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The exceptional set in short intervals

for two additive problems with primes: a survey (**)

1 - Goldbach problem

The first problem we examine here is the well-known Goldbach’s conjecture: is
it true that every even number nD2 can be written as a sum of two primes? At
present it is not known if this statement is true or false. In the following an even
number which is a sum of two primes will be called a G-number. A possible ap-
proach to this problem is trying to estimate the number of its exceptions: so deno-
te by E the set of even integers larger than two which are not G-numbers. It is
clear that a positive answer to the Goldbach problem is equivalent to proving that
E4¯ and hence NEN40. As we said before, we are unfortunately not able to pro-
ve such a strong result and, in fact, we are very far from it. To explain why, after
letting X be a sufficiently large parameter and E(X) 4EO [1 , X], we recall the
best known result on NE(X)N (the cardinality of the set E(X)):

T h e o r e m 1.1 (Montgomery-Vaughan [15], 1975). There exists an effectively
computable positive constant d such that

NE(X)Nb X 12d .

In this statement, and in the following, we denote with the I.M. Vinogradov’s
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notation f (x) bg(x) the existence of a positive constant CD0 such that Nf (x)N

GCNg(x)N .
Montgomery-Vaughan’s result means, from an asymptotic point of view, that

there are few exceptions to the Goldbach conjecture, but the quality of the estima-
tion is very far from NE(X)Nb1 (which means that every sufficiently large even
integer is a G-number). Concerning the order of magnitude of d in Theorem 1.1,
we remark that, in 1999, H. Li [12] was able to prove that d40.079 is admissible
while, recently, J. Pintz [21] announced that Theorem 1.1 holds with d41/3 .

We recall that Theorem 1.1 is proved using the famous circle method which
was developed, around 1920, by G.H. Hardy, J.E. Littlewood and S. Ramanujan.
Roughly speaking, the circle method is an analytic technique which connects the
number of representations of an integer as a sum of other integers with an inte-
gral of trigonometric functions of period 1; then the interval of integration is split
in two subsets: the first one is a union of few subsets of (0 , 1 ) (in which the inte-
grands are «big»: the «major arcs») and furnishes the expected main term of the
additive problem considered and the second one is a union of a large numbers of
other subsets of (0 , 1 ) (in which the integrands are «small»: the «minor arcs»)
and furnishes the expected error term. Hardy, Littlewood and Ramanujan used
their method to prove results on the partition function (Hardy-Ramanujan; pro-
blem completely solved by H. Rademacher in 1937) and on several additive pro-
blems with primes (Hardy-Littlewood; see their series of articles named «Partitio
Numerorum»).

We also recall that, relaxing the condition on one of the two summands, we ob-
tain better results. For example we have the following:

T h e o r e m 1.2 (J. Chen [3], [4], 1966). Every sufficiently large number n
can be written as a sum of a prime and of an integer which has at most two pri-
me factors.

The proof of Chen’s theorem is based on sieve techniques (see, e.g., Halber-
stam-Richert [5], ch. 11). By relaxing the condition on the number of summands,
we have other important results:

T h e o r e m 1.3 (I.M. Vinogradov [25], 1937). Every sufficiently large odd
number n can be written as a sum three primes.

T h e o r e m 1.4 (O. Ramaré [23], 1995). Every even integer n can be written
as a sum of at most six primes. Every integer nD1 can be written as a sum of at
most seven primes.
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Vinogradov’s theorem is proved by using the circle method, while Ramaré’s
result follows from a combination of sieve techniques and of effective results on
the distribution of primes in arithmetic progressions.

Now we turn back to the Goldbach problem. Another kind of situation one mi-
ght study is the number of exceptions belonging to a «short» interval. This means
that we consider the exceptions to the Goldbach problem in the interval [X , X
1H], where H4o(X) as XK1Q . From now on we will write such a set as
E(X , H) 4EO [X , X1H]. It is clear that Theorem 1.1 cannot give us any infor-
mation on such a short interval. It is also clear that H cannot be too small; for
example if we were able to prove E(X , H) 4¯ for H42 and X sufficiently large,
we would have that every sufficiently large even number n is a sum of two primes,
i.e., a proof of a weak version of the Goldbach problem!

Several results the exceptional set in short intervals were proved during the
last twenty years but we recall now just the following ones since they are deeply
connected with ours. In 1996 C.H. Jia, combining analytic method with sieve te-
chniques, proved that

T h e o r e m 1.5 (Jia [8], 1996). Let AD0, eD0 be arbitrary constants and H

FX
7

108
1e

; then

NE(X , H)NbH log2A X .

Using only circle method techniques, the best result on E(X , H) was proved in
1993 by Perelli-Pintz:

T h e o r e m 1.6 (Perelli-Pintz [18], 1993). Let AD0, 0 EeE5/6 be arbitrary

constants and HFX
7

36
1e

; then

NE(X , H)NbH log2A X .

As can be seen from the previous statements, there are two important para-
meters: the quality of the estimate on NE(X , H)N and the uniformity on H .

So a natural question is: is it possible to obtain a short interval analogue of
Theorem 1.1, i.e., to save a power of H in the estimate of NE(X , H)N?

Near 1980 an extension of Montgomery-Vaughan’s result to short intervals
was given by S.T. Luo-Q. Yao and Yao. They stated that there exists an effectively
computable positive constant d such that, for every eD0, NE(X , H)NbH 12d for

HFX
7

12
1e

. But they made an oversight in the proof (in fact the mistake is in the
application of zero-density estimates for Dirichlet L-functions) and so, after cor-
rection, their theorem becomes:
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T h e o r e m 1.7 (Luo-Yao [13] and Yao [26]). There exists an effectively com-

putable positive constant d such that for HFX
7

12
12d

we have

NE(X , H)NbH 12d .

In 2001 T.P. Peneva [16], see also the Corrigendum [17], obtained that the sa-

me estimate on NE(X , H)N holds in the wider range HFX
1

3
1d

. In fact an oversi-
ght in Peneva’s estimate of the minor arcs let her state the result in the range

HDX
1

3 ; unfortunately this uniformity on H is not reached by her proof.
In 2003 we proved the following

T h e o r e m 1.8 (L. [10]). There exists an effectively computable positive con-

stant d such that for HFX
7

24
17d

we have

NE(X , H)NbH 12d/600 .

Here we just give an outline of the proof.

i) First we introduce a localization parameter Y for the primes and so
we write an even integer n� [X , X1H] as p1 1p2 with X2YEp1 GX1Y and

Y/2 Ep2 GY . Our result hence is obtained by using Y4X
7

8
17d1e

and

H4Y
1

3
16d1e

.
ii) Essentially, we follow the Montgomery-Vaughan argument to treat the

contribution of the major arcs and the Mikawa-Peneva technique to estimate the
mean squares of minor arcs. For technical reasons the main term estimate is per-
formed only at the centre of the major arcs. In the remaining part («periphery» of
the major arcs), we study the individual contributions of the non-exceptional zeros
of Dirichlet L-functions located in a thin constant strip near D(s) 41 («excluded
zeros»). The mean-square estimation of the non-excluded zeros in the periphery
of the major arcs is performed using a slightly modified version of Perelli-Pintz’s
minor arcs technique.

iii) In the body of the proof we will use the zero-density estimate

!
qGP

!
x

* N(s , T , x) b (P 2 T)
12

5
(12s)

(log PT)22 ,(1)

for s� [1 /2 , 1 ], see Ramachandra [22], and the log-free zero-density estimate

!
qGP

!
x

* N(s , T , x) b (P 4 T)
3

2
(12s)

,(2)

for s� [27 /28 , 1 ], see Peneva [16] and the Corrigendum [17], where * means that
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the summation is over primitive characters and N(s , T , x) 4N]r4b1 ig :
L(r , x) 40, bFs and NgNGT(N is the density function for the zeros of the Diri-
chlet L-functions.

iv) The meaning of the previously mentioned constants 7/8 and 1/3 can be explai-
ned as follows. In the centre of the major arcs, our treatment requires (1) and so Y

has to be greater than X
7

12
13d1e

. In the periphery of major arcs unfortunately we

are not able to reach the level X
7

12
13d1e

but only X
7

8
17d1e

. This loss of uniformity
is due to the use of the partial summation formula in the estimate of

!
Y/2 EmGY

L(n2m) x(n2m) m r21 ,

where r is an excluded zero of a Dirichlet L-function of a primitive character x

and L is the von Mangoldt function. Moreover, in the mean-square estimates of

the minor arcs, we will have to choose H equal to Y
1

3
16d1e

.

Theorem 1.8 is, at present, the Montgomery-Vaughan’s type estimate which
has the widest uniformity on H . It won, in 2003, the Distinguished Award of Har-
dy-Ramanujan Society.

It is an open problem to obtain the same estimate on NE(X , H)N with a better

uniformity on H , e.g., for HFX
7

36
1d

. We think that it should be true, but, so far,
we have no proof of it. We also think that, to prove a further better uniformity on
H , some type of sieve method has to be inserted into our proof.

2 - Hardy-Littlewood problem

The second additive question we discuss here is the Hardy-Littlewood pro-
blem. In 1923 Hardy and Littlewood [6], [7] conjectured that every sufficiently
large integer is either a k th-power of an integer or a sum of a prime and a k th-
power of an integer, for k42, 3 . In the following we will call Hardy-Littlewood
number (HL-number) an integer which is a sum of a prime and of a k th-power of
an integer, k�N , kF2.

As we said for the Goldbach problem, a strategy to prove results on the HL-
problem is to study the number of its exceptions. So denote by Ek the set of inte-
gers which are neither an HL-number nor a k th-power of an integer. We will
study the cardinality of the sets Ek (X) 4Ek O [1 , X] and Ek (X , H) 4Ek O [X ,
X1H], where X is a sufficiently large parameter and H4o(X) as XK1Q . It is
clear that the Hardy-Littlewood conjectures are equivalent to NEk (X)Nb1 for k
42, 3 . At first sight such a problem seems to be deeply connected with Goldba-
ch’s conjecture but the integer powers are sparser and have a more regular di-
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stribution than primes. The regular distribution of powers suggests that the HL-
problem should be easier than Goldbach’s one but their sparsity suggests it
should be harder. By now, in fact, several results on HL-numbers, which are simi-
lar to the ones known on Goldbach problem, can be proved. For example, it is pos-
sible to obtain that the exceptions of the HL-problem are asymptotically few. In
fact, about fifteen years ago, Brünner-Perelli-Pintz proved the following result:

T h e o r e m 2.1 (Brünner-Perelli-Pintz [2], 1989). There exists an effectively
computable positive constant d such that

NE2 (X)NbX 12d .

The same estimate was independently proved in the same years by A.I. Vino-
gradov [24]. Theorem 2.1 can be considered an analogue of Theorem 1.1 but in its
proof several technical difficulties concerning the contributions to the main term
of the non-exceptional zeros of Dirichlet L-functions located in a strip near the li-
ne D(s) 41 (such contributions are not present in the proof of Theorem 1.1) have
to be avoided. A similar result was proved for the general case kF2 by A. Zacca-
gnini [27] in 1992. To generalize Brünner-Perelli-Pintz’s proof to the case kF2,
Zaccagnini had to develop a more sophisticated treatment of the arithmetic part
(the singular series).

As for Theorem 1.1 on the Goldbach problem, Theorem 2.1 does not have any
consequences on the estimate of NEk (X , H)N . In this case, several results were
proved in the latest ten years; as before, we cite only the ones which are strictly
connected with ours. In the first part of the nineties of the last century, Perelli-
Pintz and H. Mikawa proved independently:

T h e o r e m 2.2 (Perelli-Pintz [19] and Mikawa [14]). Let AD0, eD0 be ar-
bitrary constants and HFX 7/241e ; then

NE2 (X , H)NbH log2A X .

Moreover, in 1995, Perelli-Zaccagnini were able to generalize this result to the
following:

T h e o r e m 2.3 (Perelli-Zaccagnini [20]). Let AD0, eD0 be arbitrary con-
stants and HFX 7/12(121/k)1e ; then

NEk (X , H)NbH log2A X .

Recently the author proved the following Montgomery-Vaughan type estimate
for the exceptional set of the Hardy-Littlewood problem (kF2) in short inter-
vals:
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T h e o r e m 2.4 (L. [11], 2003). Let kF2 be a fixed integer and K42k22 .
There exists an effectively computable positive constant d such that for

HFX
7/12(12

1

k
)1d

NEk (X , H)NbH 12d/(5K) .

Again, we give just an outline of the proof.

i) We insert a localization parameter Y for the primes and write an HL-num-
ber n� [X , X1H] as p1m k with X2YGpGX1Y and Y/2 Gm k GY . Theo-

rem 2.4 is obtained using Y4X 7/12110d1e and H4Y (12
1

k
)1d .

ii) To treat the centre of the major arcs we adopt the circle method setting
used by Brünner, Perelli, Pintz and Zaccagnini. So we estimate the contribution of
the zeros of Dirichlet L-functions located in a suitable thin strip near D(s) 41
(«excluded zeros») as «secondary» main terms.

iii) In the body of the proof we will use the zero-density estimate (1) and the
following log-free zero-density estimate: let eD0, then

!
qGP

!
x

* N(s , T , x) b (P 2 T)(21e)(12s) ,(3)

for s� [4 /5 , 1 ], see M. Jutila [9]. In this case we have no need for the sharper
log-free density estimate (2) since the level of minor arcs essentially implies
YDX 1/2 , see iv).

iv) The meaning of the previously mentioned constants 7 /12 and g12
1

k
h can

be explained as follows. In the error term of the explicit formula for the function
c(x , x) 4 !

mGx
L(m) x(m) we have to choose the vertical level T of the zeros as

TFX 117d Y 21 log2 X and, to estimate the contribution of the secondary main ter-
ms using (3), we have to choose TGX 1/22e22d . Combining such relations we get
YFX 1/21e19d which is already satisfied since in the centre of the major arcs our
treatment requires (1) and hence YFX 7/121e110d . Moreover, in the mean-square
estimates of the minor arcs and of the periphery of major arcs, we will choose

HFY (12
1

k
)1d . Here, unlike the Goldbach case, we can use the regular distribu-

tion of powers to give a careful estimate the contributions of the periphery of
the’major arcs without any loss of uniformity on Y .

v) Finally, other differences with the proof of Theorem 1.8 are that a stron-
ger zero-free region for Dirichlet L-functions and a stronger result on Deuring-
Heilbronn phenomenon are needed. Moreover, the arithmetic part (the singular
series) is more difficult to treat with respect to the Goldbach case.

Finally, we remark that the uniformity on H in Theorem 2.4 seems to be the
best possible for this problem while the quality of the estimate can be improved to
NEk (X , H)NbH 12d/(ck) , where cD0 is an absolute constant, using the Brüdern-
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Perelli [1] approach (we did not use it in the proof of Theorem 2.4 to avoid the te-
chnical difficulties involved).

Since it seems that Theorem 2.4 is essentially optimal, a natural and intere-
sting question is which result can be proved on NEk (X , H)N assuming some hypo-
thesis on the distribution of the zeros of the Dirichlet L-functions. To be more
explicit: is it possible, assuming the Generalized Riemann Hypothesis, to prove an

estimate of the type NEk (X , H)Nb H
12

1

ck , where cD0 is an absolute constant,

uniformly for Hc X
1

2
(121/k)1e

? We have a preliminary result of this type but, for
now, it holds only with a weaker uniformity on H .
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A b s t r a c t

We give a brief account about the exceptional sets in short intervals for the Goldbach
and the Hardy-Littlewood problems. In particular, we present two recent results about
Montgomery-Vaughan’s type estimates for such exceptional sets.

* * *


