assume that K is compact and F'(x, z) > 0 for any (x,z) € K x RY with
z#0. Then the Lebesgue integral F(X) is well-defined on {X € H'?(B,R"):
X(B) C K} and in particular on Z(I", K). Hence, if 2 (I", K) # 0, it makes sense to
look for a minimizer of F in #'(I", K). In order to apply the direct method of the
calculus of variations we use the lower semicontinuity of F with respect to weak
convergence of sequences in H2(B, R™) N {X : X(B) C K}.On account of aresult by
Acerbi and Fusco [1] this property follows from the additional assumption

©) F(x,z) is convex with respect to z, for any x € K.
In fact, if f : K x R* — R denotes the associated Lagrangian
f(,p) == F(x,p1 Aps) for @ €K, p=(p1,p2) € R" x R" = R*,

condition (C) implies the polyconvexity of f (x, p) with respect to p, for any x € K, and
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(D) yields
]' n
0 < f(x,p) < ma|p1 Ape| < émlp\z for (x,p) € K x R™.
Then we also have

F(X):= J fX,VX)dudv for X € H**(B,R") with X(B) C K,
B

and we obtain

Lemma 2.1. If X; — X in HY*B,R") and X;(B) C K for all j € N then
XB)Cc K and

F(X) < liminf F(X)).
j—o0

Proof. By Rellich’slemmawe have X; — X in L2(B,R™), and so X;,(w) — X(w)
for a.e. w € B for some subsequence {X;, } C {X;}. Since K is closed and X;(B) C K
we arrive at X(B) C K. Thus also F(X) is defined, and [1] yields the desired lower
semicontinuity of F. O

By (H) the Cartan functional is a “parameter invariant integral”, i.e., we have
FXot1)=FX) on {X c H*B,R"): X(B) C K} for any C'-diffeomorphism
t: B — B of B onto itself. Hence, for any differentiable family t*, |s| < so, of dif-
feomorphisms 7° : B — B such that

(w) = w + syw) + - - -

with 7 € C1(B, R?) and 5(w) - v(w) = 0 for w € OB, v : 9B — S! being the field of unit
vectors normal to 0B,

d .
(2.1) OFX,n) 5:%5’:()(015)\5:0 =0.
Now we choose three different parameters wy, we, w3 € B and three disjoint points
P, Py, P3 € I' and introduce the three-point condition
(%) X(wy) = Py, X(wp) =Pz, X(ws)=Ps.

Let 2*(I") and Z"(I",K) be the set of surfaces X € #(I') and X € 2 (I, K) re-
spectively which satisfy (x).
Next we introduce the area functional

(2.2) AX) = J|Xu AX,| dudv = J \/ X, X, — (X, - X,)? dudw
B B
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of a surface X € H“2(B,R") as well as its Dirichlet integral

(2.3) DX) := %J VX ? dudv
B
with VX = (X,,, X,) and |[VX|* = |X,* + |X,|*. Then
AX) < DX),
and we have

AX) =D(X) if and only if X satisfies (%)

with
(*%) X, = |X,[5, X.-X,=0,
ie. |Xu(w)|2 = |Xu(w)|2 and X, (w) - X,(w) = 0 for a.e. w € B for any representative X
of the H'2?-surface that we are considering. The equations (xx) are the so-called
conformality relations. Note that A(X) is the simplest example of a Cartan func-
tional, with F'(z) = |z| and f(p) = |p1 A p2|.

For X € CY(B,R™), n > 2, the value A(X) of the functional A defined by (2.2) is
given by the area formula

(2.4) AX) = J O(X, B, x)d.77*(x),
R*
where .72 denotes the two-dimensional Hausdorff measure on R” and ©@(X JE . x)is

the Banach indicatrix for any set £ C B and « € R", i.e., the number of solutions
w € K of the equation X(w) = «,

(2.5) OX,E,x) =t{we E: X(w) =x} for £ CB.

Federer has established (2.4) for any Lipschitz continuous mapping X : B — R",
n > 2, and even for Sobolev mappings. In the latter case certain precautions are ne-
cessary: The formula may hold for some representatives of a Sobolev mapping but can

fail for another one. In fact, both necessary and sufficient for (2.4) to hold is that X is a
Lusin representative of class H“*(B, R"™), that is, X must have the Lusin property:

TEHX(E)) =0 for all E C B with 7%E) = 0( & Z%E) = 0).
The following is true (cf. [12], vol. 1, 3.1.5):

Proposition 2.2. If X of class HY2(B,R"), n > 2, is a Lusin representative
then

(2.6) J\Xu A X,| dudy = J OX, E, x) d.7%(x)

E R
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for any measurable subset E of B, and even

2.7 Jf(X(u, )Xy A Xy | dudv = Jf(x)@(X,E’, x) d.77%(x)

E R™

for f : X(E) — R whenever one of the two sides is meaningful.

Any Sobolev map of class H'?(B, R") has a Lusin representative but it need not
be the continuous one if that exists. Such an example can be found in Remark 3, p. 223
of [12], vol. I. Even more striking is an example by Cesari modified by Maly and
Martio (see [34], pp. 34-35): There is a continuous mapping X : R? — R? of class
H'2(R? R?) with det VX(w)=0 for ae. we R® which maps the interval
{(u,0) : 0 <u <1} onto the square [0,1] x [0,1].

On the other hand, the continuous representative of a mapping X € H**(B,R")
with s > 2 is automatically a Lusin representative, and (2.6) and (2.7) are true (even
Xe Hllo"i(B,R") is sufficient); cf. [12], vol. I, p. 223, Theorem 3. Furthermore, if
X:B—R" n>2, is a (locally) Holder continuous representative of class
H'2(B,R") then X has the Lusin property, and so (2.6) and (2.7) remain true. For
n = 2this was proved in [34], Theorem C; for n > 2 we refer to Maly [33], pp. 381-384.

We mention that any Lusin representative X of class H*(B, R") maps measur-
able subsets E of B into .7*-measurable and countably 2-rectifiable subsets of R" in
the sense of Federer (cf. [12], vol. I, 2.1.4 and 3.1.5), and (2.6) implies

(2.8) J X, A X,| dudv > 77%(X(B))
B

where the equality sign holds if and only if @(X, B, x) = 1 for .7#%-almost all x € X(B).

In the next section we shall recall how the functional A is related to the Fréchet
area of continuous surfaces, and then we discuss generalized conformal re-
presentations of such surfaces. Essentially this will be a special case of the following
investigation of the Plateau problem “F — min in £ (I",K)” for a Cartan func-
tional F as previously discussed. We first recall a well-known consequence of the
Courant-Lebesgue lemma (cf. [8], vol. I, 4.3 & 4.4).

Lemma 2.3. (i) Let {X;} be a sequence of surfaces X; € ¢ (I') with
D(X;) < ¢ < oo for all j € N and some constant ¢ > 0. Then there is a surface
X € 27(I') and a subsequence {X;,} of {X;} such that

X; — X in H**(B,R") and X; |, — X|,p in C°(OB,R").

(i) IfinadditionX; € (I, K) for some closed set K in R" then also X € 7 *(I", K).



[9] CONFORMAL REPRESENTATION OF SURFACES, ... 9

Proof. By Poincaré’s inequality there is a constant ¢y = ¢o(I") > 0 depending
on |I'| := max{|x| : ® € I'} such that
X |21 < o +DX)) for all X € (I
whence

2.9) X |52 10y < @+ o)+ DX)) for all X € #(I).

So the set {X € Z*(I') : D(X) < ¢} is sequentially compact with respect to weak
convergence in H“?(B, R"), and the Courant-Lebesgue lemma implies the state-
ments of (i). The assertion (ii) follows as in the proof of Lemma 2.1. O

Theorem 2.4. IfF € C%K x R") meets (H), (D), and (C), where K is a closed
set in R" then there is an X € ¢ (I',K) with F(X) =inf, (k) F satisfying the
conformality relations (xx), provided that 7 (I", K) is nonempty.

Proof. For 0 <& <1 we consider the family of functionals F* defined on
HYB,K) := {X € HY*B,R") : X(B) C K} by
FiX) := FX) + eDX).

Introducing the Lagrangian ¢ : K x R* — R by

Fi@.p) = f@.p) + 5 |pf
we have

FiX) = JfE(X, VX) dudv.

B
It is well-known that D is (sequentially) weakly lower semicontinuous on the space
HY2(B, R"). In conjunction with Lemma 2.1 it follows that F* is (sequentially) weakly
lower semicontinuous on (B, K) for any ¢ € [0, 1].
Let 7: B — B be a conformal automorphism of B onto itself and X € #'(I', K).

Then Y:=Xote (,K) and DY) =DX) as well as F(Y) = F(X) whence
FiY) = F4X). Therefore,

(2.10) inf F= inf F and inf F*= inf F°.
7 (I K) 7K 7 (I K) 7H(IK)

We define the nondecreasing function d : [0,1] — R by
(2.11) d):= inf F, d():= inf F° for 0 <e<1.
7 (I K) 7 (I K)

Since [p[?/2 < e 1f*(x, p) it follows that
(2.12) DX) < e ' F4X) for all X € Z(I',K) and 0 < e <1.
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Now we fix some ¢ € (0, 1] and consider the minimum problem

“F¢ — min in (I ,K)”.
By (2.10)-(2.12) there is a sequence {X;} of mappings X; € 2"(I",K) with
Fi(X;) — d(e) asj — oo and D(X;) < const. On account of Lemma 2.3 there exists an

X? e #*(I',K) and a subsequence {X;} with X; — X* in H'(B,R"). Then
d(e) < F4(X?), and Lemma 2.1 implies F*(X?) < d(e). Thus

(2.13) d(e) = F¥(X®) for some X* € 77 (I",K).

Consider any n € C'(B, R?) with n(w) - v(w) = 0 for all w € OB, where v : 0B — S is
the field of unit vectors normal to 0B, and form a differentiable family of diffeo-
morphisms * : B — B with ©*(w) = w + sp(w) 4 --- for |s| < 1. Define Y* by
Ys(w) := X(«*(w)) for w € B and |s| < 1. Then Y* € (I, K), and consequently,
FYY) = F(X?) < F4Y®) for |s| < 1, taking (2.13) into account. This implies

d roys
T =0,

which is
0 = OFXX?, ) = OF (X%, ) + edD(X, ).
Since 0F(X*,n) = 0 (by virtue of (2.1)) and & > 0 we obtain
ODX?, ) = 0 for all € C*(B, R?) with -v=0 on dB.
For a:= X — |X¢%, b := 2X? - X¢, this leads to
J[a(n; — )+ bGP + ] dudv = 0

B

for any 5 = (7', %) € C(B, R®) with 7 - v = 0 on dB. First we choose 7in C*(B, R?) in
the form 5 = .7su where i = (i, 1) € C2*(B, R?) and .7} is a smoothing operator
with a symmetric kernel ks, 0 < 6 < 1, i.e.,.“5u = ks x 1. Then

J[af"(ui — 12) + b + b dudv = 0
B
for a’ := .7sa, b° := .73 b. An integration by parts yields
J[ (@ 00+ (@ — By dudy — 0
B

for any u € C(B/, R?) with B’ cC B and 0 < § < Jy(B’). Therefore the functions
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a’, —b° € C>(B') satisfy the Cauchy-Riemann equations
ay = (=0, a)=-(-0b", inB,

and so ¢’ :=a’—ib° is holomorphic in B' cC B for 0< &< d(B'). Since

¢’ — ¢:=a—ibin L'(B',C) as  — 0 we infer that ¢ is holomorphic in B’ for any
B’ cC B,and so ¢is holomorphicin B. Now we can apply a well-known reasoning due
to Courant ([6], pp. 112-115) and obtain ¢ = 0, that is,

(2.14) X212 = X2, X¢-X°=0 in B.
In other words, for any ¢ > 0 the minimizer X* of F* satisfies the conformality re-
lations (x%), and so we have
AX?) = D(X?) for all ¢ > 0.
Condition (D) implies m; A(X*) < F(X?), hence
(M + &)DX*) < FHX).
On the other hand, (2.13) implies
FUXH) < F¥Z) for all Z € #(I',K),
and by A(Z) < D(Z) and F(Z) < mga A(Z) we have F*(Z) < (mg + ¢)D(Z) whence
(m + &)DX*) < (mz + &)D(Z).

Since
meo + & < Mo
my +¢ ma

foralle >0

we arrive at

DX < 2D(Z)  forall 4 € 7 (1K),
1
and consequently,

(2.15) DX) <™ inf D=¢<oo forallee (0,1].
my (I K)

By virtue of Lemma 2.3 thereisan X € #(I", K) and a sequence of &; > O with¢; — 0
such that X% — X in H'?(B, R"). On account of Lemma 2.1 it follows that

FX) < liminf F(X%).

J—00

Since d(¢) is nondecreasing, lim0 d(e) exists, and by d(¢) = F4(X¢) = F(X?) + eD(X?)
we infer from (2.15) that ot

lim d(¢) = lim F*(X?) = lim F(X?).
e—+0 e—+0 e—+0
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Moreover, we have d(0) < F(X)as X € 2 (I",K), and so
d0) < FX) < lim0 d(e).
g—

On the other hand, d(¢) = F(X?) < F¥Z) = F(Z) + eD(Z) for any Z € 2 (I, K)
whence lim d(e) < F(Z) and consequently lim d(e) < d(0). Thus X € " (I", K) sa-
tisfies e—+0 e—+0
FX)= inf F = lim F(X?),
7 (I',K) e—+0
i.e., X minimizes F in (I, K).

Finally we want to show that X satisfies the conformality relations (xx). This does
not immediately follow from (2.14) since we merely have the weak convergence
X% — X in H"3(B, R™). However, (xx) is a consequence of (2.14) as soon as we have
the strong convergence X% — X in H2(B, R"). For this it suffices to prove

(2.16) lim D(X%) = DX).

j—00
This will be verified as follows: Since X¢ minimizes F° in 2 (I",K) we have
FUX®) < FYX), i.e.,
FX®) + DX < F(X) + eD(X),

and F(X) < F(X?) as X minimizes F. Therefore &¢D(X?) <¢D(X), and so
D(X?) < DX) for ¢ > 0 whence

lim sup D(X%) < D(X).

J—o0
The weak lower semicontinuity of the Dirichlet integral in H2(B, R") yields
DX) < liminf D(X%),

J—0o0

and so we obtain (2.16). This concludes the proof of the theorem. O

Remark. We gratefully acknowledge that the proof of (2.16) given above was
pointed out to us by Stefan Miiller. Our original proof was more cumbersome and
even required strict convexity of F(x,z) in 2, in the sense that F(x,z) — oz| be
convex for some o > 0.

3 - Conformal representation of Fréchet surfaces
Besides the classical formula

AX) = J | Xy A X, | dudv
B
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for embeddings X : B — R" of class C!, which also makes sense for surfaces
X € H'2(B,R"), there are numerous definitions generalizing the notion of area. Of
those, two have proved to be valuable, the two-dimensional Hausdorff measure
J73(S) of a point set S C R" and, secondly, the Lebesgue-area of a Fréchet surface.
We have discussed the relation between A(X) and .77*(X(B)) for X € H*2(B, R") in
the preceding section. Now we turn to the Lebesgue area of a Fréchet surface.
Consider two continuous mappings X; : Q; — R” and X : Q; — R” where @,
and Q, are bounded open sets in R%. They are said to be Lebesgue equivalent
(symbol: X; ~ X,) if there is a homeomorphism 7 : Q; — Qs of Q; onto Q such that
X; = X, o t. This is an equivalence relation, and every equivalence class might be
called a Lebesgue surface. Unfortunately, this notion of equivalence is too narrow,
and so one uses the weaker notion of Fréchet equivalence which is defined as follows.
For any two mappings X; € C°(Q;, R") and X; € C°(Q;, R") with homeomorphic
compact parameter regions Q; and Q; in R? we define the distance 0(X1,X5) as

(31) 5(X1,X2) = ll’lf{”Xl —X50 ‘L'||C(,(§1“VRM,) T E H(El,ﬁg)}

where H(Q;,Q5)} is the set of homeomorphisms from @Q; onto Qs. The distance
function ¢ is nonnegative, symmetric, and satisfies the triangle inequality.

One calls X; and X Fréchet equivalent (X; ~ X3)if 6(X1, Xz2) = 0. This relation is,
in fact, an equivalence relation. Every equivalence class S =[X] with a re-
presentative X € C°(Q, R") is said to be a Fréchet surface of the topological type of
Q, and X is called a parameter representation of S.

In the sequel we restrict ourselves to Fréchet surfaces S of the type of the disk.
They form a metric space (.Z, d) with the distance function 6(S1,S2) defined by

(3.2) 0(S1,S2) 1= 0(X1,Xp) if S; =[X;1] and Sy = [X2].

The following result is easy to verify:

Proposition 3.1. () If X,X; € C'B,R") with I1X = Xjll oy — 0 @8
J— o0, and S = [X], S; = [Xj], then &(S;,S) — 0.

(i) Conversely, if S,S;je. 7 with 68;,S)—0, and S=I[X] for some
X € C°B,R"), then there are X; e C°(B,R") with S;=[X;] and such that

HX - ‘X]'”CO(E,]

R™) — 0(18j—> Q.

The convergence 6(S;,S) — 0 for S,S1,8s,...,8S;,... in .Z is denoted by the
symbol S; — S.

In order to define the Lebesgue area #(S) of a given Fréchet surface S we
consider the sequences {P;} of polyhedral surfaces with P; — S. There is always
such a sequence, and for any polyhedron P its elementary surface area #(P) is well-
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defined. For any sequence {P;} with P; — S we consider liminf £ (P;), and then we

form the infimum of the values liminf #(P;) taken with respect to all sequences

Jj—00

P; — S this is the Lebesgue area #(S) of S,

(3.3) Z(8) := inf{liminf £(P;)) : P; — S}.
j—00

It turns out that £ (P) = #(P) for any polyhedron P. McShane [35] and Morrey [37]
have proved that

(3.4) L(S) = AX)

if X is a parameter representation for S of class C°(B, R") N H'2(B, R"). (We refer to
[45] and [43] for proofs of the results cited above as well as for further results and

references.)
Now we want to describe a condition on S that allows us to certify the existence of
a conformally parametrized representation.

Theorem 3.2. Suppose that Xy € 7 (I') N C*(B, R") satisfies
(3.5) osc5Xo < ¢gose poXo
Sfor all open sets 2 C B and a constant ¢y > 0 independent of Q. Then there exists a

mapping X € £ (I') N COB, R™) with 5(X, X,) = 0 which satisfies the conformality
relations

(%%) X, =X, [, X, X,=0.

Proof. We consider mappings X € C°(B, R") which satisfy
(3.6) ose5X < cposegoX

for all open sets @ C B. Let K(I", X,) be the set of X € #'(I") N C°(B, R™) which fulfill
(3.6) aswell as 0(X, Xp) = 0, and K*(I", Xp) be the subset of X € K(I", X;) subject to a
three-point condition

(%) XGw)=P;, j=1,23,
as described in Section 2. (Note that, for any homeomorphism 7 : B — B, the re-
parametrized mapping Z := X o 7 satisfies (3.6) if X fulfills (3.6).

Now we proceed similarly as in the proof of Theorem 2.4, replacing # (1", K) and
(', K) by K(I', Xy) and K*(I", X)), respectively, as well as F and F* by A and

A = A+¢eD for 0 <e<1.
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Instead of Lemma 2.3 we use the following result:

Lemma 3.3. Let {X;} be a sequence of surfaces X; € K'(I',Xo) with
D(X;) < c < oo for all j € N and some constant ¢ > 0. Then there is a surface
X € K'(I', Xo) and a subsequence {X; } of {X;} such that

X;, — X in H*(B,R") and X;, — X in C°(B,R™).
We omit the proof of this result which is once again a consequence of the Courant-

Lebesgue lemma if one takes (3.6) into account.
Analogously to (2.10) we note that

inf A= inf A, inf A°= inf A%

K" Xo) K" (I' Xo) K" Xo) K (I" Xo)
Then we fix some ¢ € (0, 1] and consider the minimum problem
“A*— min in KU, Xp)”.

By the Lemmata 2.1 and 3.3 there is a minimizer X* of A° in X(I", Xj) which lies in
K*(I', Xp), i.e.,

AX?) =d(e) for 0 <e<1

if we set

d(e) = KEP,?(O)AS'
For any 7 € C1(B, R?) with n(w) - v(w) = 0 on 8B, v : 9B — S the exterior normal to
0B, we form a differentiable family of diffeomorphisms 7° : B — B with

T(w) =w + sp(w) + --- for |s| <1

and set Y* := X* o t*. Then Y* € K(I', X,) for |s| < 1 and so A*(Y?) < A*(Y®). This
implies

%AS(Y“’MS:O =0
whence 9D(X?, ;) = 0 for any n € C'(B, R") with - v = 0 on 0B, and we obtain

Xi* = X", X.-X;=0 onB,
It follows that
AX?) = DX?)

and

AX?) = (1 + &) DX).
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For any Z e K(I',X,) we have A(X°) < A*(Z) and A(Z) = A(Z)+ D)
< (1 + &)D(Z); therefore D(X*?) < D(Z) and in particular

DX*) < DXp) =:c for 0 <e<1.

By Lemma 3.3 it follows that there is an X € K*(I", Xj) and a sequence of ¢; > 0 with
g — 0 such that X% —X in HY¥®B,R") and X% - X in C°B,R"). Since
ZL(S) = AZ) for S :=[X,] and any Z € K", Xy), we have AX?) = AX) for all
¢ € (0,1], and so

DX?) = AX?) = AX) < DX).

On the other hand, X% — X in H“2(B, R"); hence
D(X) < liminf D(X%).
00

Thus A(X) = D(X) which implies (). O
An immediate consequence of the preceding theorem is

Corollary 3.4. Let S =[Xo] be a Fréchet surface with a parameter repre-
sentation Xy of class #(I')NC%B,R") satisfying (3.5). Then there exists a
representative X of class # (I') N C°(B,R™) for S which fulfills the conformality
relations (xx) and condition (3.5).

Another consequence of Theorem 3.2 is a celebrated result by McShane ([36],
Theorem I, p. 725) which we formulate as

Corollary 3.5. Suppose that the Fréchet surface S has a representative of
class ¢ (I') N C*(B, R"™) which is Lebesgue monotone. Then there is a Lebesgue
monotone representative X € 7 (I') N C°B,R") for S satisfying the conformality
relations (xx).

We recall that a continuous function ¢ : B — R is said to be Lebesgue monotone if
we have
ing < < for all Q
rg})ngb < plw) < n%gxqﬁ or all w e

and for any open set Q C B. A mapping X € C°(B, R")is called Lebesgue monotone
if each of its components has this property. Clearly every other representative of the
Fréchet surface S = [X] is Lebesgue monotone as well. Moreover, each Lebesgue
monotone mapping X satisfies (3.5) with ¢y = /.

Actually MeShane’s result looks slightly more general than Corollary 3.5 because
it states the following:
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Any Fréchet surface S with finite area #(S) that has a Lebesgue monotone re-
presentative X € COB, R™) which maps 0B weakly montonically onto a Jordan
curve I' has a representative of class HY2(B, R™) which satisfies (xx).

(Here the rectifiability of I is not needed because of the assumption Z'(S) < ~o.)
However, this form of the assertion really is not stronger than Corollary 3.5 since
Z(S) < oo implies the existence of a Lebesgue monotone representative X of class
7 (I') N C%(B, R™); see e.g. Nitsche [43], §226.

Lemma 3.6. Any bi-Lipschitz homeomorphism X, of B onto a subset S of R”
satisfies condition (3.5).

Proof. The mapping X, : B — S is a bi-Lipschitz homeomorphism if there are
constants 4 and x with 0 < A < yu such that
(8.1 Alwy —ws| < |X(wy) — X(ws)| < plwy — we| for all wy, ws € B.
Let Q be an open set in B. Then diam Q2 = diam 02, and so
ose5X < pdiam Q = pdiam 0Q < (u/2) osc go X.

This leads to

Corollary 3.7. Suppose that the Fréchet surface S has a representative
Xy € Z(I') which furnishes a bi-Lipschitz mapping of B onto the trace S := Xo(B)
of S in R". Then there exists a representative X € ¢ (I') N C°(B, R") of S which
satisfies the conformality relations (xx) and condition (x).

This result can, for instance, be applied to any polyhedral surface P that has an
embedding as a representative, and to any Fréchet surface S having an embedded
C'-immersion X, : B — R" as a representative. In fact, there is a > 0 such that

Vwy —we| < [ Xowr) — Xows)| < g [wy — ws|

holds for any wi,ws € B with |w; —ws| < 6 and some A,z with 0 < 1 < .
Furthermore there are numbers R, m, me with R > 6 and 0 < m; < mg such that
|wy — we| < R for any wi,ws € B and

my < [Xo(wr) — Xo(ws)| < mg

for wy,ws € B with 6 < |wy — we| < R. This implies

m m
fl lwi — wa| < [ Xo(wr) — Xows)| < 72 |wr — we
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for wy,we € B with |w; — ws| > 6. Setting

J:=min{l ,m;/R} and u := max{y',ms/5}

we obtain (3.7).

We also note the following general result by Morrey (see [38], p. 701, Theorem 2):
Every nondegenerate Fréchet surface S with #(S) < oo possesses a representative
X € H2(B,R") N C°(B, R") satisfying the conformality relations ().

A Fréchet surface S with a representative X € C°(B, R") is said to be non-
degenerate if X, is nonconstant and B \ C is connected for every continuum C in B
such that X|, is constant (see [39], p. 49, Theorem 3). This intricate sufficient con-
dition seems difficult to be verified, which leads to the problem of characterizing all
surfaces which allow a conformal representation, which — to the best of our
knowledge — remains an open question up to now; see also [57], [58].

4 - Conformal representation of Riemannian metrics and C'“-surfaces

As before let B be the standard unit disk {w € R? : jw| < 1} in R® and w = (u, ).
Secondly, let 2 be a bounded open set of points = (x!, %) € R%, bounded by a
closed rectifiable Jordan curve I'. We assume that, besides the Euclidean metric

(4.1) ds? := Ojpda’lda®
on Rz, Q carries a Riemannian metric
(4.2) ds® := gjpda’da”.

We shall prove the following global form of Lichtenstein’s theorem [32] which can be
viewed as a generalization of Riemann’s mapping theorem from the complex plane to
two-dimensional Riemannian manifolds.

Theorem 4.1. Suppose that I' € C™* and gy € C"14(Q) for some m € N
and a € (0,1). Then there is a conformal mapping t from B onto Q which is of class
Ca(B, R?).

Here a conformal mapping 7 from B onto Q is a diffeomorphism 7 : B — Q be-
tween B and Q satisfying the conformality relations

(4.3) Z(1) = (1), T()=0,
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where the quantities #(z),.7 (r), and £ (7) are defined as
) Z(1) = gr(DThk, Z%L:%méﬁ
T (1) = g0, k.
The pull-back t*ds? of the metric ds® on Q to the disk B is given by the formula
'ds? = £(@)du? + 2.7 (t)dudv + < (t)dv?.

For a conformal mapping 7 : B — Q we have

(4.5) =4 =%t)>0onB
and
(4.6) ds® = Mu,v) - (du® + dv?).

Moreover, the components 7!, 7% of a conformal mapping r,
tu,v) = (M, v), 72w, v)) for w = (u,v) € B,
satisfy the Beltrami equations
VIOT, = —plgr@), + gea(0)7 ]

@&7)
VIOTZ = plgn@1l + gie(0)72 ],

where
g(x) := det (g (x))

and either p(u,v) =1 or p(u,v) = —1. The Beltrami equations (4.7) are the “gen-
eralized Cauchy-Riemann equations” of a conformal mapping 7, and they imply

(4.8) V@) det DT = p £ (7).
Thus 7 is orientation preserving or reversing if p =1 or p = —1 respectively. If

9;k(x) = Jj. then Theorem 4.1 is the classical Riemann mapping theorem since we can
assume p = 1 (otherwise we compose t with the reflection (u, v)—(u, —v)). In fact, we
even obtain the Osgood-Carathéodory extension of Riemann’s theorem to the
boundaries 9B and 0L, whereas the theorem in its classical formulation only claims
that B can be mapped conformally onto Q.

There are many proofs for Theorem 4.1 or for related versions. The classical
approach consists in combining Lichtenstein’s theorem (which locally leads to con-
formal parameters) with the uniformization theorem. We proceed by a variational
method, minimizing the area functional

(4.9) A) = J \/ Z@)G(0) — 7 HT) dudv = J V9@ | det De| dudv.

B B
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This will simultaneously lead to a minimization of the Dirichlet integral
(4.10) D(z) := %J [£(0) + £ (v) ]dudv.
B

Proof Theorem 4.1. We extend (gj) to all of R? in such a way that
9jk(x) = 0j for x| > 1 and g, € C"-14(R?). Then there are numbers my, me With
0 < my < mg such that

(4.11) &P < g@)EE < mg|éf? for all x, ¢ € RZ

Now we consider arbitrary mappings t : B — RZ of class H'2(B, R?). For any such ¢
the functions & (1), .7 (), ¥(z) are of class L1(B), and so A and D are well-defined on
H'2(B, R?) and in particular on Z°(I") (cf. Section 2, setting n = 2). We want to find a
solution 7 of the minimum problem

“A— min in )"
satisfying (4.3). To this end we introduce
A(t) =1 - At) +eD(r), 0<e<1,
and consider the modified minimum problem
“A*— min in Z)"

for any fixed e with 0 < ¢ < 1. The functional A is a Cartan functional, and so Lemma
2.1 applies to A. Since also D is (sequentially) weakly lower semicontinuous on
H'2(B, R?), the same holds for A°. Hence there is a ©* € #'(I') such that

A =inf{A*() : t € (1)}, 0<e<l
The same reasoning as in the proof of Theorem 2.4 yields at first
QA (", ) = edD(x*, ) =0

for any vector field € C1(B, R?) with nlop L OB, whence

| taw ~ 2+ b0 + it 1duav o

B
for such 7, with

a:=20") -9, b:=270",
and then @ = 0 and b = 0. Thus we have
(4.12) =9, F@)=0for 0<e<l.
For any t € H'2(B, R?) one has A(1) < D(7), and the equality sign holds if and only if
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7 satisfies (4.3) a.e. on B. We conclude that
(4.13) Ai(t%) = A®) = DE) for 0<e<1.
Set
a(l) := }lglf) A, ar) = }I(l]f:)'D

Then we obtain for any 7 € 7 (I") and 0 < ¢ < 1 that

d(I') < D(z) = A'(7") < A7) < D(1)
whence d(I") < D(z?) < d(I'), and so
(4.14) D) =d(I’) forall ¢ € (0,1].

It follows from (4.13) and (4.14) that A%(t*) = A% (¢¥) for all &, ¢ € (0, 1]; thus we have
for any r € 2 (I')

a(lN) < AT) = A7) = A7) < A (1) — A)  asé — 0.
Hence a(I") < A(%®) < a(l),i.e. A(z*) = a(I") for all ¢ € (0, 1], and we have arrived at
(4.15) al) = A®) =D%) =d(’) for all ¢ € (0,1].
In particular, r := ! minimizes both A and D in # (I").

Let us assume that m > 2 and a € (0, 1). Then well-known results show that ris a
minimal surface of class C"“(B, R?) in the two-dimensional Riemannian manifold
(Rz, ds?); cf. Morrey [42], Chapter 9, Tomi [55], Heinz-Hildebrandt [16].
Furthermore, if wy € B is a branch point of 7, i.e., if Z(z)(w) = 0, then there is

an a € C*\ {0} and a number ve N such that the Wirtinger derivative
7 = (1/2)(t, —i1,) : B — (2 of 7 has the asymptotic expansion

T(Ww) = a(w — wp)” + o(|jw — wy|”) as w — wy.
Integrating it follows that for & with 0 < |x — ©(wp)| < 1 the indicatrix
O(t,x) := t{w € B : t(w) = x}
satisfies
(4.16) O(t,x) > 2, or O (t ,x) > 1, if wy € B or wy € 0B, respectively,

provided that wj is a branch point of 7.
A topological argument yields Q C ©(B) as t maps 9B weakly monotonically and
continuously onto I". Therefore we also have

(4.17) O(t,x) > 1 for x € Q.

Let 7 be a diffeomorphism of B onto Q, for instance the classical conformal mapping
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7o in the complex plane. Then

A(D) < Alzg) = J /o@ dada?.

Q

On the other hand the area formula yields

Alr) = J O(z,x)+/g(x) datdac?,

R?
and so
(4.18) J O(t, x)\/ g(x) delda?® < J V() dx'da?.
RR? Q

On account of (4.16)-(4.18) it follows firstly that r has no branch points on B whence
Dr(w) # 0 for all w € B. Thus 1|, is 1-1 and yields a homeomorphism from 9B onto
I'. Secondly, 7| is open; hence it follows from (4.17)-(4.18) that O(r,x) = 1 for x € Q
and O(t,x) = 0 for x € R*\ Q. Consequently, 7 : B — @ is a diffeomorphism and,
therefore, a conformal mapping from B onto 2 which satisfies the Beltrami equations
4.7). If we merely assume I" € C1* and gjk € C%(Q), 7 turns out to be a conformal
mapping from B onto @ which is of class C**(B, R?). This follows from the preceding
result by approximating I" and gj;. by C*-data I'y, gj;., and applying a priori estimates
for the corresponding mappings 7, and their inverses 7, which satisfy similar

Beltrami equations (cf. e.g. Schulz [48], Chapter 6; Jost [28], Chapter 3; or Morrey
[42], pp. 373-374). O

Corollary 4.2. The conformal mapping t: B — Q in Theorem 4.1 is un-
iquely determined if we fix a three-point condition on 0B, and it is a minimizer of
both A and D in the class Z (I').

A slight modification of the preceding reasoning combined with a suitable ap-
proximation argument yields

Theorem 4.3. If I is a closed Jordan curve in R* and gjk € Cm-L4(R?) for
some m € N and a € (0,1), then there is a homeomorphism t of B onto Q which
yields a conformal mapping of class C™(B, R?) from B onto Q.

Corollary 4.4. IfX:B — R", n>2, is an immersed surface of class C"™*,
m € N, a € (0, 1), then there exists an equivalent representation Y := X o twhich is
conformally parametrized, i.e., |Y,|* = |Y,%, Y, - Y, = 0.
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Proof. X(x!',2*)witha = (x!,2?) € B induces the Riemannian metric (g;;,) with
g1 = Xxl 'Xx17 J12 = go1 = Xxl -sz, g2 = sz -sz

on B which is of class C" 1. If we now determine the corresponding conformal
mapping 7 from (B, ds,) onto (B, ds) determined by Theorem 4.1, then Y := X o r has
the desired property. O

Remark 4.5. Our method of directly minimizing the area functional can also
be used to prove the global Lichtenstein theorem for two-dimensional Riemannian
manifolds homeomorphic to the standard sphere S? C R® as carried out in [24],
pp- 8, 9, or to treat multiply connected domains, see [25].

We note that the results of this section are well-known; we refer to J.C.C. Nitsche
[43], §60, for references to the literature. The reader finds more recent contributions
in Jost [27], [28], Sauvigny [47], and Schulz [48]. F. Tomi has pointed out to us a proof
that operates with monotonic transformations and is closely related to the varia-
tional method used by Jost. The first result on conformal representations was proved
by GauB3 [11]; the final result is due to Lichtenstein [32].

5 - Holder continuity of minimizers of Cartan functionals

Now we want to exhibit a condition guaranteeing Hélder continuity of solutions to
the Plateau problem “F — min in Z°(I", K)” that are established by Theorem 2.4.
Let K be a closed set in R", » > 2, and denote by E” the plane

{ye R": ™ =0,...,4" =0}

with 2 < v < n. We call K v-quasiregular if there are numbers d > 0 and 11, A2 with
0 < 41 < A2 such that the following holds:

For any xy € K there are a neighbourhood U (xy) containing the n-dimensional
ball Bi(xo), a closed convex set K*(xo) in K, and a bi-Lipschitz mapping h of
KnU(xg) onto K*(xy) with the inverse g :=h~' such that the Gram matric
G := Dg" - Dg of g satisfies

(5.1) M|EP < E-Gy)é < A|éf* for y € K*(x) and & € R™.

Via Nash’s theorem (in the form of Gromov) any complete Riemannian manifold
can be embedded smoothly as a closed subset of a Euclidean space R". Therefore the
homogeneously regular Riemannian manifolds in the sense of Morrey ([42], p. 363)
can be viewed as v-quasiregular sets which are a kind of v-dimensional Lipschitz-
submanifolds of R”, 2 < v < n.



24 STEFAN HILDEBRANDT and HEIKO VON DER MOSEL [24]

Theorem 5.1. Let K be a v-quasiregular set in R", 2 < v < n, and suppose
that F(x,z) is the Lagrangian of a Cartan functional

FX) = JF(X,Xu A X)) dudv
B

satisfying conditions (H), (D), and (C) of Section 2. Then every solution X € ¢ (I', K)
of the Plateaw, problem “F — min in ¢ (I, K)” with

() X7 = |X,[°, X, -X,=0

is Holder continuous in B and continuous on B. If I satisfies a chord-arc condition
then X is even Hélder continuous on B. If one fixes in addition a three-point con-
dition

(*) X(wl):Pla fOT i:1a273a

and if I" respects a chord-arc condition (with respect to (x)), i.e., if there is a constant
L >1 such that for all points P,Q € I' which can be connected by a subarc
I'(P,Q) C I' containing at most one of the three points P; in (x), one has

Z((P,Q) < L|IP-Qq|,

(here Z(I'(P, Q)) denotes the length of the subare I'(P,Q), then one obtains: Every
minimizer X € ¢*(I", K) s of class C**(B, R") wheve the Hélder seminorm depends
only onn,d, L, 21,22, m1, me, I', and the mutual distances of the parameters w; and
points P; in (%).

Proof. We pick some wy€ B and transform X on the disk Br(w)
= {w e R%: |w—wo| < R} with R := 1 — |wy| into polar coordinates p, § centered at
wy; denote the transform of X by Z. We can assume = is represented by a function
Z(p, 0) which is absolutely continuous in p € [, R] for any ¢ € (0, R) for almost all
0 € [0, 2x], and absolutely continuous in 6 € R for almost all » € (0, R). We can also
assume that this representative satisfies Z(p, 0) € K for (p, 0) € (0, R) x R. Then the
function @ : (0, R) — R defined by

B(r) = J VX dudv

B,-(wy)

(12,F +p 2120 ) pdpdo

O ——
o%g’?

is absolutely continuous, and its derivative satisfies

r®d'(r)/2 =¥(r) a.e. on (0,R)
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with
2n
W) = J 12,0, O dO
0
if we take (xx) into account. Here ¥(r) is defined and finite for » € (0, R) \ ./~ where
V" is a one-dimensional null set.
() If¥(r) > d?/n then
(1) < BR) < nd *PR)¥(r)
and so
O(r) < nd DX )rd (r).
(i) If¥(r) < d?/n then, for any 6y, 0; with |0; — 6y < 7 we obtain
0
J Z(r,0)do
0o

|2(r, 0;) — Z(r, 0p)] < < VaPe)'? < d.

Setting x¢ := Z(r, 6y) we obtain
{E(r,0):0<0<2n} C KNBglxy) C KN U(xy)
and
MK N U(xo)) = K* (o)

where K*(x) is a convex set in .

Now we consider the harmonic mapping H : B,(wy) — E' with the boundary
values Z(0) := ME(r, 0)) C K*(xp) which are of class H2((0,27), R"). The maximum
principle implies g(H(w)) € K*(x) for w € B.(wp) and g o H € H“2(B,(wp), R"), as
well as g(H(w)) = Z(r, 0) for w = wy + re”’. Setting Y (w) := g(H(w)) for w € B,(w)
and Y(w) := X(w) for w € B\ B,(wy) we obtain a surface Y € #(I',K). Then
F(X) < F(Y), and consequently

mlpBr(wo)(X) :mlABr(wU)(X) < fBT(wo)(X) < fB,a(wo)(Y)

<o Ap,w)(Y) < maDp, ) (Y).

It follows that

D) < mytmy J \VY|2dudv§mflmz/12 J IVH? dudv,

B,(w) By-(wo)

taking (5.1) and VY = g,(H(w))VH(w) into account.
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Moreover,
2n
|VH? dudvy < J |Z(0)F do,
B,(wy)
and
2n 2n
M J 1Zy(O) do < J |Zo(r,0)[2dO = P (r) = rd (r)/2
0 0

by (6.1) and Zy(r, 0) = g,(Z(0))Zy(0). Therefore,
D) < A m dgmerd (r) /2.
Combining both cases (i), and (ii), we obtain
d(r) < Mrd'(r) for a.e. r € (0,R)
for M := max{(2/1m1) ems, nd 2D(X)} which implies

J VX2 dudv < (%)Za J |VX|2dudv§2D(X)(£)2a

B,(wo) Br(wo)

for 0 < » < R with a := @M)L. Morrey’s “Dirichlet growth theorem” then implies
X € C*(B,R™), and so the first assertion is proved.

By Lemma 3 in [18] we also obtain X € C°(B, R").

The last assertion can be deduced as follows:

Fix wy € B, and set for » € (0,2)

C, = 0BNB,(wy), K,:=BnNoB.(wy), S,:=BnNB.(w).
If C,. # (), we introduce polar coordinates about wy, denote the endpoints of C, on B by
zg’") = wy + 1%, i=1,2,

where 0 < 61(r) < 02(r) < 27

Now we claim that the three-point condition (x) and a suitable version of the
Courant-Lebesgue Lemma (cf. [8], Vol. I, Prop. 2, p. 242) implies the existence of
some radius R = R(I",my,mg, (%)) depending on I',mi,mg and the minimal
mutual distances of the w; on OB and of the P; on I' in (%), such that for each
r € (0, R) at most one of the points Py, Pe, P3 is contained in Z(C,.).

Indeed, by the classical isoperimetric inequality for harmonic surfaces by Morse-
Tompkins (cf. [6], pp. 135-138 in connection with Riemann’s mapping theorem) and
the weak monotonicity of X along 9B one has for H € Z(I") with 4H = 0 in B and
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H — X €H '2(B, R"):
1 1
Dp(X) = Ap(X) < — Fp(X) < — Fp(H) < "2 Ag(H)
ma ma ma

2 2
< M J dH| | = "2 J x| | =2 o2,
4m1 4%1
OB OB

(5.2)

4WL1 )

Since I is homeomorphic to 9B we find for any given ¢ > 0 some number A(¢) > 0
such that for all P,Q € I" with 0 < |P — Q| < A(¢) the shorter subare I'1(P, Q) con-
necting P and @ on [I" satisfies

diam I'1(P, Q) < e.
Choosing first
0<e<e ::%£|ijPk|

we guarantee that
¢ [{PL P PN PQ)| <1
for all pairs P, Q € I satisfying 0 < |P — Q| < A(e). With Jy € (0,1) satisfying

24/69 < H;llgl "M)j - ?/Uk|
J

we choose J € (0,0y) depending on &, m;, mg and ~4(I") such that by the Courant-
Lebesgue Lemma there exists p € (6, V) such that by (5.2)

X (1) — X(z)| < oseg X < \/&T'DB(IX) - \/2nm2
logs 62

T2 (1) < Ae).
my log s

Therefore,
t[(P1, Po, Po} 0 M(X ), X)) | < 1.
By the three-point condition (x) and the choice of Jy we have
i [{wl,wz,ws} ﬂm] <1,
and therefore
£ [{P1 P2 Py} N X(C))| <1,

i.e., since X/, is weakly monotone,

X(CJ) - X(Cp) = Fl(X(z(ll)),X(Z;ﬂ)))
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Setting R := 6 = d(my, mg, £ (), &) € (0, 9) we arrive at

ﬁ“PhP%RﬁﬂXKM}glﬂwaHrewjﬂ

which proves the claim.
Notice that for almost all » € (0, 2) the mapping Z(r, .) is absolutely continuous in
0 with
02(r)
J |[dX| = J |Zg| dO < o,
K, 01(r)

and such that ¢'(r) exists for the function
9(p) := 2Ds ) X), p € (0,2).

The chord-arc condition on I” now implies

LX) < LX) —X(z9)| <L J |dX| for a.e.r e (0,R).
K,

This last inequality is trivially satisfied if C, = (). Consequently,

(5.3) J [dX| <1+ L) J |dX| for a.e. r € (0,R).
Sy(wo)) K,

For
Oa(r)

v)i= | 120000 do
01(r)
one has again by conformality

w(r) =r¢'(r)/2 for a.e. r € (0,2).

We distinguish two cases as in the proof for the interior case.
() If w(r) > d?/@2n), then

o(r) < s

= DpXrg (),

and
@ii) if w(r) < d?/(2n), then for almost all » € (0, R) and for any

0<0:i(r)<O<0 <(r)<2n
we obtain

\Z(r,0) — Z(r,0)| < V2r(p(r)'/? < d.
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In this case we can use a harmonic extension analogous to the interior case to obtain
for S,(wy) = B,(wy) N B by (5.1)

m m
Ds () X) < —2 As o) (¥) < —2 (N g As, oy (H),
n (6.1 1M

where c(V) is a constant depending only on the dimension N = n(n — 1)/2. The
classical inequality for harmonic surfaces by Morse-Tompkins in conjunction with
(5.1) and (5.3) then leads to

2
m
,DS,«(wl))(X) < C(N)}Z 4_2 ( J |dH|>
m1
98- (wy)

2
_c(N);,2ﬂ< J |dZ|>
4WL1
98, (wy)
p 2
oMo
< o(N) 222 J dx
G.1) 4/117%1( laX]
08, (wo)

2
G3) (1\7)4/1217”2 (1+L)2< J |dX|>
K,

O2(r)
w>22a+m mewﬁw7
01(r)

that is, together with Case (i),
p(r) < Mrg/(r),

where

77,'227’)@2
2 1+ Ly )

M= max{c(N) DB(X)}

This implies X € C**(B, R") for a := @M) " O

Remark 5.2. Suppose that X, € #'(I') yields a bi-Lipschitz mapping of B onto
K := Xo(B). Then K is 2-quasiregular and X, € # (I, K). By Theorems 2.4 and 5.1
there is a minimizer X of A in ¢ (I", K) which is of class C°(B, R") N C*“(B, R"™) for
some a € (0, 1) and satisfies |Xu|2 = |Xv|2,Xu - X, = 0. By atopological argument we
obtain X(B) = K whence

O0X,B,x)>1 forall x € K.
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Moreover,

J@@jimd%%mzA@ng@mzJd%ﬂm,
K K

and so it follows that
OX,B,x) =1 for .77%-almost all x ¢ K.

If one could prove O(X, B,x) = 1 for any x € K it would follow that X is a homeo-
morphism from B onto K whence X = X o 7 for some homeomorphism 7 from B onto
itself,i.e., X ~ X,. However, it is not even clear that X ~ X, i.e. that 6(X, Xj) = 0 (cf.
Section 3). On the other hand, by Corollary 3.7 there is a mapping
X* e (I NCYB, R")with X* ~ X, which satisfies the conformality relations. So one
is tempted to conjecture that X* ~ X (and even X* = X if both mappings are nor-
malized by the same 3-point condition), but it is not clear to us whether this is true.

6 - Dominance functions and higher regularity

In this section we shall first discuss the notion of a dominance function for a
parametric Lagrangian, i.e., for the Lagrangian of a Cartan functional. Of particular
importance are so-called perfect dominance functions; we shall present a sufficient
condition guaranteeing the existence of such a function. Finally we state some
regularity results about solutions of the Plateau problem for a Cartan functional
provided that its Lagrangian possesses a perfect dominance function.

As in Section 2 let F' € CO%(K x RY) be a “parametric Lagrangian” whose values
F(x,2) are defined for points € K and z € RY where K is a closed set in R” and

N = %n(n —1),ie,

(H) F(x,tz) =tF(x,z) for t >0 and (x,2) € K x RY.
Furthermore, we assume condition
(D) male| < Fx,2) < mglz| for (x,2) e K x RY

with 0 < my < me.
The associated Lagrangian f(x,p) for F(x,z) is defined by

fGe,p) :=F(x,p1 Aps) for e K and p = (p1,ps) € R" x R" = R*".
Note that the algebraic surface

II:={(p1,p2) =p € RZ" :p1 Ape =0}
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is the singular set of f(x, p) whereas F(x,z) is singular only at z = 0. Let us also
introduce the algebraic surface

Iy = {(p1,p2) = p € R*" : [p1f” = [paf*, p1 - p2 = 0}.
We observe that
Innlly= {0}

Definition 6.1. () A function G € C°K x R?*") is called a dominance
function for the parametric Lagrangian F with the associated Lagrangian f if the
following two conditions are satisfied:

(6.1) fle,p) < Ge,p) for all (x,p) € K x R*",

(6.2) fle,p) = Gx,p) if and only if p € I,.
(ii) G 1s said to be positive definite if
(6.3) wpl? < Glae,p) < wolp® for all (x,p) € K x R*™

and some constants yy, s with 0 < u; < py.
(iii) G s called quadratic if

(6.4) G, tp) = t2Gx, p) for t > 0 and (x,p) € K x R¥".

For example, the area integrand
(6.5) AQR) = |7|

with the associated Lagrangian

(6.6) ap) = [p1 Apo| =\ Ip1 Plpof? = (pr - po?
has the dominance function
(67 D)= bl = mif + 5 el
Correspondingly the Lagrangian

E@,2) = 2|+ Q) - 2
with |Q(z)] <1 — ¢ for z € K, d > 0, has the dominance function

1
E*(x,2) = §|p|2 + Q) - p1 A p2.

In fact, both D(p) and E*(x, p) are quadratic, positive definite dominance functions
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for A(z) and E(x, 2), respectively. As Morrey ([41], pp. 571-572) has pointed out, every
F satisfying (H) and (D) has a quadratic, positive definite dominance function, e.g.,

1 1
(68)  G@.p) = {f*@.p) + g omn +mP L (paf — [ + 1 - p2’ 1}

which satisfies (6.3) with gy :=m1/2, yy :=mg/2, In general, however, a dom-
inance function will not be of class C% on K x R*" because I7 will be a singular set.
Only if F" has a special structure as in the cases A and £, there exist dominance
functions which are quadratic polynomials in p and therefore differentiable.
Basically the “Riemannian version” of £* is the only smooth dominance function
whose integral

£X) = JE’(X, VX) dudv
B

is conformally invariant (cf. Griiter [14]).
Morrey proposed to prove higher regularity of conformally parametrized mini-
mizers X for Cartan functionals F by using the integrals

X)) = JG(X, VX) dudv
B

of dominance functions G for F' via the identity

(6.9) inf = inf G
7 (I K) 7 (I K)

which is an immediate consequence of Theorem 2.4 as we shall see below.
However, in order to establish higher regularity of minimizers of G we need that
G(x, p) is of class C?; but this will usually not be true since G(x, p) is singular on
K x II, except for rather special Lagrangians F'(x, z). Still there is a very special
class of dominance functions G(x,p) that are singular only if p = 0; these will be
called perfect if they are also elliptic in p. Before we give the precise definition let
us first verify (6.9).

Theorem 6.2. Suppose that G(x,p) is a dominance function for the
Lagrangian F(x, z) satisfying (H), (D), (C). Then any minimizer X of Gin ¢ (I", K)
18 a conformally parametrized minimizer of F in ¢ (I', K). Conversely, any con-
SJormally parametrized minimizer of F in ¢ (I",K) is also a minimizer of G in
7z (I', K). In particular, equation (6.9) is true.

Proof. (i) We have F < G, and F(X) = G(X) holds true if and only if X is
conformal (i.e. if (xx) is fulfilled). Because of Theorem 2.4 there is an X € # (1", K)
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satisfying (xx) such that 7(X) = inf( x) F. Then
inf 6<gX)=FX)= inf F< inf G.
Z(I' K) 7 (I'.K)

7 (I K)

This implies (6.9). The same argument shows that any conformally parametrized
minimizer of 7 in #'(I", K) is a minimizer of G.
(ii) If X is a minimizer of Gin Z°(I", K) then

inf G=6X)>FX)> inf F= inf G,
7z (I K) Z(I'.K)

7 (I K)
and so

FX)=6X) = zi(?,flf)g = z{?ﬁo}-'
Hence X is a conformally parametrized minimizer of 7 in (1", K). O

Corollary 6.3. If, in addition to the assumptions of Theorem 6.2, K is a
v-quasiregular set in R" (e.g. a smooth compact manifold) then we have

(6.10) inf F= inf F= inf G= inf G,
7 K) 7 K) 7 K) 7 (I K)

where ¢ (I',K) := ¢ (I",K) N C°(B, R™).
Proof. Using Theorem 5.1 we can proceed as above. O
Applying this corollary to F := A, G:=D, K := R" we obtain in particular

Corollary 6.4. One has

(6.11) inf A= inf A= inf D= inf D,
) z) Z() Z(I)

where we have set 7 (I') := 7 (I') N C°B, R").

The “classical Plateau problem” consists in finding a minimal surface (i.e. a sur-
face of mean curvature zero) spanning a given closed Jordan curve I". For rectifiable
I” one usually solves this problem by minimizing Dirichlet’s integral D in the class
# (I'), and then one proves that a minimizer of D also minimizes the areain " (I") by
applying (6.11); see e.g. [6], [8], [27], [43], [44]. To verify (6.11) some special effort is
needed; previously some results on conformal or e-conformal reparametrization of
surfaces were used, and such results were thought to be indispensable, as Courant
has pointed out (see [6], pp. 116-118, and also [44], Chapter VI, as well as [43], §§453-
473.) Hence it seems surprising that such mapping theorems are not needed in our
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approach as we were able to minimize A directly, obtaining conformally para-
metrized minimizers, without the detour via D. Thus (6.11) is a by-product of our
Theorems 2.4 and 5.1. Actually, the second ingredient, Theorem 5.1, can be replaced
by a much simpler reasoning using only classical results on harmonic mappings.
Using this approach the solution of the “simultaneous problem” minimizing .4 and D
becomes a fairly elementary matter, except for the lower semicontinuity result
formulated in Lemma 2.1. Yet, for 7 = A, even this result has an elementary proof
as Klaus Steffen has kindly pointed out to us:

Lemma 6.5. IfX; — X in H*B,R") then
(6.12) AX) < liminf AKX)).
j—00

Proof. First we note the identity

(6.13) AZ) = sup{qu (G N Zy) dudv : ¢ € C(B,RY), 4] < 1}
B

which holds for any Z € H'*(B,R") and N = Jn(n — 1). We claim that for proving
(6.12) it suffices to show

(6.14) lim J¢ (X A X ) dudy = J¢ - (X A X,) dudy
J—0

B

for any ¢ € C;°(B, R") with |¢| < 1. In fact, (6.14) and (6.13) yield

J ¢ (X, AX,)dudv = lim J - (X;, A X;,) dudv
)=
B B

< liminf [ sup{J‘P Xy ANXj)dudv - ¥ € CF(B, RM), 7| <1}]
! B

= lim inf A(X}).
j—oo

Taking the supremum over all ¢ in C3°(B, RY) with |¢| < 1 we arrive at (6.12).
Thus it suffices to verify (6.14). Let Z € C3(B, R"); then for ¢ € Cy (B, RY) an
integration by parts yields

(6.15) Jqﬁ (T N Zy) dudv = — %J (¢, (ZNZy)+ ¢, (Zy A Z)] dudv.
B B

Using a suitable approximation device this identity follows as well for any
Z € HY2(B,R™).
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Suppose now that X; — X in H**(B, R"). By Rellich’s theorem we obtain X; — X
in L?(B,R"™), and so (6.14) can be derived from (6.15). O

After this excursion to the classical Plateau problem for minimal surfaces we
return to the general Plateau problem

“F— min inz{)”

for Cartan functionals. We want to derive higher regularity results for minimizers
via dominance functionals G using (6.10). In the sequel we restrict our attention to the
case K = R" although the discussion would verbatim carry over to the case of a
smooth v-dimensional manifold K in R", v > 2.

Definition 6.6. A function G € CO(R" x R*") N C3(R" x (R¥" \ {0})) is called
a perfect dominance function for the parametric Lagrangian F if it is a quadratic,
positive definite dominance function for F which satisfies the following ellipticity
condition:

For any Ry > 0 there is a constant 1q(Ry) > 0 such that

(6.16) & Gpplae,p)& > ig(Ro)\ﬂz for x| < Ry and p,& € R p 0.

This condition means that

Gy @ DEEG > i ROEE,

Here and in the sequel we use the convention: Greek indices run from 1 to 2 and
Latin ones from 1 to n; repeated Greek (Latin) indices are to be summed from 1 to 2
(from 1 to n).

Note that a perfect dominance function G(x, p) may be singular only at p = 0.
Morrey found a way to construct a quadratic, positive definite dominance function
G for F provided that F(x, z)is C? for z # 0 and strictly convexin z, in the sense that
F(x,2z) — /2| is convex in z for some constant A > 0. However, Morrey’s con-
struction only leads to rank-one convex dominance functions G(x, p); these are of
no use since Gp,(x, p) is not continuous, and so Garding’s inequality cannot be
derived for G, = (G j k) as the proof uses contlnulty, in fact, the inequality does
not hold for a general/rank -one convex matrix (A ) with coefficients that are
merely of class L>. However, by extending and strengthemng Morrey’s con-
struction the authors were able to prove the following result (see [23], Theorem 1.3
and Section 2):
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Theorem 6.7. Suppose that F* is of class CO(R" x RM) N C2(R" x (RN \ {0})
which satisfies (H) and (D) with constants mj, ms3, t.e.,

0 <m} < F*(x,2) <m} for (x,2) € R" x RN with || = 1.
Furthermore assume that F* satisfies the parametric ellipticity condition
I2|C - F (e, 2)C > AT — |2 2z - 0P for @ € R",2,{ € RN with 2 #0
with some constant 2* > 0. Then the parametric Lagrangian
F(x,z) .= F*(x,2) + k A®z)
with A(z) := |z| possesses a perfect dominance function provided that
(6.17) k > 2[m; — min{A", m]/2}].

By a straight-forward computation one derives

Corollary 6.8. Suppose that F(x,z) is of class C? for z # 0 and satisfies (H),
(D), and

(6.18) 21C - Foaar, 20 > AL — J2] 2 - O]
forxeR" 2z (e RN with z = 0 with some constant 4 > 0. Moreover suppose that
(6.19) 5 -min{A,m1} > 2ms.

Then F possesses a perfect dominance function.

Remark 6.9. If F(x,z)is in C? for z # 0, then the convexity of F(x,z) in z is
equivalent to the condition

Furthermore, for A(z) = |z| we find

210 - A @) = L — |2 - OF.
Therefore the convexity of F(x,z) — 1A(z) for some 1 > 0 is equivalent to the el-
lipticity condition (6.18). Here we note that |z|F,(x, 2) is positively homogeneous of
degree zero, and also F'.(x, z) is homogeneous of degree zero. By Euler’s relation it
follows that F..(x,2)z = 0, i.e., z # 0 is eigenvector of F,.(x,z) to the eigenvalue 0.

Hence F,.(x,z) can never be positive definite, and F,.(x,z) > 0 on {z}L is the best
possible that we can hope for. Precisely this assumption is expressed by (6.18).

Because of Theorem 6.7 (or Corollary 6.8) we have a large class of Cartan func-
tionals F with “perfect dominance functionals” G which include A as well as the
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“capillarity functionals” &, but is much larger than these. Therefore the following
results proved by the authors in [20] and [22] are new and might be of interest:

Theorem 6.10. Suppose that F € C*(R" x (RN \ {0})) satisfies (H), (D), (C),
and that F possesses a perfect dominance function G. Then any conformally
parametrized minimizer X of F in Z(I') is of class leo’g(ﬂR")ﬂClv“(B,R")

for some ac(0,1). If. in addition, I is of class C* then one even has
X € H**(B,R") N C**(B, R") with

||X||H2-2(B,R”) + ||X|C1.u(§.‘|‘>\”) < C(FvF)

where the constant c(I", F) only depends on I" and F if X is normalized by a three-
point condition (x).

For the proof of Theorem 6.10 we note that by Theorem 6.2 any conformally
parametrized minimizer X of F is also a minimizer of the dominance functional G
corresponding to G,

G2) = JG(Z, VZ)dudv
B

for which the first variation

0G(Z,¢) = J[Gx(Z, VZ) ¢+ Gy(Z,VZ) - Véldudv
B

exists if ¢ € HY2(B, R") N L=(B, R"). Therefore we obtain

5G(Z,8) = 0 for & H'(B,R"),

and the difference-quotient technique yields the interior regularity result. A subtle
point in the proof is how to deal with the singularity of G, (x, p) at p = 0; here one
applies a suitable approximation device. Much more involved is the proof of the
regularity of X at the boundary. Here one can no more proceed as in the case of
minimal surfaces (see [8], vol. I, Chapter 7) as the system of Euler equations has no
longer a principal part in diagonal from, and Plateau’s boundary condition is very
nonlinear. New techniques had to be devised to tackle this problem; cf. [22].

Remark 6.11. C.B. Morrey might have had a regularity result in a similar
spirit in mind as he indicated in [44], pp. 363-364. Yet for several reasons we do not
see why the approach that he sketched might work.
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Remark 6.12. We note that, contrary to dG(X, ¢), the first variation 07 (X, ¢)
of a Cartan functional F does not exist, except if X is conformally parametrized; cf.
R. Jakob [26], pp. 405-407, Proposition 3.3 and Corollary 3.4. Therefore the notion of
an unstable F-extremal only makes sense for conformally parametrized surfaces.
We refer to the results of M. Shiffman and R. Jakob stated in Section 7.

7 - Further remarks and open questions

So far we have only discussed absolute minimizers of Cartan functionals for
Plateau boundary conditions. Semifree boundary conditions were treated in [23],
and the Douglas problem for multiply connected surfaces bounded by several Jordan
curves was investigated in [30] and [31]. One may also ask the question whether there
is some kind of Morse theory, or if it is at least possible to prove the existence of
unstable extremals, say, in the “mountain pass situation”. There seem to be no re-
sults with regard to the general question, whereas Shiffman in his very interesting
paper [49] studied the mountain pass case and stated the following result (see [49],
p. 573, Main Theorem 16.2):

If the rectifiable Jordan curve I' of type 7% bounds two extremal surfaces which
are proper relative minima, then I bounds an unstable extremal surface for F.

Here F is assumed to be of the form (1.1) with

(7.1) F(x,z) .= F*(2) + k7|,
where F™* satisfies (H), (D), and (C), as well as
(7.2) k > max F*,

S2

where n = N = 3.

Unfortunately, Shiffman’s reasoning is not stringent, as pointed out by R. Jakob
(see [26], p. 403), and so this result is in doubt. Nevertheless, Shiffman’s paper
contains quite ingenious ideas which, combined with techniques developed by R.
Courant and E. Heinz, enabled R. Jakob to prove a somewhat stronger version of the
above stated theorem for polygonal boundaries. Moreover, he recently obtained
results for general rectifiable contours that satisfy a chord-are condition.

We further remark that, in the context of geometric measure theory, much better
results than our theorems in Section 6 are known. F.J. Almgren, R. Schoen and L.
Simon [2] proved that any F-minimizing two-dimensional integral current of codi-
mension one is a smooth, embedded surface away from its boundary. (Much less is
known about their boundary behaviour: R. Hardt [15] showed smoothness at the
boundary if I" is smooth and extreme, i.e., if I" lies on the surface of a convex body).
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However these current solutions can be quite different from our solutions because of
a peculiar phenomenon discovered by J.E. Taylor [54]:

If F e CO(R®) N C3(R? \ {0}) is an essentially noneven elliptic parametric
Lagrangian independent of the spatial variable, then there exists an oriented closed
analytic Jordan curve I' on the sphere S? and a Lipschitz immersion X of the
oriented disk (which is not an embedding) having I” as boundary such that the value
F(X) of the corresponding parametric functional F is less than the value F(Z) of
any Lipschitz embedding Z of the oriented disk having I as boundary.

Here, a parametric Lagrangian F(x, z) is called essentially noneven if it cannot
be written in the form F(x,z) = cff’(ac,z) + Q(x) - z, where ¢ > 0, F is even in z, i.e.
F(ac, 2) = F(ac, —2z), and where div @ = 0. Because of this result one cannot necessa-
rily expect that minimizers in the class of immersions, and even more so minimizers in
the more general class considered in our Theorems 2.4, 5.1, and 6.10, are as well-
behaved as minimizers in the class of embeddings, even if they are of the type of the
disk. In view of this result it is also not clear how the minimizing surface obtained in
Theorem 2.4 relates to the smooth embedded disk bounded by an extreme boundary
curve I" and minimizing a Cartan functional with an even Lagrangian, whose ex-
istence was established by B. White [56] with a Perron-type method.

We close our survey with some open

Questions. 1. Can one prove for conformally parametrized minimizers (ex-
tremals) X of a Cartan functional an asymptotic expansion of the form

Xow(w) = A(w — wy)” + o(|jw — wo|”) as w — wy
with b€ N and A€ C"\ {0} at every branch point wy € B of X? (Here
Xy = %(Xu —1X,), and wy is called a branch point of X if X,,(wy) = 0.)

A positive answer will certainly be useful if one wants to tackle the next question:

2. Can one prove higher regularity properties for conformally parametrized
minimizers of F than those stated in Theorem 6.10?

3. Can one prove regularity of any conformally parametrized extremal
X e z(I')of Fif F and I' are sufficiently smooth?

4. For which parametric Lagrangians F' can one find perfect dominance func-
tions? Possibly for any F € C2(R" x (RN \ {0})) satisfying (H), (D), and (6.18)?
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Abstract

This survey article presents the existence and regularity theory for Cartan functionals,
i.e., for general parameter invariant double integrals defined on parametric surfaces with
arbitrary codimension. We also discuss the closely related problem of finding globally con-
Sformal parametrizations for surfaces or two-dimensional Riemannian metrics by direct
minimization of the area functional as a particular Cartan functional. With this new ap-
proach we also establish conformal representations of Fréchet surfaces and provide an al-
ternative proof of Lichtenstein’s theorem on globally conformal mappings.
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