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1 - Introduction

The aim of this paper is to survey some topics in elementary number theory.
The contents are based on the talk given in Parma at the occasion of the Second
Italian Meeting of Number Theory in november 2003. All these topics are of arith-
metical nature and, as is often the case, no special knowledge is required. Still to-
day improvements and new developments are possible, so this makes this paper
suitable for students who wish to begin or to continue their studies in elementary
number theory.

Each section contains a problem involving a suitable sequence of integers or
family of sequences with a short review of known results, open problems, and
some new results.

Section 2 is consecrated to practical numbers, i.e., those numbers m such that
the set of all distinct positive divisors sums contains all positive integers not
exceeding m . Section 3 concerns sum-free sequences, i.e., increasing sequences of
positive integers such that each term is never a sum of distint preceding terms.
Section 4 presents some results on density of certain sets whose elements are
sums of distinct powers of positive integers. We provide a counterexample to a
conjecture of Burr, Erdös, Graham and Wen-Ching Li [2]. Section 5 deals with
certain families of positive integer sequences whose digital expansion of elements
is suitably related to the digital expansion of their powers.
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2 - Practical numbers

A positive integer m is a practical number if every positive integer nEm is a
sum of distinct positive divisors of m .

Let P(x) be the counting function of practical numbers and let P2 (x) be the
function that counts practical numbers mGx such that m12 is also a practical
number. Stewart [18] proved that a positive integer mF2, m4q1

a 1 q2
a 2

R qk
a k ,

with primes q1 Eq2 EREqk and integers a i F1, is practical if and only if q1 42
and, for i42, 3 , R , k ,

qi Gs(q1
a 1 q2

a 2
R qi21

a i21)11 ,

where s(n) denotes the sum of the positive divisors of n . A wide survey of results
and conjectures on practical numbers is given by Margenstern [9].

Practical numbers appear to be a prime-like sequence. Saias [15], using suita-
ble sieve methods introduced by Tenenbaum provided a good estimate in terms of
a Chebishev-type theorem:

T h e o r e m 1. For suitable constants c1 and c2 ,

c1
x

log x
EP(x) Ec2

x

log x
.

The author [10] solved the Golbach problem by proving that every even positive
integer is a sum of two practical numbers. The proof used an auxiliary increasing
sequence mn of practical numbers such that for every n , mn 12 is also a practical
number and mn11 /mn bounded by an absolute constant, and a corollary of Ste-
wart’s theorem, namely if m is a practical number and nG2m , then mn is a pra-
tical number too. Every pair of twin practical numbers yields a suitable interval of
even numbers expressible as a sum of two practical numbers and intervals
overlap.

A local property which does not appear in primes holds for practical numbers:
there exist infinitely many practical numbers m such that both m22 and m12
are practical, as one can check by taking m42 Q33k Q70 , for k�N .

Further, infinitely many 5-tuples of practical numbers of the form m26, m22,
m , m12, m16 exist under a suitable but still unproved hypothesis [13].

Twenty years ago Margenstern conjectured that for suitable l 1 and l 2 D0

P(x) Al 1
x

log x
and P2 (x) Al 2

x

(logx)2
. He empirically proposed l 1 C1.341 and

l 2 C1.436. Such conjectures appear far to be proved. However it should be inte-
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resting to prove that lim
xKQ

P(2x) /P(x) 42, a somewhat weaker result conjectured
by Erdös [5].

Concerning the counting function of twin practical numbers a recent result of
the author [12] is the following

T h e o r e m 2. Let kD21 log(3 /2). For sufficiently large x,

P2 (x) D
x

exp ]k(logx)1/2 (
.

In particular this implies that for every aE1, P2 (x) cx a . The proof uses the
fact that if m1 and m2 are two practical numbers, with 0.5 Em1 /m2 E2, and with
gcd]m1 , m2 ( 42, there exist r and s , not exceeding respectively 2m1 and 2m2 ,
such that m1 r and m2 s are a pair of twin practical numbers. It is possible to build
m1 and m2 by picking the primes of their factorization in suitable intervals in
order to control their mutual size. One has to count all possible pairs and divide
by the maximal number of repetitions.

Many other open probems on practical numbers and related questions have
been raised by Erdös in [6].

3 - Sum-free sequences

An increasing sequence of positive integers ]n1 , n2 , R( is called a sum-free
sequence if each term is never a sum of distinct smaller terms. This definition is
due to Erdös [4] who proved certain related results and raised several problems.
In his paper he proved that if ]nk ( is a sum-free sequence then it has zero asym-
ptotic density. In other words, for every eD0, and for sufficiently large k , nk

Dk 11e . By the same argument he proved that for every bE (k511) /2 , for infi-
nitely many k , nk Dk b .

Until 1996, all known sum-free sequences had a gap, namely

lim sup
kKQ

nk11

nk

D1 .

In [3], Deshouillers, Erdös and the author gave some examples of infinite sum-
free sequences with no gap. They also proved that for every positive d , there
exists a sum-free sequence ]nk ( such that nk Ak 31d .

The best extremal result concerning sum-free sequences is due to LCuczak and
Schoen [8]. They proved that for every positive d , there exists a sum-free sequen-
ce ]nk ( such that nk Ak 21d and that the exponent 2 is the best possible.
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However an interesting problem remains open. Erdös proved that for any
sum-free sequence ]nk ( one has

!
j41

Q 1

nj

E103 .

It is natural to define

R4 sup
]nk( sum-free

{!
j41

Q 1

nj
} .

The best known lower bound is due to Abbott [1] who proved that RD2.064. Le-
vine and O’Sullivan [7] proved the actual best known upper bound RE4.

4 - Sums of distinct powers

A sequence S4 ]s1 , s2 , R( of positive integers is a complete sequence, if

S(S) »4 m!
i41

Q

e i si , for e i � ]0, 1(, !
i41

Q

e i EQn
contains all sufficiently large integers. In this section we deal with sequences S
whose elements are powers of positive integers. Let sF1 and A be a (finite or in-
finite) set of integers greater than 1. Let Pow (A ; s) be the nondecreasing se-
quence of positive integers of the form a k with a�A and kFs .

Burr, Erdös, Graham and Wen-Ching Li [2] proved several results providing
sufficient conditions in order that Pow (A ; s) is complete. They also conjectured
that for any sF1, Pow (A ; s) is complete if and only if

(i) !
a�A

1/(a21) F1,

(ii) gcd ]a�A( 41.

The following proposition disproves the «only if» part of their conjecture. We
provide counterexamples using suitable infinite sets A . However for finite sets the
problem is open.

P r o p o s i t i o n 1. Let eD0. There exists a set A of integers F2 such that:

(i) !
a�A

1/(a21) Ee ,

(ii) for every sF1, Pow (A ; s) is complete.

P r o o f . Let pF3 be a prime, and let Rp »4 ]n 2 p , n�N(. We have that
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Pow (Rp ; s) * ]n 2s p s , n�N(. Since every sufficiently large integer is a sum of di-
stinct 2s-th powers of positive integers [17], there exists r2s such that

S( Pow (Rp ; s) ) * ]np s , nDr2s (.

If Qp is such that Qp ORp 4¯ , we get S( Pow (Rp NQp ; s) ) 4S( Pow (Rp ; s) )
1S( Pow (Qp ; s) ). Since S( Pow (Rp ; s) ) contains all sufficiently large multiples of
p s , in order that Pow (Rp NQp ; s) is complete, it suffices to provide a set Qp such
that S( Pow (Qp ; s) ) contains at least one element from each congruence class mo-
dulo p s . Let Qp 4 ]p11(. It is clear that Pow (Qp ; s) contains infinitely many
elements f1 mod p s , so S( Pow (Qp ; s) ) contains at least one element from each
congruence class modulo p s .

By the above arguments this implies that for A»4Rp NQp , Pow (A ; s) is com-
plete. Note that the elements of A do not depend on s , and that for sufficiently
large p ,

!
a�A

1

a21
4

1

p
1 !

n41

Q 1

n 2 p21
Ee . r

A related open question is the following. Consider the sequence ]nk ( of positi-
ve integers that are a sum of distinct powers of 3 and of 4. Erdös asked for a
proof that nk bk . The best known result is nk bk 1.0353 as shown in [11].

More generally we propose the following conjecture.

C o n j e c t u r e 1. Let sF1 and let A be a sequence of integers F2. If for

every a1 , a2 �A , gcd ]a1 , a2 ( 41 and !
a�A

1

log a
D log 2 then S( Pow (A ; s) ) has a

positive lower asymptotic density.

Note that if we replace the condition «for every a1 , a2 �A , gcd ]a1 , a2 ( 41»
by «gcd ]a�A( 41» the statement is not true. For the set A4 ]3, 9 , 81 , 104(,

we have gcd ]a�A( 41; !
a�A

1

loga
D log 2 , but S( Pow (A ; s) ) has zero lower

asymptotic density [11].

5 - Simultaneous binary expansions

Let B(n) be the sum of digits of the positive integer n written on base 2 . A na-
tural question of some interest is to describe the sequence of positive integers n
such that B(n) 4B(n 2 ). Other related questions can be easily raised. For
example it can be of interest to study the sequence of the positive integers n such
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that 2B(n) 4B(n 2 ), i.e., those n such that n and n 2 have the same «density» of
ones in their binary expansion.

D e f i n i t i o n 1. Let kF2, lF1, mF2 be positive integers. We say that a po-
sitive integer n is a (k , l , m)-number if the sum of digits of n m in its expansion
in base k is l times the sum of the digits of the expansion in base k of n .

The above sequences respectively represent the (2 , 1 , 2 )-numbers and the
(2 , 2 , 2 )-numbers.

The simplest case is (k , l , m) 4 (2 , 1 , 2 ), which corresponds to the positive
integers n for which the numbers of ones in their binary expansion is equal to the
number of ones in n 2 .

The list of (2 , 1 , 2 )-numbers as well as the list of (2 , 2 , 2 )-numbers shows
several interesting facts. The distribution is not regular. A huge amount of que-
stions, most of which of elementary nature, can be raised.

In spite of their elementary definition, as far as we know these sequences do
not appear in literature. Several questions, concerning both the structure proper-
ties and asymptotic behaviour, can be raised. Is there a necessary and sufficient
condition to assure that a number is of type (2 , 1 , 2 )? of type (2 , 2 , 2 )? What is
the asymptotic behaviour of the counting function of (2 , 1 , 2 )-numbers? of
(2 , 2 , 2 )-numbers?

The irregularity of distribution does not suggest a clear answer to these
questions.

Let p(k , l , m) (n) be the number of (k , l , m)-numbers which do not exceed n . By
elementary arguments one can prove the following.

T h e o r e m 3. Let p(2 , 1 , 2 ) (n) be the counting function of the (2 , 1 , 2 )-num-
bers. We have

p(2 , 1 , 2 ) (n) cn 0.025 .

The proof uses the fact that for every n it is possible to construct a set of n di-
stinct (2 , 1 , 2 )-numbers not exceeding An 40 . To do this, one uses the fact that for
every nE2n , B(n(2n21) ) 4n . The construction uses an arbitrary number not
exceeding n: by adding in its binary expansion a suitable finite sequence of zeros
and ones, with a special attention for the control of the function B for simultane-
ously the new number and its square, one obtains a (2, 1, 2)-number not exceed-
ing An 40 . Further details can be found in [14].

By an analogous procedure it is possible to prove the following theorem.
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T h e o r e m 4. Let p(2 , 2 , 2 ) (n) be the counting function of the (2 , 2 , 2 )-num-
bers. We have

p(2 , 2 , 2 ) (n) cn 0.0909 .

Concerning upper bounds for counting functions, Sándor [16] recently an-
nounced that

p(2 , 1 , 2 ) (n) bn 0.9183 .

Some conjectures on counting functions can be proposed. Apart from small in-
tervals centered on powers of 2, the binary expansions of n and n 2 appear as ran-
dom and uncorrelated sequences of zeros and ones. Using this appearance and
considering B(n) and B(n 2 ) as independent random variables, a euristic approach
suggests the following conjectures.

C o n j e c t u r e 2.

p(2 , 1 , 2 ) (n) 4n a1o(1)

where a4 log 1.6875/log2 C0.7548875.

C o n j e c t u r e 3. For each k one has:

p(2 , k , k) (n) 4
n

(log n)1/2
Gk 1R(n) ,

where Gk 4o 2 log 2

p(k 2 1k)
and R(n) 4o(n/(log n)1/2 ).

A detailed discussion of the above conjectures can be found in [14]. Computa-
tions show that the above conjectures describe quite well the behaviour of count-
ing functions for nE108 .
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A b s t r a c t

A survey of recent results in elementary number theory is presented in this paper.
Special attention is given to structure and asymptotic properties of certain families of po-
sitive integers. In particular, a conjecture on complete sequences of Burr, Erdös, Graham
and Wen-Ching Li is disproved.
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