
R i v . M a t . U n i v . P a r m a ( 7 ) 3 * ( 2 0 0 4 ) , 3 1 1 - 3 2 1

THOMAS ST O L L (*)

Diophantine equations for orthogonal polynomials (**)

1 - Introduction

Let P(x), Q(x) �Q[x] be two given polynomials of degree m , n , respectively.
Consider the Diophantine equation

P(x) 4Q(y)(1.1)

in unknowns x , y�Z. We are interested in the following question.

Are there finitely or infinitely many (x , y) �Z2 such that (1.1) holds?

Siegel’s Theorem (see Theorem 1.3 below) allows to decide this question. De-
note by K an arbitrary number field with [K : Q] EQ. Further let S be the finite
set of places of K containing the infinite ones, OS the ring of S-integers of K and R
an arbitrary commutative integral domain.

D e f i n i t i o n 1.1. Let X be an affine absolutely irreducible curve over K and
denote by X its projective completion. Then X is called exceptional if X has genus
g40 and at most two algebraic points at infinity.

D e f i n i t i o n 1.2. Let F(x , y) �K[x , y]. The Diophantine equation F(x , y)
40 is said to have infinitely many solutions with a bounded R-denominator if the-
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re exists D�R with Dc0, such that F(x , y) 40 has infinitely many solutions
(x , y) �K3K with Dx , Dy�R.

T h e o r e m 1.3 (Siegel [9], 1929). Let F(x , y) �K[x , y] be an absolutely irre-
ducible polynomial. If the equation F(x , y) 40 has infinitely many solutions
with a bounded OS-denominator, then the polynomial F(x , y) is exceptional.

Thus, in view of equation (1.1) Siegel’s Theorem gives the following algori-
thm.

A l g o r i t h m 1. First decompose F(x , y) 4P(x)2Q(y) 40 into Q-irreduci-
ble factors. Secondly, for those factors which are not Q-reducible determine g and
the number of points at infinity of the corresponding plane curve. Finally, for the
factors with g40 and number of points at infinity G2 determine whether the as-
sociated equation has finitely or infinitely many integral solutions.

If the two polynomials P(x) and Q(x) are given explicitly, this procedure alwa-
ys leads to an answer. But, if one allows P(x) and Q(x) to be arbitrary members
of a fixed polynomial family, general answers are out of reach. Recent progress in
making Siegel’s Theorem more suitable for applications, in particular the algori-
thmic criterion of Bilu and Tichy [3], has made this problem accessible.

1.1 - Problem and examples

Denote by pn (x) and pm (x) two members of a fixed polynomial family ]pk (x)(
with pk (x) �Q[x] and deg pk (x) 4k for kF1. We raise the general question in a
little provocative way:

What are the conditions for A, B, C �Q , A B c0 and m , nF2 with mcn
such that the number of integral solutions (x , y) of the Diophantine equa-
tion

A pm (x)1 B pn (y) 4 C(1.2)

is finite?

It is hoped for that an answer can be given without any additional require-
ments on the parameters A, B and C. To begin with, the general form (1.2) inhe-
rits interesting examples as special cases:

(i) Are there finitely many Pochhammer symbols (x)m and (y)n of fixed len-
gth m and n starting from x and y , respectively, such that they are equal?
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In other words [14],

m! u x

m
v2n! uy

n
v40 ,

i.e. pk (x) 4 gx
k
h and (A, B, C) 4 (m! , 2n! , 0 ).

(ii) Given distinct positive integers m and n , how often can two octahedrons
of dimension m and n , respectively, contain equally many integral points?
The associated Diophantine equation [2], [5], [12] here reads

Mm
(1 , 21) (x) 4Mn

(1 , 21) (y) ,

where ]Mk
(b , c) (x)( denotes the Meixner polynomials defined in the Askey-

scheme [6] by

Mk
(b , c) (x) 42F1y2k , 2x

b
; 12

1

c
z .(1.3)

(iii) Let ]Pk
(a , b) (x)( be the Jacobi polynomials which are orthogonal with re-

spect to the weight (12x)a (11x)b. Consider

A Pm
(a , b) (x)1 B Pn

(a , b) (y) 4 C .

Note that there are two more parameters here to deal with [13].

2 - Methods

The proof of Bilu-Tichy’s criterion (see Theorem 2.2) is based on Siegel’s
Theorem and so it is ineffective, too. It does not yield an explicit upper bound for
max (NxN , NyN), where (x , y) is an integral solution of (1.1). However, if
min (m , n) 42 we are in the favourable position to use an effective result due to
Baker on elliptic and hyperelliptic equations. By simple algebraic manipulation –
constructing a perfect square on one side – one can translate (1.1) into an equa-
tion of shape given in the following theorem.

T h e o r e m 2.1 (Baker [1], 1975). Let f (x) �Q[x] be a polynomial having at
least three simple zeroes. Further let b�Q0]0(. Then the Diophantine equa-
tion

f (x) 4by 2
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has at most finitely many integral solutions (x , y) �Z2 which can be computed
effectively.

Hence, for the «small» case min (m , n) 42 of equation (1.2) we have the follo-
wing algorithm.

A l g o r i t h m 2. Check whether there exist three simple zeroes of f (x) in the
equation obtained by transforming equation (1.2). Most probably, conditions rela-
ting A, B and C will appear.

What about the general case min (m , n) F3? In order to formulate the cri-
terion given by Bilu and Tichy [3] we first introduce some notation. Let
g , d�Q0]0(, q , s , t�ZD0 , r�ZF0 and let v(x) �Q[x] be a non-zero polynomial
(which may be constant). Recall the definition of the Dickson polynomials,

Ds (x , g) 4 !
i40

Ds/2F

ds , i x s22 i with ds , i 4
s

s2 i
us2 i

i
v (2g)i .

The pair ( f (x), g(x) ) is called a standard pair over Q if it or the switched pair
( g(x), f (x) ) is one of the pairs listed in the following table. In particular, we call
( f , g) a standard pair of the first, second, third, fourth and fifth kind, respect-
ively, depending on the place of the entry.

kind explicit form of ( f (x), g(x) )
or switched

parameter restrictions

first (x q , gx r v(x)q ) with 0GrEq, (r, q)41, r1deg vD0
second (x 2 , (gx 2 1d)v(x)2 ) —
third (Ds (x , g t ), Dt (x , g s ) ) with (s , t) 41
fourth (g2s/2 Ds (x , g), 2d2t/2 Dt (x , d)) with (s , t) 42
fifth ((gx 2 21)3 , 3x 4 24x 3) —

T h e o r e m 2.2 (Bilu-Tichy [3], 2000). Let P(x), Q(x) �Q[x] be non-constant
polynomials. Then the following two assertions are equivalent:

(a) The equation P(x) 4Q(y) has infinitely many rational solutions with a
bounded denominator.

(b) We can express P i k 1 4W i f and Q i k 2 4W i g where k 1 , k 2 �Q[x] are li-
near, W(x) �Q[x], and ( f , g) is a standard pair over Q.
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Regarding (1.2) we now have the following algorithm.

A l g o r i t h m 3. Check whether pm (x) and 2
B

A
pn (x)1

C

A
can be decompo-

sed as demanded in (b) of Theorem 2.2. By writing down the possible decomposi-
tions in terms of coefficient equations, it may be possible to derive contradictions.
In that case finiteness of number of integral solutions (x , y) holds by Theorem
2.2.

Note that this task is not as easy as it may seem at the first glance. For
example, if one takes the standard pair of the first kind into account, then for
every «new» coefficient equation there will be a «new» variable coming out as a
coefficient of the arbitrary polynomial v(x). By iteratively solving the «new» equa-
tions to the «new» variables one has no hope to end up with a contradiction. The-
refore one also has to demand further properties of the polynomial family
]pk (x)(.

3 - Properties (P1) and (P2)

Two properties of pk (x) are of great use:

Property (P1): simple stationary points
Property (P2): two interval monotonicity

by (P2) we mean

D e f i n i t i o n 3.1. A real polynomial p(x) is called two interval monotone if
there exist two intervals I1 and I2 (one possibly empty) with I1 NI2 4 (2Q , Q)
such that the local maxima of Np(x)N are strictly decreasing on I1 and strictly
increasing on I2 .

Of course, (P1) is satisfied for all polynomials having only simple real zeroes,
e.g. for orthogonal polynomials. The difficult point lies behind (P2). Mention only
that for a lot of discrete orthogonal polynomials (for instance Meixner, Meixner-
Pollaczek, Krawtchouk, Charlier etc.) there is a great numerical evidence that
they fulfill (P2). However, the proofs are missing. It seems that (P2) is a conse-
quence of a certain «well-distribution» of the zeroes.
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E x a m p l e . The discrete Meixner polynomials Mk
(b , c) (x) (see (1.3)) are ortho-

gonal for bD0 and 0 EcE1. Maple gives the following logplot for
M17

(6 , 1 /2) (x):

What are (P1) and (P2) good for? Suppose all members of ]pk (x)( satisfy (P1)
and (P2). We may assume that mDn. Further write pk (x) 4x i 1ki21

(i) x i21

1ki22
(i) x i22 1ki23

(i) x i23 1R1k0
(i) and let A842

B

A
, B84

C

A
. In view of Theo-

rem 2.1 (Baker) and Theorem 2.2 (Bilu-Tichy) we have the following simplifica-
tions [13], [14]:

l [Baker] Let d�Q. Then pm (x)1d has at least three simple zeroes for
mF7.

l [Bilu-Tichy] We have m42n and

pm (x) 4 A8 pn (v2 x 2 1v1 x1v0 )1 B8 .(3.1)

Further,

6km21
(m) km22

(m) n(12n)1 (km21
(m) )3 (2n 2 23n11)16km23

(m) n 2 40 .(3.2)

Having at disposal (P1) and (P2), ALGORITHM 2 and ALGORITHM 3 can now be
replaced by
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ALGORITHM 28. Only check the existence of three simple zeroes for m43, 4 , 5
and 6.

ALGORITHM 38. In the best case use (3.2) to come to a contradiction. Otherwise
extract more coefficient equations from (3.1).

In [13] we applied these algorithms to the classes of continuous classical or-
thogonal polynomials. Property (P2), being a «continuous property», follows from
an old result of Szegö on solutions of Sturm-Liouville differential equations.

4 - Sturm-Liouville differential equations

It is well-known [8] that

(4.1) (ax 21bx1c) y 9n (x)1(dx1e) y 8n (x)2l nyn(x)40, n�ZF0 , a, b, c, d, e�C

with l n 4n[ (n21) a1d] has a finite or infinite chain of polynomial solutions
]yn (x)(. The following lemma relies on some nice idea used by Szegö [15].

L e m m a 4.1. Let yn (x) be a polynomial solution of the differential equa-
tion

s(x) y 9n (x)1t(x) y 8n (x)2l n yn (x) 40 ,

with s(x) 4ax 2 1bx1c and t(x) 4dx1e. Furthermore, suppose that s 8 (x)
22t(x) does not vanish identically. Then yn (x) satisfies (P2).

By extending the previous work of Bochner [4], Lesky [8] showed that the fa-
mous three continuous classical orthogonal families (Laguerre, Jacobi, Hermite)
are the only positive definite orthogonal polynomial solutions of (4.1) up to linear
transformation x O Ax1B. The parameters of the «standard» forms of these po-
lynomials are listed in the following table (see [13]).

Standard classes of continuous classical orthogonal polynomials

name yn (x) condition a b c d e l n

Laguerre Ln
(a) (x) aD21 0 1 0 21 a11 2n

Jacobi Pn
(a , b) (x) a , bD21/2 21 0 1 2(a1b12) b2a 2n(n1a1b11)

- Gegenbauer Cn
(l) (x) lD21/2 , lc0 21 0 1 2(2l11) 0 2n(n12l)

- Legendre Pn (x) — 21 0 1 22 0 2n(n11)
- Chebyshev Tn (x) — 21 0 1 21 0 2n 2

Hermite Hn (x) — 0 0 1 22 0 22n
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Note that Gegenbauer polynomials a4b4l21/2 , Legendre polynomials a

4b40 and Chebyshev polynomials a4b421/2 are just special cases of the Ja-
cobi polynomial class. In our Diophantine context we can restrict ourselves to the
three standard classes because every linear contribution in the variable as well as
every multiplicative factor can be handled in ( 3) by appropriately choosing the
parameters v2 , v1 , v0 , A8 and B8. Due to this fact, we are also able to give results
for slightly ’modified’ orthogonal polynomials, i.e. classical orthogonal polynomials
affected by a linear transformation in the variable [11].

4.1 - Finiteness results

By using ALGORITHM 28, ALGORITHM 38 and Maple calculations we obtai-
ned

T h e o r e m 4.2 (Stoll-Tichy [13], 2003). Let A, B, C denote arbitrary rational
numbers with A B c0 and mDnF4 arbitrary rational integers. Then the num-
ber of integral (x , y) satisfying (1.1) is finite, if ]pk (x)( is one of the following
families,

l Laguerre polynomials, ]Lk
(a) (x)( with aD1,

l Jacobi polynomials ]Pk
(a , b) (x)( with a , bD21 and acb ,

l Hermite polynomials ]Hk (x)(,

l Gegenbauer polynomials ]Ck
(l) (x)( with lc0 and lD21/2 (thus also in-

cluding the Legendre polynomials ]Pk (x)( with l41/2).

Let ]pk (x)( denote the Chebyshev polynomials ]Tk (x)(. Then under the abo-
ve requirements the number of rational (x , y) with bounded denominator sati-
sfying (1.1) is infinite.

Note that the classical orthogonal Chebyshev polynomials Tk (x) indeed do not
satisfy (P2) as the local maxima of NTk (x)N are all of equal value.

As an example of the «small cases» we give

T h e o r e m 4.3 (Stoll [10], 2003). The Diophantine equations

(i) A Pm (x)1 B P2 (y) 4 C,

(ii) A Hm (x)1 B H2 (y) 4 C
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with mF3 only admit finitely many integral solutions (x , y) with exception of

ad (i): m44,
C

A
2

B

3 A
� m2

24

245
,

3

35
n ,

ad (ii): m44,
C

A
2

B

2 A
� m2

3

2
,

2

3
n.

Moreover, the solutions satisfy max (NxN , NyN) EC1 4C1 (A, B, C, m).

5 - Discrete orthogonal polynomials

For orthogonal polynomials whose orthogonality relation holds with respect to
a discrete measure nothing is known about (P2). However, in very particular ca-
ses one can use the special form of the leading coefficient of pk (x) in order to co-
me to a contradiction. Without going into detail we just mention that such contra-
dictions can be obtained whenever the leading coefficient is built up by factorials,
Pochhammer symbols and/or powers. For example, this is the case for the Mei-
xner polynomials Mk

(b , c) (x), whose leading coefficient is 2n /(b)n. This surprisingly
suffices to show

T h e o r e m 5.1 (Stoll [10], 2003). Let m and n be distinct integers satisfying
m , nF3, further let b�Z0]0, 21, 22, 2max (n , m)11(. Then the equa-
tion

Mm
(b , 21) (x) 4Mn

(b , 21) (y)(5.1)

has only finitely many solutions in integers (x , y).

Moreover, let ]Kk
(p , N) (x)( denote the class of classical Krawtchouk polyno-

mials [6]. Because of Kn
(p , N) (x) 4Mn

(2N , p/(p21) ) (x) we immediately have

C o r o l l a r y 5.2. Let m and n be distinct integers satisfying m , nF3, fur-
ther let NF max (m , n). Then the equation

Km
(1 /2 , N) (x) 4Kn

(1 /2 , N) (y)(5.2)

has only finitely many solutions in integers (x , y).

Extensions which allow to consider Diophantine equations of the form
Mm

(b , c1 ) (x) 4Mn
(b , c2 ) (y) and Km

(p1 , N) (x) 4Kn
(p2 , N) (x) have recently been obtained

by Tichy and the author [12].
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6 - Open problems

Of course, while looking at the general form of equation (1.2) for Meixner po-
lynomials, the considerations of Section 5 are not sufficient at all. So, an intere-
sting problem remains to study (P2) for Meixner polynomials. We are also intere-
sted in (P2) for orthogonal polynomials whose orthogonality relation holds with
respect to a quasi-definite moment functional, so as for instance Bessel polyno-
mials, Pseudo-Jacobi polynomials etc.

Acknowledgement: I would like to express my deep thanks to the organisers
of the conference, in particular to Alessandro Zaccagnini. The conference was
perfectly organised and its atmosphere was very friendly.
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A b s t r a c t

We give a short survey about results obtained by Tichy and the author in the last
year. They take part of the doctoral thesis [10] of the speaker; the original papers we refer
to are [12], [13]. Both papers deal with Diophantine equations of the form A pm (x)
1 B pn (x) 4 C where pm (x) and pn (x) are different members of a fixed orthogonal polyno-
mial family ]pk (x)(. Finiteness results are established by means of methods based on
theorems of Baker and of Bilu and Tichy.
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