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The Ramanujan property and some of its connections

with diophantine geometry (**)

1 - Introduction

Let Q be the field of algebraic numbers over Q . Let us choose right away an
embedding of Q in the field of complex numbers C .

Let E2 , E4 , E6 be the series:

Ei (z) 411bi !
n41

Q

s i21 (n) z n , i42, 4 , 6 , b2 4224, b4 4240, b6 42504,

converging in the complex open disk B4 ]z�C such that NzNE1(.
The functions defined by these series satisfy Ei (e 2pit ) 4ei (t), where e2 , e4 , e6

are the classical elliptic normalised Eisenstein series of weights 2 , 4 , 6 for
SL2 (Z), defined over the complex upper half-plane H.

It is well known that E2 , E4 , E6 are algebraically independent over C(z), but
we have much more:

T h e o r e m 1. For every choice of q�B0]0(, three among the four complex
numbers q , E2 (q), E4 (q), E6 (q) are algebraically independent over Q .

This result was discovered by Nesterenko (see [8]; see also the contributions
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of Nesterenko in [9]). A corollary of theorem 1 is the algebraic independence of
the three complex numbers p , e p and G(1 /4).

Let p be a prime number; the series E2 , E4 , E6 also converge in the p-adic
open disk Bp %Cp of center 0 and radius 1 . Let us fix an embedding of Q in the
field of p-adic complex numbers Cp .

The latter corollary is also contained in the following result, proved by Philip-
pon ([17], theorem 3, p. 3).

T h e o r e m 2. Let q be a non-zero element of B (resp. of Bp ), if

E4 (q)3

E4 (q)3 2E6 (q)2
� Q ,(1)

then the degree of transcendence over Q of the subfield of C (resp. Cp ):

Q(q , E2 (q), E4 (q), E6 (q) )

is equal to 3.

The complex case of theorem 1 contains theorem 2. However, theorem 2 has a
p-adic counterpart which does not appear in theorem 1. Moreover, condition (1)
implies Q-rationality of a certain elliptic curve, ensuring that theorem 2 already
contains most of the significant corollaries of algebraic independence of «classic
constants» of theorem 1.

Let q�B0]0(. To prove theorem 1, Nesterenko applied, among other featu-
res, an algebraic independence criterion of Philippon [15]. He has constructed an
infinite sequence of non-zero functions

GN � R1 »4C[q , E2 (q), E4 (q), E6 (q) ]

such that, for all N�N , GN can be written as a polynomial

PN (X1 , X2 , X3 , X4 )

in four indeterminates with rational integer coefficients of degree N (these coeffi-
cients are not too big in absolute value), and such that for all N big enough, there
exists a natural number MN with the property that:

e 2c1 MN GNGN (q)NGe 2c2 MN ,(2)

where c1 , c2 are two strictly positive real numbers which do not depend on N . Mo-
reover, it is required that lim sup

N
MN 4Q . In practice, the only way to construct
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the PN’s is to use the box principle, and it turns out very naturally that MN is also
equal to the order of vanishing at 0 of the function GN .

To prove the lower bound of (2), one can advantageously apply an interpola-
tion lemma [16], after having noticed that the series E2 , E4 , E6 have rational inte-
ger coefficients, while to prove the upper bound of (2), one simply applies a
Schwarz lemma in disks contained in B , whose radius depends solely on q , taking
into account the multiplicity MN at 0 .

But the inequalities of (2) alone are not enough to apply the mentioned crite-
rion of Philippon: indeed it is also required (among other conditions that we shall
not describe here) that the sequence (MN )N�N do not tend to infinity for NKQ ,
too rapidly. In other words, Nesterenko needed a multiplicity estimate. This is
the most difficult part of the proof. He proved:

T h e o r e m 3. Any element F of R1 which may be written as a non-vani-
shing polynomial P(X1 , X2 , X3 , X4 ) in four indeterminates of degree N , has its
order of multiplicity at 0 at most c3 N 4 , for an absolute constant c3 D0.

In particular, the sequence (MN )N satisfies

MN Gc3 N 4 ,

and (2) becomes:

e 2c4 N 4
GNGN (q)NGe 2c5 N 4

,

ready to be employed in the criterion of Philippon in [15].
The structure of the proof of theorem 2 is different: Philippon does not need

any multiplicity estimate, and does not apply the result in [15]. He uses instead a
measure of algebraic independence of «elliptic nature»: [14].

In the following, however, we will focus on problems which are more closely
related to multiplicity estimates, particularly like theorem 3. In effect, we would
like to convince the reader that the differential structure of certain rings
(example: R1 , but other more general examples will be introduced later) is deeply
related to the arithmetic of «classical constants».

Multiplicity estimates such as theorem 3 are likely to suggest some kind of in-
formation about the transcendence degree expected for fields of finite type over
Q , generated by special values of the underlying functions.
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2 - The Ramanujan property and the classical quasi-modular forms

We cannot sketch the proof of theorem 3 here, so let us come directly to the
main difficulties that one has to overcome.

We want to find an upper bound for the multiplicity M at 0 of a function
G� R1 which is obtained as a non-zero irreducible polynomial of degree at most
N , evaluated in the four functions z , E2 (z), E4 (z), E6 (z) (In the following we will
often identify R1 with C[X1 , X2 , X3 , X4 ], since these rings are isomorphic over
C): we can deduce this estimate by computing the «multiplicity» of the ideal
(G , DG) of R1 (to compute the «multiplicity» at 0 of an ideal of R1 , one uses the
notion of distance; see [9], p. 88), provided that this ideal is not principal (3). But
in fact, if the order of G at 0 is small, we do not need to know whether DG is in
(G) at all: the problem only appears when the order of G at 0 is too big, and in
this case we need to check a new property which says that if the multiplicity of G
at 0 is too big, then the principal ideal generated by G does not contain
DG .

Thus, it seems that it is unavoidable to use the fact that the ring R1 , endowed
with the derivation D4q(d/dq), is a differential ring which satisfies the following
Ramanujan property.

D e f i n i t i o n . We say that a differential ring (A, D) (where D

4 ]D1 , R , Dn ( is a set of derivations) satisfies the Ramanujan property if there
exists an element k� A 0]0( such that k� P for every non-zero prime ideal P sa-
tisfying Di P % P for all i41, R , n (we will refer to such an ideal as a differen-
tially stable prime ideal) (4).

First of all, the ring

R 4C[E2 , E4 , E6 ] ,

endowed with the derivation D , is a differential ring. Indeed, we have the
relations:

DE2 4
1

12
(E2

2 2E4 ) , DE4 4
1

3
(E2 E4 2E6 ) , DE6 4

1

2
(E2 E6 2E4

2 ) ,(3)

(3) More precisely, the estimate of theorem 3 is obtained as a corollary of a more general
theorem that controls the multiplicity at 0 of a general unmixed ideal of R1 , and is proved by
induction on the dimension of the latter.

(4) In other words, a differential ring (A, D) satisfies the Ramanujan property when its
differential nilradical is non-zero.
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(see [7], theorem 5.3). So is R1 , because Dz4z . The ring

R2 4C[log (z), z , E2 (z), E4 (z), E6 (z) ]

is also closed under the action of the derivation D , because D log(z) 41; its field
of fractions has transcendence degree 4 over C(z), and we have:

T h e o r e m 4. The differential ring (R2 , D) satisfies the Ramanujan property.
Its differential nilradical is generated by the element k4qD , where D4E4

32E6
2 .

This implies that (R, D) and (R1 , D) satisfy the Ramanujan property.

S k e t c h o f p r o o f . The detailed proof will appear in [13]. We have Dz4z ,
and we see from the relations (3) that DD4E2 D : the ideals (q) and (D) are prime
and differentially stable.

Let P be a differentially stable non-zero prime ideal of (R2 , D); here we only
consider two cases.

(1). The ideal P is principal: thus P 4 (P) for some irreducible P� R2 . We have
that DP4FP , for F� R2 , non-zero.

The ring R2 is graded, by setting the degree of Ei equal to i (i42, 4 , 6), and
the degree of z and log(z) equal to 0 .

The derivation D sends homogeneous elements of R into homogeneous ele-
ments. Studying the influence of D on degrees, it is easy to see that:

DP4 (l 1 1l 2 E2 ) P , for some l 1 , l 2 �C .(4)

We can identify P with a formal series:

P4 !
n4m

Q

an Z n ,

where Z is an indeterminate, and am , am11 , R are polynomials in C[z , log (z) ]
with am c0. Let D 8 be the derivation Z(d/dZ), such that D 8 Z4Z and D 8 (z)
4D 8 (log (z) ) 40; we easily obtain that D 8 P4l 2 (1224Z2R) P so that, com-
paring the coefficients of formal series, mam 4l 2 am . Since am c0, we obtain
l 2 �Z .

In a similar way, one proves that l 1 �Z . Hence, l 1 , l 2 �Z in (4). Thus, there
exists a non-trivial Z-linear dependence relation between 1 4 (Dz/z), E2 4 (DD/D)
and DP/P . Equivalently, the elements q , D , P� R are multiplicatively dependent
modulo C3 ; but P is irreducible, thus P4az or P4bD , with a , b�C3 .

(2). If P is not principal, an elementary argument involving resultants reduces
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this case to the case (1), or to the following case: P contains a homogeneous
non-zero element F of C[E4 , E6 ] (thus, F(e 2pit ) is a modular form).

Let F , G be homogeneous elements of C[E4 , E6 ], of degree f , g . The Rankin
bracket of F and G is the homogeneous element:

[F , G] 4 fFDG2gGDf�C[E4 , E6 ] .

Clearly, if F� P and G� R, then [F , G] � P.
Let us suppose that F� P has minimal non-zero degree in E4 . Then:

[F , E6 ] 4
¯F

¯E2

[E2 , E6 ]1
¯F

¯E4

[E4 , E6 ]1
¯F

¯E6

[E6 , E6 ]

4
¯F

¯E4

[E4 , E6 ] .

Since (¯F/¯E4 ) is non-zero and does not belong to P by hypothesis, we have
[E4 , E6 ] � P. Now, the differential relations (3) imply

[E4 , E6 ] 4

4

4

4E4 DE6 26E6 DE4

2E4 (E2 E6 2E4
2 )22E6 (E2 E4 2E6 )

2(E6
2 2E4

3 ) 422D ,

(5)

and D� P. If F has degree 0 in E4 , then E6 � P and [E6 , E4 ] 42[E4 , E6 ] � P: in
all cases, D� P.

Nesterenko has already proved a weaker result: he shows that every non-zero
stable prime ideal P of R1 vanishing at q40, contains k : our proof of the first
part of theorem 4 is an extension of his lemma 5.2 p. 161 in [9].

This kind of consideration on principal differentially stable ideals, already ap-
pears in the literature. For example, lemma 5.2 of loc. cit. is a generalisation of
lemma 3 p. 211 of [19], where the problem is to determine arithmetic conditions
over parameters of a certain linear differential equation of second order (equation
(9) p. 209), so that its solutions are not algebraic, and not solutions of a first order
Riccati equation.

Similar arguments also appear in the different context of Painlevé equations;
the problem that often appears this time, is to find conditions over the parameters
so that the solutions of a given Painlevé equation are not algebraic, and do not sa-
tisfy a first order Riccati equation: see for example, [20], proposition 2.2
p. 161.

More generally, theorem 4 underlines a profound problem in our study: the
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classification of «differential factor rings», which has been considered as a central
problem also in the theories of Siegel’s E and G-functions since their begin-
ning.

The second part in our proof of theorem 4 is new: it totally replaces the argu-
ments of section 5 pp. 162-165 of [9].

We can improve theorem 4 (see [13]) and give a full description of the diffe-
rentially stable ideals of R2 . In fact, the most interesting ideals are the stable pri-
me ideals of R.

T h e o r e m 5. For every c�C , we have the tower of stable prime ideals of R:

(E2 2c , E4 2c 2 , E6 2c 3 ) & (E2
2 2E4 , E2

3 2E6 ) & (D) .

Moreover, the set of all these prime ideals is equal to the set of the stable prime
ideals of R.

R e m a r k . It is easy to see that the ideal (E2
2 2E4 , E2

3 2E6 ) is also the Ja-
cobson differential radical of R.

In [11], thanks to the techniques sketched here, we have proved an extension
of the multiplicity estimate (3) to the differential ring generated by z , e z , and
three algebraically independent quasi-modular (non-holomorphic) forms of weight
2 with respect to a chosen co-compact Schwarz triangular subgroup of
SL2 (R).

3 - Hilbert modular and quasi-modular forms

It would be of great interest to extend the above framework to a more general
class of diophantine problems. Indeed, if we go back to the algebraically indepen-
dent numbers p , e p , G(1 /4), we see that they are (roughly speaking) connected
with the periods of extensions of the elliptic curve E with a Weierstrass model y 2

44x 3 24x , by algebraic groups Gm
b 3Ga

c with b , c�N : the interpretation of the-
se numbers as special values of quasi-modular forms (in the sense of [6]) and the
function e 2pit explains why so many «classical» constants are found to be algebrai-
cally independent in theorem 1.

It would be very interesting to check the algebraic independence over Q of the
numbers p , e p , e k5p , G(1 /5), G(2 /5): they are connected to «periods» of exten-
sions of the jacobian A of the curve y 2 44x 5 24 of genus 2 , by an algebraic
group Gm

b 3Ga
c . The transcendence degree over Q of the field generated by these

numbers is F2: see [2] and [3].
This naturally leads to ask similar questions about Hilbert modular and quasi-
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modular forms: notice indeed that the abelian surface A has «real multiplication»
by Q(k5), so that the Hilbert modular group associated to Q(k5) has to play a
priviledged role.

3.1 - Basic properties of Hilbert quasi-modular forms

In this section we shall describe a few properties of the differential structure
of rings of Hilbert quasi-modular forms, in connection to the Ramanujan
property.

Let K be a totally real number field of degree n over Q , let s 1 , R , s n be its
embeddings in R , let OK be its ring of integers. If a�K , we also write ai 4s i (a).
The Hilbert modular group G K »4SL2 (OK ) acts on Hn by homographic transfor-

mations in the usual way: let t4 (t1 , R , tn ) � Hn and g4 ga

c

b

d
h�G K . Then:

g(t) 4 g a1 t1 1b1

c1 t1 1d1

, R ,
an tn 1bn

cn tn 1dn
h .

Note that if n41, then K4Q and G Q4SL2 (Z).

D e f i n i t i o n . Let F : Hn KC be a holomorphic function. We say that F is a
Hilbert quasi-modular form of weight (k1 , R , kn ) �Zn and depth s�Z if:

(i) n41 and F is a quasi-modular form in the sense of Kaneko-Zagier [6] or
(ii) nD1, and there exists a polynomial P�Hol (Hn )[X1 , R , Xn ] of total de-

gree s in X1 , R , Xn (whose coefficients are holomorphic functions on Hn),
such that:

F(g(t) ) »4 »
i41

n

(ci ti 1di )ki P g c1

c1 t1 1d1

, R , s ,
cn

cn tn 1dn
h .(6)

A Hilbert quasi-modular form is parabolic if it vanishes at the cusps of G K .
A Hilbert quasi-modular form of weight (k1 , R , kn ) is said to have parallel

weight k , if k1 4R4kn 4k .
Clearly, a Hilbert quasi-modular form of depth 0 is a Hilbert modular form.

The constant term of P with respect to X1 , R , Xn is equal to F . Moreover, the
analytic behaviour required in [6] in the case of n41, or the Koecher principle in
the case nD1, provide that if F is a Hilbert quasi-modular form of weight
(k1 , R , kn ), then ki �N for all i41, R , n , and if k1 4R4kn 40, then F�C .
More precisely:

L e m m a 1. Let F be a Hilbert quasi-modular form of weight (k1 , R , kn )
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and depth s . Let

P0 4 !
s11R1sn4s

cs1 , R , sn
(t) X1

s1
R Xn

sn

be the sum of the homogeneous monomials of degree s of the polynomial P asso-
ciated to F in (6). Then, for all s1 , R , sn such that s1 1R1sn 4s , the function
cs1 , R , sn

(t) is a Hilbert modular forms of weight (k1 22s1 , R , kn 22sn ).

P r o o f . This will appear in [12].
Let Y(K) be the multi-graded ring (by the weights) of all the Hilbert quasi-

modular forms of every possible depth. It is easy to see that if

D 4 ]D1 , R , Dn ( 4 ](2pi)21 ¯/¯t1 , R , (2pi)21 ¯/¯tn ( ,

then (Y(K), D) is a differential ring.

L e m m a 2. The field of fractions of Y(K) has transcendence degree 3n over C .

P r o o f . According to [1], the differential field F(K) generated by all the mo-
dular functions for G K has transcendence degree 3n over C . Now, it is not too dif-
ficult to prove that the algebraic closure of the field of fraction of Y(K) coincides
with the algebraic closure of F(K).

R e m a r k . By lemma 2, the degree of transcendence of F(Q) is 3 . Moreover,
in [6], it is proved that Y(Q) 4C[e2 , e4 , e6 ]. Thus, we have an isomorphism of dif-
ferential rings:

Y(Q) ` R .(7)

The proof can also be performed by using lemma 2, the existence of e2 together
with its functional equation, and the differential isomorphism C[e2 , e4 , e6 ]
` R.

3.2 - Degenerate Hilbert quasi-modular forms

Following a suggestion of K. Buzzard, we begin with the totally degenerate to-
tally real «number field» of degree n , with its trivial embedding in Rn :

K0 »4Q5R5QKRn .

The Hilbert modular group G K0
is equal to a direct sum of n copies of SL2 (Z). By

the isomorphism (7), the differential ring of Hilbert quasi-modular forms Y(K0 ) is
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isomorphic to the differential n-fold tensor power:

(R, D)7R7 (R, D)

4 (C[E2 (z1 ), E4 (z1 ), E6 (z1 ), R , E2 (zn ), E4 (zn ), E6 (zn ) ], ]D1 , R , Dn () ,

where Di 4zi (d/dzi ). We see that the transcendence degree of Y(K0 ) over C is
equal to 3n , (see also lemma 2). Inside Y(K0 ), the reader can determine, as a sim-
ple exercice, the subring of Hilbert modular forms (transcendence degree 2n),
and the subring of Hilbert modular forms of parallel weight (of transcendence de-
gree n11). The reader can also determine the full structure of differentially
stable prime ideals in Y(K0 ) (that is, D-stable, with D 4 (D1 , R , Dn )), applying
theorem 5. In particular, every non-zero differentially stable prime ideal of Y(K0 )
contains the element:

k(K0 ) »4 »
i41

n

(E4
3 (zi )2E6

2 (zi ) ) .(8)

3.3 - Differential structure for Hilbert quasi-modular forms

Let us examine Y(K), when K is a (non-degenerate) totally real number field.
It would be very useful to study the structure of differentially stable prime ideals
in this case, and especially, its differential nilradical, but this is probably a difficult
task. First of all:

T h e o r e m 6. For nD1, the ring Y(K) is not finitely generated.

The proof of this result will appear in [12], and is very similar to that of the
lemma 16 of [10]. There, we have proved that if nD1, then the subring L(K) ge-
nerated by the Hilbert modular forms is not finitely generated, and the main point
in the proof was the well known fact that if F is a Hilbert modular form of weight
(k1 , R , kn ), and if there exists an index i such that ki 40 and another index j
such that kj c0, then F40.

Now, it turns out that the same is true for Hilbert quasi-modular forms. For
example:

L e m m a 3. If nD1, for every j , 0 G jGn21, there does not exist any non-
zero Hilbert quasi-modular form of weight (0 , R , 0

���
j

, 2 , 0 , R , 0
���

n2 j21

).

P r o o f . We only consider the case n42, and to simplify matters, we also
suppose that the class number of K is 1 (see [12] for a more general statement),
so that there is only one cusp class for G K . Let us assume by contradiction that
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there exists a non-zero Hilbert quasi-modular form F of weight (2 , 0 ). By lemma
1, its depth must be 1 , because is is well known that non-zero Hilbert modular
forms of weight (2 , 0 ) do not exist. The associated polynomial for which (6) is
true, is necessarily:

P4F(t , t 8 )1lX1 ,

with l�C3 . The holomorphic function F(t , t) defined over H is clearly a quasi-
modular form of weight 2 and depth 1 . Using (7), we see that:

F(t , t) 4mE2 (e 2pit ) ,

with m�C . But F is parabolic: the Fourier series of F at the cusp at infinity has a
zero constant term because F has non parallel weight. Thus m40, because E2 41

224z2R (that is, e2 is not parabolic). Let g4 ga

c

b

d
h�SL2 (Z) %G K . We

have:

0 4

4

4

F(g(t , t) )

(ct1d)2gF(t , t)1
lc

ct1d
h

lc(ct1d) .

Since this relation holds for every g�SL2 (Z), we find that l40, which provides
the required contradiction.

C o r o l l a r y 1. If nD1, there does not exist any non-zero differentially
stable principal ideal in Y(K).

P r o o f . If F is a Hilbert quasi-modular form such that Di F4Ai F with
Ai�Y(K) for i41, R , n , then Ai is quasi-modular of weight (0, R , 0

���
i21

, 2, 0, R , 0),

and by lemma 3, Ai 40: this implies F�C . If F is any polynomial in Y (that is,
not necessarily a quasi-modular form), then one easily reduces the proof to the ca-
se above, using the fact that the derivations of D are homogeneous of weight
(0 , R , 0
���

i21

, 2 , 0 , R , 0 ) for i41, R , n .

Very few things are known at present about the differentially stable prime
ideals of Y(K) for nD1. For n41, or for K4K0 , the problem is completely sol-
ved because, as we said earlier, the differential nilradical always contains the ele-
ment k(K0 ) defined in (8).

In the particular case of K4Q(k5), we have obtained some further information.
The full structure of the ring of Hilbert modular forms of parallel weight for G Q(k5) is
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known (see [4], [5] or theorem 6.1 of [10]). In particular, there exists exactly one non-
trivial parabolic modular form x 15 of parallel weight (15, 15) (up to normalisation),
such that x 15 (z , z 8) 4x 15 (z 8 , z) (symmetric). In [12], we have proved:

Theorem 7. Let P be a non-zero differentially stable prime ideal of the ring
Y(Q(k5) ). If P contains a non-zero Hilbert modular form, then x 15� P.

Theorem 7 and other arguments contained in [12] lead to partial generalisa-
tions of theorem 3 for Hilbert quasi-modular forms associated with K4Q(k5).
The results that we have obtained are still far from optimal, so we do not quote
them; they will appear elsewere.

Instead of this, we now explain why the Hilbert modular form x 15 is a first-ra-
te candidate to be a «k(Q(k5) )» for the Ramanujan property. Let us note the
equality (5), which says that k(Q) 4D : we see that D is the Rankin bracket of the
generators E4 , E6 of C[E4 , E6 ].

Here we consider Hilbert modular and quasi-modular forms associated with a
real quadratic number field K (possibly degenerate). If F , G , H are Hilbert mo-
dular forms of parallel weight f , g , h , we define a multilinear bracket:

[F , G , H] 4det

.
`
`
`
´

fF

¯F

¯z

¯F

¯z 8

gG

¯G

¯z

¯G

¯z 8

hH

¯H

¯z

¯H

¯z 8

ˆ
`
`
`
˜

.

It is easy to check that [F , G , H] is a Hilbert modular form of parallel weight
f1g1h12. Let us examine the degenerate case of K4K0 4Q5Q . By using
(3), one verifies:

[E4 (z1 ) E4 (z2 ), E6 (z1 ) E6 (z2 ), E4 (z1 )3 E6 (z2 )2 ]

42E4 (z1 )3 E6 (z2 )2 (E4 (z1 )3 2E6 (z1 )2 )(E4 (z2 )3 2E6 (z2 )2 )

42E4 (z1 )3 E6 (z2 )2 k(Q5Q) .

Once again, we see that a bracket allows us to compute the element k of the Ra-
manujan property; but this time it is a trilinear bracket.

Going back to the case K4Q(k5), it is proved in loc. cit., that the ring of Hil-
bert modular forms of parallel weight associated to K is generated by x 15 , and
three algebraically independent modular forms W 2 , x 5 , x 6 (the subscripts are also
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the weights). In [10], we have proved that:

[W 2 , x 5 , x 6 ] 4lx 15 ,

for a non-zero complex number l , so that we really feel now, that the hypothesis
that k(Q(k5) ) 4x 15 is reasonable. Of course, the fact that x 15 is a multilinear
bracket does not completely explain why x 15 belongs to every differentially prime
ideal also containing modular forms. This is such a nice coincidence, proved in
[12], but we do not know why it happens yet. The following question arises:

Q u e s t i o n . Let K be a totally real number field of degree nD1. Does Y(K)
satisfy the Ramanujan property? Are the multilinear brackets defined above in-
volved in the definition of k(K)?

In this direction, we mention that we have proved in [12], for K4Q(k5), that
there exists two non-zero Hilbert modular forms F1 , F2 of weights (7 , 9 ), (9 , 7 ),
such that the three ideals of Y(K):

(aW 2
5 2x 5

2 , bW 2
3 2x 6 , x 15 )

with

(a , b) 4 g 1

800000
,

1

800
h , g 1

253125
,

1

675
h , (0 , 0 ) ,

have (geometric) height 2 , and are ]F1 D1 , F2 D2 (-stable. Since they all contain
x 15 , this confirms once again, the hypothesis that k(Q(k5) ) 4x 15 .
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A b s t r a c t

The aim of this text is to introduce and describe certain differential rings of modular
and quasi-modular forms, playing an important role in diophantine geometry. We first
explain in an informal way how these properties are connected with the problem of
multiplicity lemmas, then we describe a few properties of the structure of differential
rings of Hilbert quasi-modular forms.

* * *


