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PIETRO CO R V A J A (*)

Some remarks on integral points close to hypersurfaces (**)

1 - The one-dimensional case

We begin by discussing rational approximation to algebraic points on the line.
In this context, we have the celebrated theorem of Roth which states the
following:

T h e o r e m o f R o t h 1.1. Let a be a real irrational algebraic number, eD0
a positive real number. Then for all but finitely many rational numbers p/q
(p , q are coprime integers, qD0),

Na2
p

q N D g 1

q
h21e

.

It is a milestone in the theory of diophantine approximation and a key tool in
attaking many problems on integral solutions to diophantine equations.

Observe at once that Roth theorem can be viewed as a lower bound for the di-
stance from the rational point (q : p) �P1 (Q) to the algebraic point (i.e. hypersur-
face) (1 : a). Also, if we let f (X) �Q[X] be the minimal polynomial of a and
fA(X0 , X1 ) �Q[X0 , X1 ] be the corresponding homogeneous form, i.e. a homogenous
polynomial of degree d4 [Q(a) : Q] with fA(1 , a) 40, we can restate Roth’s theo-
rem as follows:
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Given eD0, all but finitely many rational points (q : p) �P1 (Q) satisfy

fA(q , p)

max ]NqN , NpN(d
D max ]NqN , NpN(222e .

In other words, it consists of a lower bound for the distance of the rational
points (q : p) �P1 (Q) to the geometrically reducible algebraic hypersurface defi-
ned by the vanishing of fA(X0 , X1 ).

While in dimension one all hypersurfaces of degree D1 are geometrically
completely reducible, in higher dimension this is certainly not the case. It will
turn out that all known methods to study the rational approximation to algebraic
hypersurfaces give good bounds only in the case of (sufficiently) reducible
hypersurfaces.

Before passing to higher dimension, let us see the most known general result
in the one-dimensional case. The form given below is due to Lang, after previous
work by Mahler and Ridout.

We first introduce some notation, which will be used in the rest of the paper.
For a number field K and a place v , we say that a corresponding absolute value
N QNv is normalized with respect to K if for all rational numbers x�Q ,

NxNv 4NxNw
[Kv : Qw ] /[K : Q] ,(1.1)

where w stands for the only place of Q below v , the absolute value N QNw of Q is
normalized in the usual way and Kv , Qw are the completions of K and Q respect-
ively. With this convention, the product formula holds (without weights) and the
Weil height reads

H(x) 4»
v

max ]1, NxNv ( ,

the product being taken over all the valuations of the number field K . With this
notation we have

G e n e r a l i z e d R o t h ’ s T h e o r e m 1.2. Let K be a number field, S be a finite
set of absolute values of K ; for each v�S , let a v �K be an element of K . Let eD0
be a positive real number. Then for all but finitely many elements b�K ,

»
v�S

Na v 2bNv DH(b)222e .

Again, the statement can be viewed as a lower bound for the distance (with re-
spect to several absolute values) from the approximating point b to the (zero di-
mensional) hypersurface defined by the points ]a v Nv�S(. Such a bound is an ea-
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sy consequence of the properties of heights (the so called Liouville inequality) in
the case the set ]a vNv�S( has cardinality G2. On the contrary, the Generalized
Roth’s theorem is deep and best possible in the case the above mentioned hyper-
surface has degree at least three, which amounts to having at least three
components.

As for Roth’s theorem, one can reformulate the generalized version given abo-
ve in terms of lower bounds for the product of linear forms with algebraic coeffi-
cients. This point of view will be taken up in the next paragraph.

2 - The subspace theorem

A major advance in the theory of diophantine approximations was performed
by W. Schmidt in the seventies, when he proved a best possible lower bound for li-
near forms with algebraic coefficients in several variables. His first result can be
stated as follows:

S c h m i d t ’ s T h e o r e m 2.1. Let f (x0 , R , xn ) be a linear form with (real) al-
gebraic coefficients, and let eD0. Then there are only finitely many points
x4 (x0 , R , xn ) �Zn11 with

0 ENf (x)NE max ]Nx0N , R , NxnN(2n2e .

Of course, one could restate the above theorem in «projective form». We intro-
duce the necessary notation, which extends the one used in §1.

For a vector x4 (x0 , R , xn ) �K n11 , where K is a number field, and a valua-
tion v of K , let us denote by VxVv the v-adic norm of x:

VxVv 4V(x0 , R , xn )Vv 4 max ]Nx0 Nv R , Nxn Nv (.

The projective height of the point x�K n11 0]0( is H(x) 4»v VxVv , the product
being taken over all the normalized absolute values of K . By the product formula,
it only depends on the projective class of x in Pn (K). Note that for a vector
x�Zn11 with coprime entries, its height is just the ordinary norm VxV . With this
notation, Theorem 2.1 can be stated as a lower bound

Nf (x)N

VxV

DH(x)2n212e(2.1)

valid for all rational points x�Pn (Q), with possibly the exception of a finite set
and the hyperplane of equation f (x) 40 (in case the latter has any rational
point).
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Schmidt’s Theorem was soon generalized by Schmidt himself to treat the ap-
proximations to several hyperplanes, in the spirit of the Generalized Roth’s Theo-
rem. Then Schlickewei managed to extend Schmidt’s theorem to cover several di-
stinct absolute values, as well as several hyperplanes for each absolute value. The
most general result is now called the Subspace Theorem. We give here its formu-
lation in the projective version:

S u b s p a c e T h e o r e m 2.2. Let K be a number field, S be a finite set of absolu-
te values of K , nF1 a positive integer. For each v�S , let Lv0 , R , Lvn be a set of li-
nearly independent linear forms in n11 variables x4 (x0 , R , xn). Let eD0 be a
positive real number. Then the solutions x�Pn(K) to the inequality

»
v�S

»
i40

n NLvi (x)Nv

VxVv

EH(x)2n212e(2.2)

are contained in a finite set of hyperplanes of Pn defined over K .

Among the first and most spectacular applications of the Subspace Theorem,
let us mention Schmidt’s classification of the so called norm form equations ad-
mitting infinitely many solutions ([8], chap. 4, §3) and the unit-equation theorem
(proved by Evertse and van der Poorten-Schlickewei) concerning the linear equa-
tion x0 1R1xn 40 in elements of a finitely generated multiplicative group ([8],
chap. 4, §2).

3 - The non linear case

Quoting Wolfgang Schmidt from [7], §11.3: «A better question perhaps is how
close rational points can come to a given algebraic variety...». Suppose now V%Pn

is an algebraic hypersurface containing no rational point x�Pn (Q), defined by
the equation f (x) 40, where f is a form of degree d with rational integer coeffi-
cients. (This means that the equation f (x) 40 has (0 , R , 0 ) as its only integral
solution). For every integer point xc0 in Zn11 we have Nf (x)NF1. Such an ine-
quality, which can also take the form

Nf (x)N

VxV

d
FH(x)2d ,(3.1)

can be interpreted as a generalization of Liouville’s inequality. Note that the left
side term can be taken by definition to be the distance from x to V(C) in Pn (C),
with respect to the ordinary absolute value. Still quoting from [7], §11.3: «Any im-
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provement on this inequality, even though perhaps it may apply only to special ca-
ses of non-linear hypersurfaces, would be of great interest and would shed light
on certain diophantine equations».

In [1] and [2] Zannier and the author proved the following

T h e o r e m 3.1. Let f (x) � Q[x] be a polynomial in n variables with al-
gebraic coefficients of degree dF1. Then for every eD0 there exists a number
cD0 such that for all x�Zn with f (x) c0,

Nf (x)NDc QH(x)2d(n21)2e .(3.2)

Some remarks are in order. First, the polynomial f is not assumed to be homo-
geneous. Second, f (x) has algebraic, not necessarily rational, coefficients. Hence,
the analogue of Liouville’s bound (3.1) would be now

Nf (x)NFc( f ) QH(x)2d(r21)

where r is the degree of the number field generated by the coefficients of f , and
c( f ) is an effectively computable constant.

On the other hand, in the particular case of a polynomial with integral coeffi-
cients, the lower bound provided by Theorem 3.1 is weaker then Liouville’s bound
Nf (x)NF1, valid for every x�Zn with f (x) c0. However, we shall see (Corollary
3.4) some improvement on Liouville’s bound even for polynomials with rational
coefficients, although only in some special cases, namely when the polynomials in
question are geometrically reducible.

Theorem 3.1 was obtained as a corollary of Theorem 3.2 below. We first need
a definition: for a finite set S of absolute values of K , containing the archimedean
ones, we let OS %K be the ring of S-integers of K , i.e. the set of elements x�K
with NxNv G1 for all v�S .

T h e o r e m 3.2. Let W %An be an affine algebraic variety of dimension r ,
defined over a number field K and irreducible over K . Let for each place v�S ,
fv (x) �K[x] be a polynomial of degree dF1. For every positive e , there are only
finitely many points x� W(OS ) such that

0 E »
v�S

Nfv (x)Nv EH(x)2d(r21)2e .(3.3)

Hence the exponent can be chosen to depend on the dimension of any alge-
braic variety W containing the approximations in question. (If we have no infor-
mation on the distribution of the approximating points, i.e. they are Zariski dense
in An , we reobtain the exponent of Theorem 3.1 by taking W 4An).
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In analogy with the Subspace Theorem, one can consider approximating sev-
eral hypersurfaces with respect to the same place v , i.e. one might be interested
in bounding from below the «distance» from a rational point to the intersection of
several hypersurfaces (here the «distance», however, is measured as the product
of the values of the forms defininig the subvariety). In [1], Theorem 3 we proved
the following:

T h e o r e m 3.3. For v�S , let fiv , i41, R , n21, be polynomials

in K[X1 , R , Xn ] of degrees d iv D0. Put d v 4 max
i

d iv and m»4 min
v�S

!
i41

n21 d iv

d v

. Fix

eD0 and consider the Zariski closure H in Pn of the set of solutions x�OS
n of

»
v�S

»
i41

n21

Nfiv (x)Nv

1

d v GH(x)m2n2e .(3.4)

Suppose that, for v�S , the fAiv , i41, R , n21, define a variety of dimension 1.
Then dim H Gn21. Moreover, if H8 is a component of H of dimension n21,
there exists v�S such that the fAiv determine in H8 a variety of dimension 1.

We shall derive from the above statement the following Corollary, which gives
some improvement on Liouville’s bound for values at integral points of polyno-
mials with integral coefficients, at least in special cases.

C o r o l l a r y 3.4. Let f (x) �Z[x] be a polynomial with integral coefficients,
irreducible in Z[x]. Suppose it splits over Q in the product of r factors f1 , R , fr

(each) of degree d . Suppose moreover that the r hypersurfaces of the hyperplane
at infinity defined by the equation fAi (x) 4x0 40 (i41, R , r) are in general po-
sition. Then

(1) The solutions x�Zn of the inequality

Nf (x)NEH(x)(r2n) d2e(3.5)

are not Zariski dense in An .
(2) If rDn, for every kc0 the integral points in the affine hypersurface

f (x) 4k

are not Zariski dense in the hypersurface defined by the above equation.

Note that the above equation f (x) 4k is a so-called norm form equation in the
particular case when f is a homogeneous polynomial and d41. This particular ca-
se was treated already by Schmidt in the seventies (see [8], chap. 4).
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We sketch the deduction of Corollary 3.4 from Theorem 3.3. Note that the first
statement is trivial if n2rG0, so we may assume n2rF1.

Let us denote by K the splitting field of f (x), so that K is a Galois extension of
Q and the factors fi (x) (i41, R , r) are defined over K and are conjugates over
Q . The idea is to apply Theorem 3.2 to such factors. We recall at once that the ab-
solute value used in (3.5) is the standard (real) absolute value, while those appea-
ring in (3.4) are normalized with respect to the number field K , i.e. according to
the formula (1.1).

Now, let us suppose to have a sequence x1 , x2 , R of solutions to the inequality
(3.5). Put for each j41, 2 , R

Pj 4 (1 : xj1 : R : xjn ) �Pn (Q)

where xj 4 (xj1 , R , xjn ). In other terms we embed An into Pn in the usual way
and denote by Pj the corresponding image of xj . After partitioning the sequence
]Pj (j41, R

into finitely many subsequences, we can suppose that for each archime-
dean absolute value v , the sequence Pj converges in Pn (Qv ) to a point Pv . Let us
denote by S 8 the set of the archimedean absolute values v of K for which the point
Pv is at infinity, i.e. has a vanishing 0-th coordinate; then denote by S 9 the set of
archimedean absolute values v for which Pv is in An (Qv ). Finally set S»4S 8NS 9 ,
the set of all archimedean absolute values of K . Note that unless the set
]P1 , P2 , R( is finite, the set S 8 is non-empty.

Fix now a place v�S 8 . Denote by ]i1 (v), R , in21 (v)( the set of indices mini-
mizing the absolute value of N fAi (Pv )Nv .

By our assumption, the point at infinity Pv can belong to at most n21 hyper-
surfaces fAi (x) 40. Then for i� ]i1 (v), R , in21 (v)(, we have fAi (Pv ) c0. Then for
such indices i , N fAi (Pv )Nv /VPv V

dFcv , for a positive constant cv; so, by continuity
of the function Pn (Qv ) �P O fAi P) /VPVv

d in the v-adic topology, for
i� ]i1 (v), R , in21 (v)(,

Nfi (xj )Nv 4N fAi (Pj )Nv c VPj Vv
d4Vxj Vv

d .

Taking the product over all i� ]1, R , r( we get, for v�S 8 ,

Nf (xj )Nv c g »
h41

n21

Nfih (v) (xj )Nvh QVPj Vv
(r2n11)d .(3.6)

Now, recall that the polynomials f1 , R , fr are conjugates over Q; by this we mean
that for each i� ]1, R , r( and each automorphism s�Gal (K/Q), there exists an
index s i such that fi

s4 fs i
. (We have denoted by fi

s the polynomial obtained by ap-
plying the automorphism s to each of its coefficients.) Also, the places of S are



220 PIETRO CORVAJA [8]

conjugates over Q: if v , w�S , then there exists a s�Gal (K/Q) such that for all x
�K , NxNv 4Ns(x)Nw . Then, using the fact that the algebraic number f (xj ) is in
fact a rational integer, we know that Nf (xj )Nv 4Nf (xj )Nw for all w�S (and all
j41, R). Hence the relation (3.6) must hold for every v�S , so

Nf (xj )N4 »
v�S

Nf (xj )Nv c g»
v�S

»
h41

n21

Nfih (v) (xj )Nvh Q g»
v�S

VPj Vv
d(r2n11)h .

Since »
v�S

VPj Vv 4H(Pj ) 4H(xj ) we have

Nf (xj )Nc g»
v�S

»
h41

n21

Nfih (v) (xj )Nvh QH(xj )
d(r2n11) .

On the other hand, if xj is a solution of (3.5), then the above inequality
implies

»
v�S

»
h41

n21

Nfih (v) (xj )Nv b H(xj )2d2e .(3.7)

We can now apply Theorem 3.3, with S the set of archimedean absolute values of
K , fhv 4 fih (v) , d hv 4d v 4d (for h41, R , n21 and v�S).

Then m4n21. Choose e/2d for e . Then our inequality (3.7) implies that the
inequality (3.4) of Theorem 3.3 holds for large j (note that we assumed n2rF1
otherwise the statement (1) of Corollary 3.4 is trivial). Theorem 3.3 gives at once
the conclusion (1) of Corollary 3.4, i.e. the degeneracy (in the Zariski topology) of
the solution to inequality (3.5). To prove (2) we have to use the further conclusion
of Theorem 3.3; we omit the details (see also Theorems 1 and 2 in [1]).

We end this section by remarking that some results similar to those of [1] and
[2] have been independently obtained by Evertse and Ferretti (see for instance
[4] and [5]). Both our and their methods are ultimately based on the Subspace
Theorem of Schmidt, albeit in a different way. Also the final results are different
in some respect.

4 - Final remarks

We conclude with some results in the opposite direction. It is easy to see, in
the linear case, that the exponent in the Subspace Theorem is best possible. In
fact we have the following theorem of Dirichlet:

D i r i c h l e t ’ s T h e o r e m 4.1. Let a 0 , R , a n be linearly independent real
numbers. Then there exists a constant C4C(a 0 , R , a n ) such that for infinitely
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many integer vectors x4 (x0 , R , xn ) �Zn11 ,

Nx0 a 0 1R1xn a n NEC QVxV

2n .

The proof is a standard application of Dirichlet’s box principle, or of the Min-
kowski convex body theorem (actually in the easy case of parallelepipeds).

The above result implies that the exponent 2n2e in (2.1) of Schmidt’s Theo-
rem cannot be improved by taking a negative e .

In the non-linear case, however, it seems very difficult to guess what the right
result may be. Some estimations in the direction of Dirichlet’s bound are known in
the case of diagonal homogeneous forms, and were obtained by the circle
method.

As a «companion theorem» for 3.1, we have just the following result of Daven-
port and Heilbronn [9], Theorem 11.1 (see also [3], chap. 20):

T h e o r e m 4.2. Let n , d be positive integers with nF2d11. Let l 1 , R , l n

be non-zero real numbers, not all rational, and not all of the same sign if d is
even. Then for every eD0 there exist integers x1 , R , xn such that

Nl 1 x1
d1R1l n xn

d NEe .

Hence Theorem 4.2 shows that the exponential bound H(x)2d(n21)2e of Theo-
rem 3.1 cannot be replaced by a O(1) bound, at least for diagonal homogeous for-
ms in sufficiently many variables. Of course, our knowledge in the non-linear case
is very far from being satisfactory, but it seems that any improvement in both di-
rections needs substantially new ideas.

For non-diagonal inequalities, to the author’s knowledge the only general re-
sult is Margulis’ proof of the Oppenheim conjecture (see [6] for a recent survey on
it), stating that every non-degenerate indefinite quadratic form in three variables
with non-proportional coefficients takes arbitrarily small values at integral points.
Hence the condition nF5 for d42 in Theorem 4.1, arising from the circle
method, can be relaxed to nF3, even for non-diagonal forms. Also, Margulis’
Theorem enables to treat the case of non-homogeneous quadratic polynomials.
Again, it seems that no such general result is known for higher degree non-homo-
geneous polynomials.

The author is grateful to professors A. Perelli and U. Zannier for drawing
his attention to the books of Davenport [3] and Vaughan [9], which are connected
with the results of this last section.
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A b s t r a c t

The purpose of this note is to discuss the state of the art in the theory of (non) linear
forms in algebraic numbers. In particular, we shall present a new result obtained in col-
laboration with U. Zannier, which is the object of the paper [1]. Then we shall show a very
particular but significant corollary.

* * *


