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ANDREA BA N D I N I (*)

Greenberg’s conjecture for multiple Zp-extensions (**)

1 - Introduction

Let k be a number field and let p be a prime. Let K be a Zp
d-extension of k , i.e.

K/k is Galois and Gal(K/k) CZp
d . Then there exist number fields kn %K such that

Gal(kn /k) C (Z/p n Z)d and K4Nkn . Let Akn
be the p-part of the ideal class

group of kn . The Akn
’s form an inverse system with respect to the natural norm

maps so let YK be their inverse limit. By class field theory and infinite Galois the-
ory one has YK CGal(LK /K) where LK is the maximal abelian unramified pro-p-
extension of K . Hence YK is a normal subgroup of Gal(LK /k) and it admits an ac-
tion of Gal(K/k) via conjugation. Thus YK is a Zp [ [Gal(K/k) ] ]-module. In [12]
Serre showed a noncanonical isomorphism between Zp [ [Gal(K/k) ] ] and
Zp [ [T1 , R , Td ] ] 4

def
L d by sending topological generators t i to Ti 11 for

1 G iGd . In [3] Greenberg proved that YK is always a torsion L d-module.
A torsion L d-module M is said to be pseudo-null if it has at least two relative-

ly prime annihilators, i.e. if ht AnnL d
(M) F2. If this is the case we shall write

MAL d
0. We shall study the following

C o n j e c t u r e 1.1 ([4] Conjecture 3.5). Let kA be the compositum of all the Zp-
extensions of k and let Gal(kA/k) CZp

d . Then YkAAL d
0.

This conjecture has been extensively studied for the case of real quadratic
fields (see [5], [6], [10] and the references there) and imaginary quadratic fields
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(see [9]) but very little in known in general (see [8] for the case of certain cycloto-
mic fields).

In the second section we shall show a technique which can be used to deduce
the conjecture for a field k once one knows that it is true for some of its subfields.
In the third section we shall use such technique in combination with the known
results on quadratic fields to prove the conjecture for several fields with
Gal(k/Q) C (Z/2Z)n .

We will assume Leopoldt’s conjecture for all the fields involved so that
Gal(kA/k) CZp

r2 (k)11 (see [13] Theorem 13.4, r2 (k) is the number of pairs of conju-
gate complex embeddings of k).

2 - Lifting pseudo-nullity

Let k/F be a finite Galois extension of number fields and let FQ /F be a Zp
d-

extension. Let G4Gal(k/F) and let G× be the group of characters of G . For any x

� G× let k x be the subfield of k fixed by Ker x . Then we have the following

P r o p o s i t i o n 2.1. If p does not divide the order of G then

YkFQ
C 5

x� G×
Yk x FQ

.

P r o o f . The hypothesis on p yields GCGal(kFQ /FQ ) so one has an action of
G on YkFQ

CGal(LkFQ
/kFQ ) (notations as in the introduction). For any x� G× let

YkFQ

x be the submodule of YkFQ
on which Ker x acts trivially. One has a decomposi-

tion in eigenspaces

YkFQ
C 5

x� G×
YkFQ

x .

Again using the hypothesis on p it is not hard to prove that YkFQ

x CYk x FQ
(see, for

example, [1]) and the proposition follows. r

Since a finite sum of pseudo-null modules is pseudo-null one immediately has
the following

C o r o l l a r y 2.2. If p does not divide the order of G then

YkFQ
AL d

0 ` Yk x FQ
AL d

0 for any x� G× .

This corollary enables us to prove pseudo-nullity for YkFQ
once we know it for

some subfields k x but, in general, this is not enough to prove the conjecture for k
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even if FQ4 FA, the compositum of all the Zp-extensions of F . For example let k
be an imaginary biquadratic field with F4Q and FA 4Fcyc , the cyclotomic Zp-
extension of F . Then k x FA 4k x

cyc and Yk x
cyc

AL 1
0 for all x’s yields Ykcyc

AL 1
0 . But kA/k

is a Zp
3-extension containing kcyc and, to prove the conjecture, we have to lift the

condition of pseudo-nullity from Ykcyc
AL 1

0 to YkAAL 3
0 . In some cases this can be

achieved via the following

P r o p o s i t i o n 2.3. Let M be a finitely generated torsion L d-module. If the
quotient M/Td M is pseudo-null over L d21 then M is pseudo-null over L d .

P r o o f . See [11] Lemme 2. r

T h e o r e m 2.4. Let K/k be a Zp
d-extension with dF2. Assume that:

1) for any prime ] of k dividing p the decomposition group D(]) of ] in
Gal(K/k) has Zp-rank F2;

2) YK AL d
0.

Then Conjecture 1.1 holds for k .

P r o o f . Let t d11 , R , t r2 (k)11 be some independent topological generators of
Gal(kA/K) corresponding to the variables Td11 , R , Tr2 (k)11 in L r2 (k)11 . Then

YkA /(Td11 , R , Tr2 (k)11 ) YkACGal(L0 /kA)

where L0 is the maximal abelian extension of K contained in LkA.
Let ]K be a prime of K lying above p and let I(]K ) be its inertia group in

Gal(L0 /K). Since L0 /kA is unramified I(]K ) embeds in Gal(kA/K). Let

I(K) 4 !
]K Np

I(]K ) ,

then the fixed field of I(K) is the maximal unramified extension of K contained in
L0 i.e. Fix I(K) 4LK .

Let ] be a prime of k lying below ]K . The group D(]) acts via conjugation on
I(]K ) and it acts trivially because I(]K ) embeds in Gal(kA/K) and Gal(kA/k) is abe-
lian. Independent topological generators of D(]) give rise to relatively prime an-
nihilators of I(]K ) so, by hypothesis 1), I(]K ) is pseudo-null. This holds for any
]K N] and, since the number of ]’s is finite, we have

I(K) 4 !
]K Np

I(]K ) 4 !
]Np

!
]K N]

I(]K ) AL d
0 .
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By Galois theory there is an exact sequence

0 KGal(L0 /LK ) KGal(L0 /K) KGal(LK /K) K0

which corresponds to

0 KI(K) KGal(L0 /K) KYK K0 .

Thus Gal(L0 /K) AL d
0 and, in particular,

Gal(L0 /kA) CYkA /(Td11 , R , Tr2 (k)11 ) YkAAL d
0 .

Applying repeatedly Proposition 2.3 one gets YkAAL r2(k)11
0 . r

3 - Applications

The case of totally real fields is quite easy because they have only one Zp-
extension, namely the cyclotomic one, which is canonically obtained by composi-
tion with the cyclotomic Zp-extension of Q . If k/F is a Galois extension of totally
real number fields one has kA4kcyc 4kQcyc 4kFcyc . Hence, assuming p = [k : F],
by Corollary 2.2

YkA 4YkFcyc
AL 1

0 ` Yk x Fcyc
4Yk xA AL 1

0 for any x� G× ,

i.e. the conjecture holds for k if and only if it holds for any k x . In particular, for
small primes like p43, 5, 7, with F4Q one can use the known results on fields
like Q(kd), Q(kl), Q(kdl) to prove the conjecture for several biquadratic fields
Q(kd , kl). Then, with F a quadratic field, using the biquadratic fields, we can
prove Conjecture 1.1 for fields of degree 8 and so on. In general the knowledge of
the conjecture on real quadratic fields enables us to prove it for real fields like
Q(kd1 , kd2 , kd3 , R).

The case of imaginary fields is more involved. We shall need to lift pseudo-nul-
lity and, to apply Theorem 2.4, we need at last a Zp

2-extension so the cyclotomic
one is not enough. The role that Q and Qcyc had for real fields can be played by
any imaginary quadratic field F and its Zp

2-extension FA.

P r o p o s i t i o n 3.1. Let F be an imaginary quadratic field. Let k/F be a finite
extension such that YkFA AL 2

0. Then YkAAL r2(k)11
0, i.e. the conjecture holds for k .

Proof. Hypothesis 1) in Theorem 2.4 is known to hold for the extension FA /F
so it holds for kFA /k as well and we can apply the theorem to prove this
proposition. r
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To find some examples we look at biquadratic imaginary fields and assume
pc2.

Let F and E be quadratic imaginary fields and let H be the real subfield of k . On
YkFA one can prove the following theorems

T h e o r e m 3.2. Assume that:

1) p does not split in k ;

2) Conjecture 1.1 holds for F and H i.e. YFA AL 2
0 and YHcyc

AL 1
0;

3) YEcyc
AL 1

0 .

Then YkFA AL 2
0 .

T h e o r e m 3.3. Assume that:

1) FA /Fcyc is unramified (this happens, for example, when p splits in F);

2) Conjecture 1.1 holds for F and H;

3) YEcyc
AL 1

0 .

Then YkFA AL 2
0 .

T h e o r e m 3.4. Assume that:

1) p totally splits in k;

2) Conjecture 1.1 holds for H;

3) YFcyc
CYEcyc

CZp .

Then YkFA AL 2
0 .

P r o o f . (Details in [1] and [2]) For Theorems 3.2 and 3.3 one considers the
action of Gal(kFA /FA) on YkFA and gets a decomposition in eigenspaces YkFA

4YkFA
1 5YkFA

2 where YkFA
1 (resp. YkFA

2) is the submodule on which Gal(kFA /FA) acts tri-
vially (resp. nontrivially). It is easy to see that YkFA

1 CYFA so it is pseudo-null. Let
T2 be the variable in L 2 corresponding to a topological generator of Gal(kFA /kcyc ),
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then one finds an injection

YkFA
2 /T2 YkFA

2 %KYEcyc
5YHcyc

(AL 1
0 by hypothesis) .

Therefore, by Proposition 2.3, one gets YkFA
2 AL 2

0 and, eventually, YkFA AL 2
0 .

For Theorem 3.4 let T2 and T3 be the variables in L 3 corresponding to topolo-
gical generators of Gal(kA/kcyc ). Using the fact that kA/kcyc is unramified one finds
an isomorphism

YkA /(T2 , T3 )YkACYHcyc
(AL 1

0 by hypothesis) .

By Proposition 2.3 this yields YkA /T3 YkAAL 2
0 . One has the exact sequence of Galois

theory

0 KGal(LkFA /kA) KGal(LkFA /kFA) KGal(kA/kFA) K0

which corresponds to
0 KYkA /T3 YkAKYkFA KZp K0 .

Since the left and right elements are pseudo-null one gets YkFA AL 2
0 . r

R e m a r k 3.5. The third hypothesis of each theorem is not known to hold in
general. If p does not split in E (Theorems 3.2 and 3.3) then the hypothesis holds,
for example, when p does not divide hE (the order of the ideal class group of E).
If p4]] in a quadratic imaginary field L (Theorem 3.4 with L4E , F) then
YLcyc

CZp if and only if ]hL 4 (a) with a� (Qp*)p .

3.1 - Example

Take F4Q(k22) and p43. One has YFcyc
CZ3 , FA /Fcyc is unramified and

YFA AL 2
0 . Hence we can take E4Q(k2d) with dD0 and

(i) df0, 1 (mod 3) and 3 = hE for Theorem 3.3;

(ii) df2 (mod 3) and YEcyc
CZ3 for Theorem 3.4,

to get YkFA AL 2
0 for k4Q(k22, k2d). After this first step consider

One has YkFA CYFA 5YF(k2d1) FA 5YF(k2d2) FA 5YF(k22d1 d2) FA so we can prove
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YkFA AL 2
0 if we have such result for enough biquadratic fields. This process can

obviously be iterated to fields of degree 16, 32 and so on (note that we need to use
the theorems only in the first step).

F(k2d1) F(k22d1 d2) F(k2d2) k

F(k23) F(k26) F(k21) F(k23, k21)
thm 3.3 thm 3.3 thm 3.3

F(k23) F(k230) F(k25) F(k23, k25)
thm 3.3 thm 3.3 thm 3.4

F(k23) F(k215) F(k210) F(k23, k5)
thm 3.3 thm 3.3 thm 3.3

F(k23) F(k278) F(k213) F(k23, k213)
thm 3.3 thm 3.3 thm 3.3

F(k23) F(k239) F(k226) F(k23, k13)
thm 3.3 thm 3.3 thm 3.4

F(k23) F(k2390) F(k265) F(k23, k265)
thm 3.3 thm 3.3 thm 3.4

F(k23) F(k2195) F(k2130) F(k23, k65)
thm 3.3 thm 3.3 thm 3.3

From the fields k listed in the table one can get YLFA AL 2
0 for L4F(k23, k21,

k25), F(k23, k21, k213), F(k23, k21, k65) and, finally, with this three
fields we can prove the conjecture for F(k23, k21, k25, k213). More
examples can be found in [1] and [2]. For an example of the computations needed
to apply the theorems consider Q(k265) with hQ(k265) 48 and ] 4 (3 , 1
2k265). One has ]8 4 (4918k265) 4 (a), k2654113134 136 12 Q38

1R in Q3 and v3 (a) 48 so that a� (Q3*)3 and we can use Theorem 3.4.

R e m a r k 3.6. There is a deep relation between the pseudo-nullity of YK and
the behaviour of ideals in a Zp

d-extension K/k . When kcyc ’K we can prove that if
YK AL d

0 then ideals «capitulate» (i.e. become principal) in K (see [2] or, for other
general results, [7]). Conjecture 1.1 tells us to expect capitulation in kA but our re-
sults give lots of examples in which capitulation is achieved at a lower level. We
have always obtained capitulation in a Zp

2-extension kFA while kA are Zp
3 , Zp

5 , Zp
9

or Zp
17-extensions. It is easy to find examples of ideals not capitulating in a Zp-
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extension like the cyclotomic one but, up to now, there are no known examples
in which capitulation can be delayed further.
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A b s t r a c t

Let kA be the compositum of all the Zp-extensions of a number field k . We shall consid-
er fields k with Gal(k/Q) C (Z/2Z)n . Building on known results for quadratic fields, we
shall show that the Galois group of the maximal abelian unramified pro-p-extension of kA

is pseudo-null for several such k’s, thus confirming a conjecture of Greenberg.

* * *


