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LEONARDO ZA P P O N I (*)

Some arithmetic properties of Lamé operators

with dihedral monodromy (**)

Introduction

Lamé operators are a particular class of second order Fuchsian differential
operators on the projective line. In some special cases, they admit a complete
system of algebraic solutions, i.e. they have a finite monodromy. This last question
has been intensively studied by F. Baldassarri, B. Chiarellotto, B. Dwork and mo-
re recently by F. Beukers, S. Dahmen, R. Liţcanu, A. van der Waall among the
others. It turns out that there are finitely many equivalence classes of operators
with fixed finite monodromy group and that these are automatically defined over
a number field. In particular, there is a well defined action of the absolute Galois
group on these objects. The enumeration of Lamé operators with finite (projecti-
ve) monodromy has been one of the main motivations in this topic. Recently, a
deep link with Grothendieck’s theory of dessins d’enfants appeared; this point of
view has been successfully adopted by R. Liţcanu in [10], [11], allowing an explicit
and combinatorial enumeration (see also [7]).

In this paper, we focus on the case of Lamé operators with exponent n41 ha-
ving finite dihedral projective monodromy group. In §1 we give some basic defini-
tions, by introducing the field of moduli of a Lamé operator, which is the smallest
field of definition and is invariant under equivalence. In §2, we translate a crite-
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rion of F. Baldassarri [2] in terms of generalized jacobians. This criterion asserts
that the existence of a Lamé operator with dihedral monodromy of order 2N is
related to the existence of a 2N-torsion point on an elliptic curve with some extra
properties. In §3, inspired by the work of R. Liţcanu, we briefly describe the cor-
respondence between the set of Lamé operators with dihedral monodromy and a
particular class of dessins d’enfants. We then give two direct applications, namely
the finiteness of the set of equivalence classes of Lamé operators with fixed pro-
jective monodromy and the fact that the fields of moduli of such operators are
number fields. In §4 we prove, following a celebrated result of L. Merel [14], that
there exist finitely many equivalence classes of Lamé operators with dihedral mo-
nodromy and field of moduli of bounded degree. We then investigate more closely
the behaviour of the field of moduli, by taking advantage of some recent develop-
ments on the study of (semi-stable models of) covers between curves. First of all,
a result of S. Beckmann [4] (see also [6], [8], [20]) implies that it is unramified out-
side the primes which are less than or equal to half the order of the (dihedral)
monodromy group. In §5 we study the case of dihedral monodromy of order 2p ,
where p is an odd prime number. Fist of all, we show that in this case the field of
moduli is effectively ramified at the primes lying above p (by giving a lower bound
for their ramification index). We then prove that the elliptic curve which is natu-
rally attached to the operator always has potentially good reduction at these pri-
mes and we give a supersingularity criterion for the reduced curve. The first of
these results follows from [23] but it can also easily be deduced from [20], while
the last criterion needs a more accurate investigation of the action of the Cartier
operator (which is done in [24]). Finally, we show that the elliptic curve admits a
smooth model at a prime ] of the field of moduli lying above p if and only if the
ramification index of ] is large enough. We then illustrate the results with the de-
scription of the Lamé operators with dihedral projective monodromy of order
14 .

This paper is the result of a work which is still in progress: for example, some
formal patching techniques allow to completely determine the ramification index
of the primes of the field of moduli lying above p (in the case of dihedral monodro-
my of order 2p). These results being still incomplete, we decided not to include
them.

I would like to thank the organizers and the participants of the Secondo Con-
vegno Italiano di Teoria di Numeri, held in Parma during the month of Novem-
ber 2003. A special thank goes to A. Zaccagnini for his welcome and his local or-
ganization and to R. Liţcanu for the instructive discussions and comments on the
subject.
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1 - Lamé operators and their fields of moduli

A Lamé operator is a second order differential operator on the projective line
defined by

Ln 4Ln , g2 , g3 , B 4D 2 1
f 8

2 f
D2

n(n11)x1B

f

where D4d/dx , f (x) 44x 3 2g2 x2g3 �C[x] with D4g2
3 227g3

2
c0 and B�C .

Let E be the elliptic curve defined by the affine equation y 2 4 f (x), denote by 0E

its origin (the point at infinity) and by s the canonical involution s(x , y) 4 (x ,
2y). We say that the operator Ln is associated to E and that B is the accessory
parameter. Two Lamé operators Ln , g2 , g3 , B and Ln , g28 , g38 , B 8 are equivalent (or sca-
lar equivalent, following [5]) if there exists u�C* such that g284u 2 g2 , g384u 3 g3

and B 84uB . In this paper, we are mainly concerned with the case n41 but ma-
ny results can be carried over to the general case.

L e m m a 1. There is a natural bijection between the equivalence classes of
Lamé operators L1 and the isomorphism classes of pairs (E , P) where E is an
elliptic curve and Pc0E is a point on it.

P r o o f . Given a pair (E , P), we may suppose (since we are working up to iso-
morphism) that E is given by a Weierstrass model y 2 44x 3 2g2 x2g3 ; we then
associate to it the Lamé operator L1, g2 , g3 , x(P) . Conversely, given L1 4L1, g2 , g3 , B ,
we consider the pair (E , P) where E is the elliptic curve associated to L1 and P is
one of the two points of E for which x(P) 4B . One easily checks that equivalent
Lamé operators correspond to isomorphic pairs and vice-versa. r

The field Q(g2 , g3 , B) is the field of definition of the operator L1 . The field of
moduli K of L1 is the intersection of the fields of definition of all the Lamé opera-
tors equivalent to it. It contains the field Q(j), where j41728g2

3 /D is the absolute
modular invariant associated to the elliptic curve and one can easily prove that K
is a actually a field of definition. More explicitely, we find K4Q( j , j1 , j2 , j3 ),
where we have set j1 4B 4 g2 /D , j2 4B 2 g2

2 /D and j3 4B 3 g3 /D . It is possible to de-
fine the field of moduli of a pair (E , P) which coincides with the field of moduli of
the corresponding Lamé operator (following Lemma 1).

R e m a r k 2. The above lemma asserts that equivalence classes of Lamé ope-
rators bijectively correspond to the C-rational points of the moduli space M1, 2

(the marked point 0E is implicitely given in the definition of E). The field of moduli
of an operator is just the field of definition of the corresponding point.
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2 - Dihedral projective monodromy and generalized Jacobians

Let E be an elliptic curve defined by a Weierstraß equation, as in §1. Recall
that the generalized Jacobian JY associated to the modulus Y42[0E ] is the quo-
tient of the group of degree zero divisors of E which are prime to 0E with respect
to the group of principal divisors of the type D4 (t) with t invertible at 0E and
v0E

(dt) F1 (we refer to [16] for a detailed exposition on this subject). In particu-
lar, we have an exact sequence of algebraic groups

0 KGa KJYK
p

EK0.

There is a natural map W : EKJY which sends a point P to the equivalence class
of the divisor [P]2 [s(P) ]. It is important to note that even if the composition
piW is the multiplication by 2 map, the morphism W is not a homomorphism of al-
gebraic groups. The following result is a reformulation of the existence criterion
in [2] for operators L1 with dihedral projective monodromy group. As usual, given
a group G , we denote by G[n] its n-torsion subgroup.

P r o p o s i t i o n 3. Let E be an elliptic curve and P a point on it. The follo-
wing conditions are equivalent:

– The Lamé operator associated to the pair (E , P) (cf. Lemma 1) has dihedral
projective monodromy of order 2N .

– The element W(P) has exact order N .

In particular, if one of these condition is fulfilled then P is a 2N-torsion point
on E .

P r o o f . We know from [2] that the operator L1 attached to (E , P) has dihe-
dral projective monodromy of order 2N if and only if P�E[2N] 0E[2] satisfies
the following conditions:

1. The point Q42P�E[N] has exact order N .
2. Setting D4 [P]2 [s(P) ], we have ND4 (t) with v0E

(dt) F2.

In terms of generalized Jacobians, these two conditions can be restated by saying
that D defines a point of exact order N in JZ , with Z43[0E ]. For any P�E[2N],
there exists a unique function t for which ND4 (t) and t(0E ) 41. Since s* D4

2D , we obtain s* t41/t . In particular, setting v4dt/t , we have s* v42v , so
that, if z4x/y is the usual uniformizer at 0E , we get the formal expansion

v4 (a0 1a2 z 2 1a4 z 4 1R) dz .

The condition v0E
(dt) F2 can be restated as v0E

(dt/t) F2 and the above expres-
sion implies that it is equivalent to v0E

(dt/t) F1, as desired. r
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Fix an element t of the upper half plane corresponding to E , so that the ellip-
tic curve is isomorphic to the quotient C/L , where L4Z5tZ . Up to equivalence,
we may suppose that g2 4g2 (t) and that g3 4g3 (t). Let z(z) and h(z) be respect-
ively the Weierstraß z-function and the quasi-period function associated to t

(cf. [18]). The function

u(z) 4z(z)2h(z)

defines a non-holomorphic (but real analytic) map EKP1 .

P r o p o s i t i o n 4. Setting K4Q(g2 , g3 ), the function u defines a map

E(C)tors 0E[2] KK .

Its zeroes correspond to the Lamé operators L1 associated to E with dihedral
projective monodromy group.

P r o o f . Let Div0 (E)8 denote the group of degree 0 divisors on E which are
prime to 0E and consider the map

Div0 (E)8

!
i

ni [Pi ]

KE3Ga

O g!
i

ni Pi , !
i

ni u(Pi )h .

By endowing E3Ga with its natural structure of group, the above map is in fact a
homomorphism and the general properties of elliptic functions imply that its ker-
nel is precisely the group of principal divisors D4 (t) with t�11Y2 , so that we
obtain a real analytic (but not holomorphic, nor algebraic) isomorphism JY`E
3Ga . We know from Proposition 3 that an operator L1 with dihedral projective
monodromy group corresponds to a point P�E(C)tors 0E[2] such that W(P) is a
torsion point of JY . By identifying JY with E3Ga , we find W(P) 4 (2P , 2u(P) )
and thus W(P) �JY , tors if and only if u(P) 40. The fact that u(P) belongs to K for
any torsion point P of E is proved in [1] or in [13]. r

3 - Grothendieck’s dessins d’enfants

Considered as a purely combinatorial object, a dessin d’enfant (litterally, a
child’s drawing) is an abstract (connected) graph endowed with two extra struc-
tures: a cyclic ordering of the edges meeting at a same vertex and a bipartite
structure on the set of its vertices, i.e. a distinction between black and white verti-
ces in such a way that the two ends of any edge never have the same color.
Following the ideas exposed by A. Grothendieck in his «Esquisse d’un program-
me» [9], these objects classify the isomorphism classes of covers of the projective
line (over C) which are unramified outside the points Q , 0 and 1 . This correspon-
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dence is obtained via the topological theory of the fundamental group. The degree
of a dessin d’enfant is the number of its edges, which coincides with the degree of
an associated cover.

A rigidity criterion of A. Weil [19] asserts that each isomorphism class of étale
covers of P*4P1

C 0]Q , 0 , 1( has a representative defined over Q, on which the
absolute Galois group GQ 4Gal(Q /Q) acts in a natural way. Such an action is com-
patible with the notion of isomorphism and induces a Galois action on the set of
dessins d’enfants which translates the action of GQ on the algebraic fundamental
group of P*. It is then possible to introduce the field of definition (usually called
field of moduli) of a dessin d’enfant, which in most of the cases is the smallest
field of definition for the associated covers. Its degree is just the number of Galois
conjugates of the dessins d’enfant.

In the following, we call tree a dessin d’enfant with no closed loops. It corre-
sponds to an isomorphism class of covers P1

C KP1
C totally ramified above the

point Q and one can easily prove that its field of moduli is in fact a field of defini-
tion. In this paper, we are concerned with the following particular class of trees:
given three positive integers a , b and c , we denote by [a , b , c] the only tree of
degree N4a1b1c having one «central» black vertex of valency 3 and three
«branches» made of a , b and c edges respectively (turning around the central
vertex counterclockwise, see the following figure). We clearly have [a , b , c]
4 [b , c , a] 4 [c , a , b]. The signature of the tree [a , b , c] is the number of its
black vertices of valency 1 , its order is the integer N/gcd (a , c , b). We say that
the tree is primitive if its degree is equal to its order.

Figure 1. – The tree [a , b , c].
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The degree and the signature are clearly Galois invariants. The fact that the
order is also invariant under the action of GQ is less trivial, see for example [15]
or [21]. One can moreover easily check that the complex conjugation sends the
tree T4 [a , b , c] to the tree [a , c , b], so that T is defined over R if and only if at
least two of the integers a , b and c are equal.

T h e o r e m 5. For any positive integer N , there is a one-to-one correspon-
dence between the set of equivalence classes of Lamé operators L1 with dihedral
projective monodromy group of order 2N and the set of primitive trees [a , b , c]
with a1b1c4N . Moreover, the field of moduli of such an operator coincides
with the field of moduli of the corresponding tree.

P r o o f . We know from Lemma 1 and Proposition 3 that an equivalence class
of Lamé operators L1 with dihedral projective monodromy of order 2N corre-
sponds to an isomorphism class of pairs (E , P) satisfying the second condition of
Proposition 3, their field of moduli being the same. Now, the results in [21] assert
that there is a one-to-one correspondence between the set of isomorphism classes
of such pairs and the primitive trees [a , b , c] of degree N; once again the fields of
moduli coincide. r

From a practical and explicit point of view, the correspondence of Theorem 5
can be obtained as follows: consider a primitive tree [a , b , c] of degree N and let
b : P1 KP1 be a model associated to it. Since the cover is totally ramified above
Q , we may assume that it is induced by a polynomial b(x) �C[x]. Let S%P1 (C)
be the set of elements of b21 (]0, 1() with odd ramification index (the center and
the three ends of the tree, cf. Figure 1). The elliptic curve E is realized as the uni-
que (up to isomorphism) double cover p : EKP1 having S as branch locus. Its
origin 0E is, by definition, the preimage under p of the center of the tree and, mo-
re generally, we find E[2] 4p21 (S). As before, we denote by s the canonical in-
volution of E . Since Q does not belong to S , we have p21 (Q) 4 ]P , s(P)( and
one checks that P (or s(P)) satisfies the second condition of Proposition 3. Con-
versely, let L1 4L1, g2 , g3 , B be a Lamé operator with dihedral projective monodro-
my of order 2N and fix an element P such that B4x(P), so that it satisfies the
second condition of Proposition 3. Let t be the unique function such that (t)
4N[P]2N[s(P) ] and v0E

(t21) 43. The induced cover EKP1 is unramified
outside Q , 0 and 1 . Since s* t4 t 21 , we deduce that the rational function b 0 4

2(t21)2 /4 t is invariant under s and thus, we obtain a commutative dia-
gram
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It then follows from Abhyankar’s Lemma that the cover b is unramified outside
the set ]Q , 0 , 1( and that it is a model for a primitive tree [a , b , c] of degree N .
For further details, see [21].

C o r o l l a r y 6. For any positive integer N , there are finitely many equiva-
lence classes of Lamé operators L1 with dihedral projective monodromy of order
2N .

P r o o f . This follows from the fact that there exists finitely many primitives
trees [a , b , c] with a1b1c4N . r

C o r o l l a r y 7. The field of moduli of a Lamé operator L1 with dihedral pro-
jective monodromy group is a number field. In particular, there is a natural ac-
tion of Gal (Q /Q) on the set of equivalence classes of such operators.

P r o o f . Indeed, the field of moduli of any dessin d’enfant is a number field.
The Galois action on the equivalence classes follows from the Galois action on
trees. r

The correspondence of Theorem 5 can be generalized to all Lamé operators
with finite monodromy, allowing a direct enumeration of them. This strategy was
succesfully adopted by R. Liţcanu in [10], [11], see also the recent work of S.
Dahmen [7].

4 - Some general properties of the field of moduli

As we have seen in Corollary 6, up to equivalence, there exists finitely many
Lamé operators L1 with fixed dihedral projective monodromy. We start this sec-
tion by giving a similar finiteness result in terms of the degree of the field of
moduli.

P r o p o s i t i o n 8. For any positive integer d , there exist finitely many equi-
valence classes of Lamé operators L1 with dihedral projective monodromy ha-
ving a field of moduli of degree less than or equal to d .
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P r o o f . We know from a theorem of Merel [14] that there exists a constant C
4C(d) only depending on the integer d such that for any number field K of de-
gree less than or equal to d and for any elliptic curve E defined over K , the cardi-
nality of E(K)tors is bounded by C . Suppose now that L1 is an operator with dihe-
dral projective monodromy of order 2N and that its field of moduli K has degree
less than or equal to d . Up to equivalence, we can suppose that the curve E and
the element B4x(P) are defined over K . In particular, the point P is defined
over a number field of degree d 8G2d and the same holds for the point Q42P ,
which has exact order N (cf. the proof of Proposition 3). This implies that the inte-
ger N is bounded by a constant only depending on d and the proposition follows
from Corollary 6. r

Recall that an elliptic curve defined over a number field K has potentially
good reduction at a prime ] of OK if its j-invariant belongs to the localization of
OK at ] . This means that there exists a finite extension L/K and a model of E over
OL which has good reduction at any prime ( lying above ] . An elliptic curve defi-
ned over a perfect field k of characteristic pD0 is ordinary if its full p-torsion
subgroup is non-trivial (and thus cyclic of order p), otherwise it is supersingular.
The ordinarity of the curve only depends on its j-invariant (cf. [17]). We say that
an elliptic curve E defined over K has potentially ordinary reduction (resp. po-
tentially supersingular reduction) at ] if it has potentially good reduction at ]

and if there exists an integral model (defined over the ring of integers of a finite
extension of K) of the curve with ordinary (resp. supersingular) reduction at a pri-
me above ] . These notions only depend on the image of the j-invariant of E in the
residue field of ] and not on the given model. With a slight abuse of language, the
curve has good (ordinary or supersingular) reduction at ] if there exists a model
E / OK of E which has good (ordinary or supersingular) reduction at ] (1).

P r o p o s i t i o n 9. Let ] be a prime of the field of moduli K of a Lamé opera-
tor L1 with dihedral projective monodromy of order 2N and denote by p its resi-
dual characteristic. If pDN then the extension K/Q is unramified at ] and the
curve E has good reduction at ] .

P r o o f . First of all, after completion, we can reduce to the case where K is a
p-adic field. We denote by R its ring of integers and by k4R/] its residue field.
Suppose that L1 corresponds to a pair (E , P) and let t�K(E) be the associated

(1) By model, we mean a proper flat scheme E over OK for which the generic fiber is only
Q-isomorphic to E and not K-isomorphic, as it is usually the case.
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rational function (cf. the proof of Proposition 3). The induced cover t : EKP1
K is

of degree N and unramified outside Q , 0 and 1 . Its monodromy group can be
realized as a subgroup of the symmetric group SN and since pDN , we deduce
that its order if prime to p . In this case, the results of [4] (see also [6], [8], [20])
assert that the cover has good reduction at ] , i.e. that there exists a smooth R-
model ER KP1

R of the cover t and from this we classically deduce that the field of
moduli is unramified at ] (cf. loc. cit.). r

R e m a r k 10. For general n�Z , the same arguments show that the field of
moduli of a Lamé operator Ln with dihedral projective monodromy of order 2N is
unramified outside the primes which are less than or equal to nN .

5 - The case of dihedral projective monodromy of order 2p

We now restrict to the case of Lamé operators L1 with dihedral projective mo-
nodromy of order 2p , where p is an odd prime number (we already know from [2]
that the case p42 is impossible; this also follows from Theorem 5, since a primiti-
ve tree [a , b , c] has degree at least 3). Remark that the identity a1b1c4p is
sufficient for ensuring that the tree [a , b , c] is primitive. Moreover, its signature
is equal either to 0 or to 2 . In particular, by using the correspondence of Theorem
5, one can easily show that for pD3 there are exactly (p21)(p22) /6 equivalen-
ce classes of such operators; (p 2 21) /24 of them correspond to trees with signa-
ture 0 while the remaining (p21)(p23) /8 are associated to trees with signature
2 . The first result of this section gives a lower bound for the ramification index of
a prime in the field of moduli lying above p .

T h e o r e m 11. Let L1 be a Lamé operator with dihedral projective mono-
dromy of order 2p , with pD3 prime. Fix a prime ]Np of its field of moduli K ,
denote by e] its absolute ramification index and set

e4
p112s

gcd (p112s , 4(32s) )

where s is the signature of the tree associated to L1 . Then the integer e divides
e] .

P r o o f . The results in [22] assert that, given a tree of prime degree p , the in-
teger e] is a multiple of an integer only depending on the ramification data, which,
in this case, coincides with e . r
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The following table gives the possible values of e depending on the residue
class of p modulo 12 and on the signature of the tree associated to the Lamé
operator.

p mod 12 Signature e

1, 9 0 p11

2

1 , 5 , 9 2 p21

4

3 , 7 0 p11

4

3 , 7 , 11 2 p21

2

5 0 p11

6

11 0 p11

12

We now investigate the reduction behaviour of the curve E .

T h e o r e m 12. The assumptions and notation being as in Theorem 11, the
curve E always has potentially good reduction at ] . Moreover, if P
�E[2p] 0E[2] denotes the point associated to L1 (cf. §1), the following conditions
are equivalent:

1. The curve E has potentially supersingular reduction at ] .
2. The associated tree has signature 0.
3. The point P has order p .
4. The (full) monodromy of L1 coincides with its projective monodromy.

P r o o f . As in the proof of Proposition 9, we may assume that K is a p-adic
field. Fix a model b : P1 KP1 associated to the tree corresponding to L1 and defi-
ned over K . The theorem is proved by investigation of the stable model of the co-
ver b . The results in [23] (which generalize, in an arithmetic-geometric setting,
the earlier works in [22]) assert that the (special fiber of the) minimal semi-stable
model of b which separates the elements of the ramified fibers can be described
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as shown in Figure 2.

Figure 2. – Semi-stable model for b.

More precisely, if P0 �P1 (Q) corresponds the center of the tree and if P1 , P2 and
P3 are the points associated to its ends then we find the following two possibili-
ties: first of all, if the tree has signature 0 then P0 lies in the fiber of b above 0
while P1 , P2 and P3 are mapped to 1. This is the case described in Figure 3.

Figure 3. Semi-stable model in the case of signature 0.

Finally, if the tree has signature 2 then, up to a permutation of the points
P1 , P2 , P3 , we can assume that b(P0 ) 4b(P1 ) 4b(P2 ) 40 and b(P3 ) 41 and Fi-
gure 4 describes the behaviour of the special fiber of the corresponding semi-
stable model.

Figure 4. Semi-stable model in the case of signature 2.

In both cases, we see that the points P0 , P1 , P2 , P3 have (potentially) good reduc-
tion and since the curve E is realized, up to isomorphism, as the double cover of
the projective line ramified at these four points (cf. §3), we deduce that it has po-
tentially good reduction. This proves the first part of the theorem. The above de-
scription of the semi-stable model of b allows to deduce the semi-stable model for
the cover associated to the function t in the proof of Proposition 3 (see the com-
mutative diagram in §3). Skipping the details, if the signature of the tree is equal
to 0 then, in such a model, the reduced curve E appears as a degree p cover of the
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projective line uniquely (and wildly) ramified above one point and the results
in [24] assert that E is supersingular. If the signature is equal to 2 then the curve
E is realized as a degree p cover of the projective line unramified outside two
points, wildly ramified above one of them and tamely ramified above the other
with a unique (effectively) ramified point over it, with ramification index 3 and we
can easily deduce from the results in loc. cit. that E is ordinary. This shows the
equivalence between the conditions 1 and 2 of the theorem. The equivalence of the
conditions 2 and 3 is a restatement of the proposition in §2.3 of [21]. Finally, an
explicit expression of the solutions of the Lamé equation given in [5] shows that
the order of the full monordomy group is the order of the point P . r

R e m a r k 13. The potentially good reduction of the elliptic curve E can be
easily deduced from S. Wewers’ results in [20] which allow to directly determine
the semi-stable model of the cover t associated to the torsion point P (cf. §§2,3)
without reducing to the genus zero case. The supersingularity criterion follows
from a more detailed study of the action of the Cartier operator on the differential
forms on E having only one pole.

C o r o l l a r y 14. The potential supersingularity of the reduction of the curve
E at ] is independent of the prime ] of K lying above p .

P r o o f . Immediate, since the prime ] does not appear in the conditions 2 and
3 in Theorem 12. r

We know that, up to a finite extension of the field of moduli L/K , the curve E
has good reduction at any prime ]Np of L . On the other hand, it also admits a
model over K , for which the good reduction at ] is not ensured. The following re-
sult gives some further information and relates the behaviour of the reduction to
the ramification index e] at ] .

P r o p o s i t i o n 15. Let L1 be a Lamé operator with dihedral projective mono-
dromy of order 2p associated to an elliptic curve E with invariant j . Set
m42ns , where s is the signature of the correspnding tree and n43, 2 if
j40, 1728 and n41 otherwise. Let ] be a prime of the field of moduli K lying
above p . The following conditions are equivalent:

– The curve E has good reduction at ] .
– The integer (p112s) /m divides e] .

P r o o f . As usual, we may suppose that K is a p-adic field with ring of inte-
gers R . We moreover fix an algebraic closure K of K . Let N N] be the ]-adic norm,
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normalized by the condition NpN]4p 21 and (uniquely) extended to the whole K.
Let also v] be the associated valuation, with v] (p) 4e] . Suppose that the signatu-
re of the corresponding tree is 0 and that jc0, 1728 . We know from [22] that the-
re exists a polynomial model b : P1

K KP1
K of it, which can be written as

b(x) 4x 3 g(x)2 411 f (x)h(x)2

with f , g , h�R[x], f monic of degree 3 and g , h of degree (p23) /2 (we moreover
assume that the leading coefficients of f and g are R-units). The point x40 corre-
sponds to the center of the tree while the roots of f are its ends. The main result
in loc. cit. asserts that, for any two distinct roots x1 , x2 � K of b21, we
have

Nx1N]4Nx2N]40 and Nx1 2x2N]4p
2

2

p11 .

In particular, this holds for the roots x1 , x2 , x3 of f . The curve E is obtained as
double cover of the projective line ramified at the points 0 , x1 , x2 , x3 . We can re-
place these four points by their image under the action of an element t of
PGL2 (K), the resulting ellitpic curve will be isomorphic to E; taking t41/z we
obtain the elements Q , y1 , y2 , y3 , where we have set yi 4t(xi ). The curve E is
then given by the affine Weierstraß equation

y 2 4 f1 (x) 4 (x2y1 )(x2y2 )(x2y3 ).

By construction, we have NyiN]40 and Nyi 2yjN]4p
2

2

p11 for ic j . This implies
that the discriminant D of f1 satisfies the identity

NDN]4p
2

12

p11

which can be rewritten as v](D) 412e] /(p11). Now, we know from [17] (see
also [18]) that there exists a smooth R-model of E if and only if v](D) f0 (mod 6) (2).
This last identity is equivalent to e]f0 (mod p11

2
), as desired. The case of signatu-

re 2, as the cases j40 and j41728 are treated similarly. r

E x a m p l e 16. We conclude this paper with the description of the equivalen-
ce classes of Lamé operators with dihedral projective monodromy group of order
14 . There are 5 of them, corresponding to the trees [1 , 1 , 5], [1 , 3 , 3] (signature
0 , both of them are defined over R), [1 , 2 , 4], [1 , 4 , 2] and [2 , 2 , 3] (signature 2 ,
only the last is defined over R). In the case of signature 0 , Theorem 11 asserts

(2) Recall that we are concerned with K-isomorphism classes of elliptic curves and not
with K-isomorphism classes. That’s why we consider the valuation of the discriminant modu-
lo 6 instead of 12 , allowing quadratic twists of E .
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that the ramification index of any prime above 7 in the field of moduli is divisible
by 8 /gcd (8 , 12) 42. Since there are exactly two such trees and since they are not
defined over Q , we deduce that they are Galois conjugates and that the field of
moduli K is totally ramified above 7 (a direct calculation gives K4Q(k21)). In
this case, we obtain (p112s) /2 44 and thus Theorem 12 implies that the asso-
ciated elliptic curves don’t have good reduction at the prime of K lying above 7 .
Nevertheless, they admit a Weierstraß model over K with discriminant of valua-
tion 3 (cf. the proof of Theorem 12) and Tate’s algorithm [18] asserts that the cor-
responding Néron models are of type III. Remark that there may also exist mo-
dels with disciminant 9 having Néron models of type III* , but they are obtained
as twists of the previous ones. Let’s now study the case of signature 2: the rami-
fication index of any prime above 7 is divisible by 6 /gcd (6 , 4) 43 and thus,
since there are three trees of this type, we deduce that they form a unique Galois
orbit and that their field of moduli are totally ramified above 7 . Finally, we have
(p112s) /2 43 and thus the curves have good reduction at the unique prime
above 7 . Remark that, once again, some twists may have bad reduction, with Né-
ron model of type I0* .
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A b s t r a c t

In this paper, we describe some arithmetic properties of Lamé operators with finite
dihedral projective monodromy. We take advantage of the deep link with Grothendieck’s
theory of dessins d’enfants, following [10], [11]. We focus more particularly on the case of
projective monodromy of order 2p , where p is an odd prime number.
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