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The first part of this survey, containing Sections 1, 2, 3 and 4, appears in [42].
The second part depends heavily on the notation, definitions and results in part I,
to which the reader is referred. Results, equations and sections in part I will sim-
ply be quoted by their number, without referring to [42]. Here we report only few
definitions. A function F(s) belongs to the Selberg class S if

(i) (ordinary Dirichlet series) F(s) 4 !
n41

Q

aF (n) n 2s , absolutely convergent
for sD1;

(ii) (analytic continuation) there exists an integer mF0 such that
(s21)m F(s) is an entire function of finite order;
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(iii) (functional equation) F(s) satisfies a functional equation of type F(s)
4vF(12s), where

F(s) 4Q s »
j41

r

G(l j s1m j ) F(s) 4g(s) F(s) ,

say, with rF0, QD0, l j D0, Dm j F0 and NvN41;
(iv) (Ramanujan conjecture) for every eD0, aF (n) bn e;

(v) (Euler product) log F(s) 4 !
n41

Q

bF (n) n 2s , where bF (n) 40 unless n4p m

with mF1, and bF (n) bn w for some wE
1

2
.

We recall that the extended Selberg class S l--l is the class of the non identically
vanishing functions satisfying axioms (i), (ii) and (iii) above. Further, the degree
dF of F� S l--l is defined by

dF 42 !
j41

k

l j .

As in part I, I wish to thank Jurek Kaczorowski and Giuseppe Molteni for careful-
ly reading the manuscript and for their suggestions, and Alessandro Zaccagnini
for correcting many misprints. The contents of the entire survey is as follows;
part II contains Sections 5, 6 and 7.

1. Classical L-functions
2. What is an L-function ?
3. Basic theory of the Selberg class
4. Invariants
5. Linear and non-linear twists
6. Degree 1 GdE2
7. Independence
8. Countability and rigidity
9. Polynomial Euler products
10. Analytic complexity
11. Sums of coefficients
12. Miscellanea

5 - Linear and non-linear twists

The main tool for the results of Section 6 on the classification of the functions
with degree 1 GdE2 are the linear twists

F(s , a) 4 !
n41

Q aF (n)

n s
e(2na) ,
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where F� S l--l, a�R and e(x) 4e 2pix. More precisely, the results of Section 6 re-
quire certain analytic properties of the linear twists. In order to get a first im-
pression of the relevance of the linear twists, let us consider F(s) 4L(s , x) with a
primitive Dirichlet character x (mod q), let t(x) be its associated Gauss sum and
let 0 GaE1. By orthogonality we have

F(s , a) 4
1

t(x)
!

(a , q) 41
x(a) z gs ,

a

q
2ah ,(5.1)

where

z(s , l) 4 !
n41

Q

e(nl) n 2s

is the Lerch zeta function. It is well known that z(s , l) has a simple pole at s41
if l�Z , otherwise it is an entire function. Therefore, F(s , a) has a pole at s41 if
and only if a4a/q with (a , q) 41. Thus, for example, information on the modulus
q of the character x can be obtained from the polar structure of the linear twists
of L(s , x).

In order to study the analytic properties of the linear twists, Kaczorowski-Pe-
relli [26], [28] start with

FN (s , a) 4 !
n41

Q aF (n)

n s
e(2na) e 2n/N ,

where ND0, which is absolutely convergent over C and has the integral
expression

FN (s , a) 4
1

2pi
�

(2)

F(s1w) G(w) zN
2w dw ,

where zN 4
1

N
12pia and the integration is on the line from 22 iQ to 21 iQ.

Shifting the line of integration to s42K2
1

2
, where K is a suitably large positi-

ve integer, and using the functional equation of F(s) we obtain

FN (s , a) 4RN (s , a)1vQ 122s !
n41

Q aF (n)

n 12s
HKg n

Q 2 zN

, sh ,(5.2)
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where RN (s , a) is a term arising from the residues, and the functions

HK (z , s) 4
1

2pi
�

(2K2 d)

»
j41

r G(l j (12s)1m j 2l j w)

G(l j s1m j 1l j w)
G(w) z w dw(5.3)

are rather general cases of Fox hypergeometric functions. Since we will even-
tually let NKQ , we require some information on HK (2iy , s), especially when

y4
n

2pQ 2 a
.

An instance of such an approach to the study of the linear twists, in the case
F(s) 4z(s), can be found in Linnik [32]. In fact, starting from (5.1) with a40,
Linnik [32] obtained a new proof of the functional equation of the Dirichlet L-fun-
ctions using the functional equation of z(s) in a direct way. In Linnik’s special ca-
se, the hypergeometric functions (5.3) reduce to simple well known functions, and
hence the right hand side of (5.2) becomes rather explicit. This is, unfortunately,
not the case in more general situations.

For s fixed, the general Fox hypergeometric functions have been studied by
Braaksma [7]. Roughly speaking, their behaviour depends on the value of the
main parameter m defined by

m42 !
j41

r

l j 21 4dF 21 .

In the case m40, which corresponds to the degree 1 functions, the behaviour is
simpler since only the «algebraic part» comes into play, while for mD0 (i.e. dF

D1) the behaviour is more complicated due to the presence of the «exponential
part»; we refer to Braaksma [7] for the meaning of the algebraic and exponential
parts. We remark that the case mE0, although not directly related to the linear
twists (see Theorem 3.1), has also some interest, and that in this case the situation
is simpler thanks to nice convergence properties.

In order to study the linear twists, one has to develop a (z , s)-variables theory
of the hypergeometric functions (5.3). We present here only the result for dF 41,
where a clean statement can be given. Let

b4 »
j41

r

l j
2l j ,

u F be the shift of F� S l--l (see Section 4) and, given RD1, let K4K(R) be a suita-
bly large positive integer.
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T h e o r e m 5.1. ([26], [29]) Let dF 41, yD0 and sER. If ycb then
HK (2iy , s) is holomorphic, while HK (2ib , s) has at most simple poles at the
points sk 412k2 iu F for k40, 1 , R , with non-vanishing residue at s4s0 .

In addition, suitable bounds for HK (2iy , s) as yKQ , required in (5.2), can
be obtained; see Kaczorowski-Perelli [26], [29]. Moreover, it is in principle possi-
ble to check the vanishing or non-vanishing of the residue at each point sk with
kF1, but there are non-trivial complications in details. We will say more on this
later on, see Problem 5.3.

We refer to Kaczorowski-Perelli [28] and Kaczorowski [23] for the analytic
properties of the hypergeometric functions when 1 EdF E2, since in this case the
statement is more involved due to the appearance of the above mentioned expo-
nential part. We remark here that such an exponential part is reflected by the
exponential factor in the Dirichlet series DF (s , a) in Theorem 5.3 below.

The analytic properties of the linear twists of the functions F� S l--l
1 follow now

from (5.2) and Theorem 5.1. Let aD0 and, in view of (5.2) and Theorem 5.1, defi-

ne the critical value na (of course arising from the equation
n

2pQ 2 a
4b) by

na4qF a ,

where qF is the conductor of F(s) defined in Section 4. Moreover, define aF (na )
40 if na�N. We have

T h e o r e m 5.2. ([26], [29]) Let F� S l--l
1 and aD0. Then F(s , a) is entire if

aF (na ) 40, while if aF (na ) c0 then F(s , a) has at most simple poles at the poin-

ts sk 412k2 iu F for k40, 1 , R , with residue at s0 equal to c(F)
aF (na )

na
iu F

and
c(F) c0.

Clearly, the vanishing or non-vanishing of the residue at the points sk with
kF1 is closely related to the analogous problem in Theorem 5.1.

In order to state the properties of the linear twists of functions F� S l--l
d with

1 EdE2 we need a few more definitions. Let

k4
1

dF 21
, A4 (dF 21) qF

2k , s *4k gs1
dF

2
211 iu Fh

and

DF (s , a) 4 !
n41

Q aF (n)

n s
e gA g n

a
hkh .
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Moreover, let s* denote the real part of s * and s a (F) be the abscissa of absolute
convergence of F(s). We have

T h e o r e m 5.3. ([28]) Let 1 EdE2, F� S l--l
d , aD0 and JF1 be an integer.

Then there exist a constant c0 c0 and polynomials Pj (s), with 0 G jGJ21 and
P0 (s) 4c0 identically, such that for s*Ds a (F)

F(s , a) 4qF
ks !

j40

J21

ak(dF s2dF /21 iu F1 j) Pj (s) DF (s *1 jk , a)1GJ (s , a)(5.4)

where GJ (s , a) is holomorphic for s in the half-plane s*Ds a (F)2kJ and conti-
nuous for aD0.

Note that s*Ds for sD
1

2
and 1 EdF E2, hence (5.4) shows a kind of over-

convergence phenomenon for F(s , a), which will be exploited in Section 6. Obser-
ve also that, contrary to Theorem 5.2 where a clean description of the analytic
properties of the linear twists of degree 1 functions is given, in this case the pro-
perties of the linear twists are related to those of certain non-linear twists. How-
ever, due to the above overconvergence phenomenon, Theorem 5.3 provides a
non-trivial continuation of F(s , a) to a strip to the left of s41. This will be impor-
tant in Section 6, where Theorems 5.2 and 5.3 will be applied to obtain a complete
classification of the functions F� S l--l

d with 1 GdE5/3.
The relation in (5.4) between the linear twists and suitable non-linear twists is

just a special case of a more general theory, based on the properties of the Fox
hypergeometric functions as in Kaczorowski-Perelli [28], where a general non-li-
near twist of F� S l--l is related to its conjugate non-linear twist. We do not enter
such a general theory in this survey.

We remark here that by axiom (i) we have s a (F) G1 for every F� S l--l, but the
exact value of s a (F) is not known in general. Assuming the Selberg orthonormali-
ty conjecture, in Section 3 we saw that s a (F) 41 for every F� S 0]1(. In the ge-
neral case we raise the following

P r o b l e m 5.1. Is it true that s a (F) 41 for every F� S l--l
d with dD0 ?

Now we turn to a discussion of a special type of non-linear twist. For a given
F� S l--l

d and a�R we consider the (canonical) non-linear twist

Fd (s , a) 4 !
n41

Q aF (n)

n s
e(2n 1/d a) ,(5.5)

Clearly, if d41 the non-linear twist coincides with the linear twist. Moreover, it
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turns out that Theorem 5.2 is a special case of a more general result describing
the analytic properties of the non-linear twists of functions of any degree dD0.
In fact, following the argument leading to (5.2) with Fd (s , a) in place of F(s , a)
and performing a suitable change of variable, the involved hypergeometric fun-
ctions still have m40. Therefore, defining for every dD0 and aD0 the d-critical
value by

na4qF d 2d a d

and writing again aF (na ) 40 if na�N , an argument similar to Theorem 5.2 in
this case yields

T h e o r e m 5.4. ([29]) Let dD0, F� S l--l
d and aD0. Then Fd (s , a) is entire if

aF (na ) 40, while if aF (na ) c0 then Fd (s , a) has at most simple poles at the
points

sk 4
d11

2d
2

k

d
2 i

u F

d
k40, 1 , R ,

with residue aF (na )ck (F , a) and c0 (F , a) c0.

Clearly, Theorem 5.4 reduces to Theorem 5.2 for d41, and again the vani-
shing or non-vanishing of the residue at the points sk with kF1 is closely related
to the analogous problem in Theorem 5.1.

Uniform versions of Theorem 5.4 can also be obtained, in the sense that uni-
form bounds on vertical strips can be proved for functions in suitable families
F % S l--l. Roughly speaking, the functions in such families F must have bounded de-
gree and bounded m-coefficients, and the estimates are obtained starting from
analogous estimates for families of hypergeometric functions. We refer to Theo-
rem 2 of Kaczorowski-Perelli [29] for such results.

The polar structure in Theorem 5.4 deserves a brief discussion. First of all we
raise the following

P r o b l e m 5.2. Find a heuristic explanation for the simple pole of Fd (s , a)

at s0 4
d11

2d
2 i

u F

d
(for suitable values of a).

Concerning the possible poles at the points sk with kF1, there are cases (for
example when F(s) equals z(s) or L(s , x)) where all residues vanish but at s0 . In
fact, it follows from Theorem 6.2 below that this is the case for all F� S l--l

1 . How-
ever, there are cases in degree 2 where infinitely many such residues do not
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vanish, see the explicit formulae for HK (s , 2i/2 ) in the proof of Lemma 1 of Kac-
zorowski [22]. Moreover, some evidence for the non-vanishing of the residue at s1

will be presented in Section 11, again for degree 2 functions. In general, we raise
the following

P r o b l e m 5.3. Investigate the vanishing or non-vanishing of the residue of
Fd (s , a) at the points sk with kF1 (for suitable values of a).

We conclude illustrating a typical application of the hypergeometric functions
with main parameter mE0. Given a function F� S l--l, let Fd (s , a) be defined by
(5.5) also when dDdF ; a classical instance is

z d (s , a) 4 !
n41

Q

e(2n 1/d a) n 2s

with dD1 and aD0. We have

T h e o r e m 5.5. ([29]) Let F� S l--l, dDdF and aD0. Then Fd (s , a) is an entire
function.

Note that Theorem 5.5 has been proved in Kaczorowski-Perelli [29] only in the
case F(s) 4z(s), see Lemma 4.1 of [29]. However, it is remarked there that the
argument is general, and in fact it proves the stated result. It is interesting to no-
te that the case F(s) 4z(s) of Theorem 5.5 is due to Hardy [18] (see also n. 3 of
the Miscellaneous Examples at the end of Chapter IX of Titchmarsh [53]), althou-
gh Hardy’s proof is quite different from that in [29]. The proof in [29] is based on
the theory of the hypergeometric functions with mE0, and represents a much
simplified version of the basic argument in Theorem 5.4.

6 - Degree 1 GdE2

At the beginning of Section 2 we raised two questions. We gave an answer to
the first question but not yet to the second one, asking if all L-functions are alrea-
dy known. An answer to such question is given by the following impressive
conjecture.

C o n j e c t u r e 6.1. (main conjecture) The Selberg class S coincides with the
class of the GL(n) automorphic L-functions.

Conjecture 6.1, if true, lies very deep. In fact, on the one hand it morally im-
plies the truth of the Langlands program, since the L-functions of arithmetic, al-
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gebraic and geometric nature (morally in S) would become special cases of auto-
morphic L-functions. On the other hand, if one accepts that S is the class of all L-
functions, then Conjecture 6.1 implies that all L-functions are already known. Mo-
reover, Conjecture 6.1 immediately implies almost all the other conjectures in this
survey, since most such conjectures are known in the case of the automorphic L-
functions (but not all, for example GRH).

Since the automorphic L-functions have integer degree, we can split Conjectu-
re 6.1 into two parts as follows.

C o n j e c t u r e 6.2. (general converse theorem) For d�N

Sd 4 ]automorphic L-functions of degree d(.

C o n j e c t u r e 6.3. (degree conjecture) For d�N

Sd 4¯ .

Since the standard g-factors of the automorphic L-functions have all the l-

coefficients equal to
1

2
, it is clear that Conjectures 6.2 and 6.3 imply and motivate

Conjectures 4.1 and 4.2 (restricted to S).

Although we are mainly concerned with the Selberg class S, it is interesting to
raise similar problems for S l--l as well.

P r o b l e m 6.1. What does S l--l
d contain for d�N?

We remark here that S l--l is a model, introduced in Kaczorowski-Perelli [26], for
the class of the «L-functions without Euler product». However, there are well
known classes of L-functions which in general do not fall into S l--l, see for instance
the vector spaces of L-functions associated with holomorphic modular forms
(where the functional equation has no conjugation on the right hand side). Possi-
bly, a better definition of S l--l is obtained by allowing a slightly more general type of
functional equation, for example relating F(s) to G(12s) instead of F(12s),
where G(s) satisfies the same properties of F(s). At any rate, we do not expect
substantial differences between the properties of such a class and S l--l.

Coming back to the description of S l--l, we expect that the degree conjecture
holds for S l--l as well.

C o n j e c t u r e 6.4. (strong degree conjecture) S l--l
d 4¯ for d�N.

Let V l--l(Q , l , m , v) denote the real vector space of the functions of S l--lN]0(
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satisfying a given functional equation. A much weaker version of Conjecture 6.4
is

P r o b l e m 6.2. Prove that dim V l--l(Q , l , m , v) EQ if d�N.

Probably, dim V l--l(Q , l , m , v) 4Q for certain degree 2 functional equations
(see Chapter II of Hecke [19]), thus the condition d�N in Problem 6.2 appears to
be crucial.

Somehow, the degree conjecture reflects the arithmetical nature of the Sel-
berg class. Although S l--l is obtained dropping the two arithmetical axioms of S,
Conjecture 6.4 suggests that S l--l still has some arithmetical content. Indeed, by
axiom (i) every F� S l--l is an ordinary Dirichlet series, i.e. the «frequences» are
integers. We may therefore ask if the analog of the degree conjecture fails once
axiom (i) is weakened to allow general Dirichlet series (see Section 2 for the defi-
nition). It turns out that this is essentially the case, as the following simple result
shows. For any choice of (Q , l , m , v) as in axiom (iii), let D(Q , l , m , v) denote
the real vector space of the somewhere absolutely convergent general Dirichlet
series satisfying axioms (ii) and (iii). We have

T h e o r e m 6.1. ([30]) D (Q,l , m , v) has an uncountable basis.

Therefore, the degree conjecture definitely fails in this case. The proof is ba-
sed on Hecke’s theory of modular forms associated with the groups G(l), see
Chapter II of Hecke [19], which provides examples of suitable L-functions with
arbitrary non-negative m-coefficient. Theorem 6.1 is slightly unsatisfactory due to
the «somewhere absolutely convergent» general Dirichlet series in the definition
of D(Q , l , m , v). Therefore we raise

P r o b l e m 6.3. Is the analog of Theorem 6.1 true with «somewhere absolute-
ly convergent» replaced by «absolutely convergent for sD1» in the definition of
D(Q , l , m , v)?

In Section 3 we presented the results for degree 0 GdE1 (Theorems 3.1, 3.2
and 3.3), which confirm Conjectures 6.2 and 6.3 in that range. We remark here
that a very simple proof of Theorem 3.1 can be obtained as a corollary of Theorem
5.4, see Kaczorowski-Perelli [29]. In fact, let 0 EdE1, F� S l--l

d , m with aF (m) c0
and let a be such that na4m. Hence the non-linear twist Fd (s , a) has a pole on

the line s4
d11

2d
D1, a contradiction.

Now we turn to the next case, i.e. the classification of the L-functions of S1 . By
Conjecture 6.2 one expects that these are the Dirichlet L-functions with primitive
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characters and their shifts (see Section 3), and this is in fact the case as Theorem
6.3 below shows. We start with a complete description of the functions F� S l--l

1 .
For a positive integer q and complex numbers j4h1 iu and v* with Nv* N41,
we denote by S l--l

1 (q , j , v*) the set of F� S l--l
1 such that (see Section 4)

qF 4q , j F 4j , v*F 4v*.

Since qF , j F 4h F 1 iu F and v*F are invariants, S l--l
1 is a disjoint union of these

classes. Moreover, we write

V l--l
1 (q , j , v*) 4 S l--l

1 (q , j , v*)N ]0(.

If x is a Dirichlet character we denote by fx its conductor and by x* the primitive
character inducing x. We also denote by v x* the v-factor in the standard functio-
nal equation of L(s , x*) and, for h� ]21, 0(, we write

J(q , j) 4
.
/
´

]x ( mod q) with x(21) 41(

(x ( mod q) with x(21) 421(

if h421

if h40.

Further, x 0 denotes the principal character (mod q).

T h e o r e m 6.2. ([26]) i) If F� S l--l
1 , then qF �N , the sequence aF (n)n iu F is

periodic of period qF and h F � ]21, 0(.
ii) Every F� S l--l

1 (q , j , v*), with q�N , h� ]21, 0( and Nv* N41, can be
uniquely written as

F(s) 4 !
x�J(q , j)

Px (s1 iu) L(s1 iu , x*)

where Px� S l--l
0 g q

fx*

, v*v x*h. Moreover, Px 0
(1 ) 40 if uc0.

iii) For q, j and v* as above, V l--l
1 (q , j , v*) is a real vector space with

dimR V l--l
1 (q , j , v*) 4

.
`
/
`
´

k q

2
l11

k q212h

2
l

if j421

otherwise .

Note that by Theorem 6.2 the functions in S l--l
1 satisfy the Ramanujan conjectu-

re. Adding the Euler product axiom, from Theorem 6.2 we obtain
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T h e o r e m 6.3. ([26]) Let F� S1. If qF 41, then F(s) 4z(s). If qF F2, then
there exists a primitive Dirichlet character x (mod qF) with x(21) 42(2h F 11)
such that F(s) 4L(s1 iu F , x).

We give a sketch of the first steps of the proof of Theorem 6.2, thus showing
the relevance of the polar structure of F(s , a) in Theorem 5.2. Choose m with

aF (m) c0 and let a4
m

qF

. Then the linear twist F(s , a) has a simple pole at

s412 iu F , and hence the same holds for F(s , a11) by the a-periodicity of li-

near twists. Therefore na11 4qFg m

qF

11h�N , thus qF �N. Similarly, to show

the periodicity of the coefficients we choose a4
n

qF

. Then F(s , a) has residue

equal to c(F)
aF (n)

n iu F
at s412 iu F , and hence F(s , a11) has residue

c(F)
aF (n1qF )

(n1qF )iu F
at the same point, and the periodicity follows. Once the periodici-

ty of the coefficients is established, Dirichlet characters enter the game, and F(s)
is expressed as a linear combination of Dirichlet L-functions over the Dirichlet po-
lynomials of S l--l

0 . The full description of the functions in S l--l
1 follows then from a ca-

reful analysis of the functional equations satisfied by F(s) and by the involved Di-
richlet L-functions.

We refer to Soundararajan [51] for a different proof of Theorem 6.3. For pre-
vious partial results towards Theorems 6.2 and 6.3, and for related results, we re-
fer to Bochner [1], Vignéras [55], Gérardin-Li [17], Conrey-Ghosh [10] and Funa-
kura [16], and to the literature quoted there.

We remark that Theorem 6.2 confirms (ii) of Theorem 4.5 in the case of de-
gree 1 functions: the triplet (qF , v*F , j F ) determines the functional equation of
F� S l--l

1 . Moreover, Theorem 6.3 clarifies the name and the meaning of the inva-
riant h F .

A simple consequence of Theorem 6.3 is

C o r o l l a r y 6.1. ([37]) The nomalized L-functions Lf (s) associated with ho-
lomorphic newforms f(z) on congruence subgroups of SL(2 , Z) are primitive.

This is proved by contradiction, assuming that Lf (s) 4L(s1 iu 1 , x 1 ) L(s
1 iu 2 , x 2 ) with x j primitive Dirichlet characters and u j �R. Taking the Rankin-
Selberg convolution of both sides (or twisting by a suitable character), the order
of pole at s41 leads to a contradiction.

We remark that the classical converse theorem of Weil [56] characterizes the
GL(2) L-functions by means of their twists by Dirichlet characters. Roughly
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speaking, a similar philosophy applies in general to the GL(n) converse theorems,
see Cogdell and Piatetski-Shapiro [8]. In fact, the GL(n) L-functions are charac-
terized in terms of suitable Rankin-Selberg convolutions, and the twists are of
course special instances of such convolutions. Since Theorems 6.2 and 6.3 can be
regarded as general converse theorems for degree 1 functions, it is clear that the
use of the linear twists in their proofs fits well into the above philosophy. Note
that the axioms of S do not explicitly include any property of the Rankin-Selberg
convolutions; this increases the difficulties in proving general converse theorems
in S. We refer to Conrey-Farmer [9] for an interesting alternative to Weil’s con-
verse theorem, where the twists are replaced by the Euler product, although at
present this approach produces much less general results.

Another instance showing the relevance of the twists in the problems of this
section is the following. Given F� S l--l and a Dirichlet character x , define the twist
of F(s) as

F x (s) 4 !
n41

Q aF (n) x(n)

n s
.

The following two natural conjectures about twists are given in Kaczorowski-Pe-
relli [27]; see also Selberg [50] for other conjectures on twists.

C o n j e c t u r e 6.5. (twist conjecture) Let F� S with qF �N , m�N with
(m , qF ) 41 and let x (mod m) be a primitive Dirichlet character. Then
F x� S.

In addition, in [27] it is also conjectured that F x (s) is primitive if and only if
F(s) is primitive.

C o n j e c t u r e 6.6. (twisted conductor conjecture) Assume the twist conjectu-
re. Then

qF x 4qF m dF .

It is easy to see that the conductor conjecture (see Section 4) and Conjectures
6.5 and 6.6 imply the degree conjecture, since qF m dF �N for all (m , qF ) 41 im-
plies that dF �N . Although the twists (by Dirichlet characters) and the linear twi-
sts are closely related, a problem of some interest is to give a proof of Theorem
6.3 closer to the spirit of Weil’s converse theorem.

P r o b l e m 6.4. Give a proof of Theorem 6.3 using the twists (by Dirichlet
characters) instead of the linear twists.
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Turning to the range 1 EdE2 we have

T h e o r e m 6.4. ([28]) S l--l
d 4¯ for 1 EdE5/3. Moreover, for 1 EdE2 there

exist no F� S l--l
d with a pole at s41.

The second part of Theorem 6.4 follows immediately from Theorem 5.3 with
J41. Indeed, assuming that F(s) has a pole at s41, choosing a41 and exploi-
ting the a-periodicity of the linear twists, thanks to the overconvergence pheno-
menon the right hand side of (5.4) is holomorphic at s41, a contradiction. The
holomorphic case is definitely more involved. By a Fourier transform argument,
equation (5.4) is transformed into an identity of type

S 1 (x) 4x 2k/2 S 2 (x)1O(x s a (F)2k1e ) ,(6.1)

where S 1 (x) and S 2 (x) are certain exponential sums. Moreover, S 1 (x) is concen-
trated at the integers, while the same phenomenon is not visible in S 2 (x). This
fact is exploited by computing the L 2-norm, weighted by the function e(x), of both
sides of (6.1). The weight is clearly irrelevant on the left hand side, but produces
some cancellation on the right hand side when 1 EdE5/3 , thus getting a contra-
diction in that range.

We remark that in order to avoid the use of the Ramanujan conjecture (axiom
(iv)), in the proof of Theorem 6.4, the following lemma of some independent inte-
rest concerning a form of Rankin-Selberg convolution in S l--l is used. For F� S l--l

and sD2s a (F) define

F3F(s) 4 !
n41

Q

NaF (n)N2 n 2s .(6.2)

L e m m a 6.1. ([28]) Let 1 EdE2 and F� S l--l
d . Then F3F(s) is holomorphic

for sDs a (F)2k apart from a simple pole at 41.

Note that the simple pole at s41 of F3F(s) is in agreement with the fact
that all F� Sd with 1 EdE2 (if any !) are primitive, and the Rankin-Selberg con-
volution (6.2) of a primitive function is expected to have simple pole at s41 (in
agreement with the Selberg orthonormality conjecture).

J. Kaczorowski observed that the same range 1 EdE5/3 in Theorem 6.4

would follow from a direct application of the well known conjecture that (e,
1

2
1e)

is an exponent pair (see Chapter 3 of Montgomery [35]) to a certain exponential
sum closely linked to the exponential sums in (6.1). Therefore, Theorem 6.4 ap-
pears to be the limit of the method in that respect. However, the whole range
1 EdE2 would follow from a natural multidimensional analog of such a conjectu-
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re. In fact, using a more refined Fourier transform argument giving an error
O(x

s a (F)2
3

2
k1e

) in (6.1), by a k-fold iteration of (6.1) one can get an expression for
the coefficients aF (n) involving a certain k-dimensional exponential sum. The full
range 1 EdE2 would then follow from a square-root cancellation bound for such
a sum. We refer to Kaczorowski-Perelli [28] for further remarks on this
subject.

From Theorem 6.4 we easily obtain still another proof of Theorem 3.1, see
[28]. Indeed, assuming that there exists a function F� S l--l

d with 0 EdE1, we may
clearly assume (shifting if necessary) that F(1) c0. Therefore z(s) F(s) is a polar
function in S l--l

d with 1 EdE2, a contradiction. The same argument shows that the
degree conjecture restricted to the polar L-functions implies the degree conjectu-
re (and similarly for the strong degree conjecture). We conclude by stressing the
importance of the a- periodicity of the linear twists, which plays a fundamental
role in the proof of the structure theorems for 1 GdE2.

Now we come back to the measure theoretic approach to invariants outlined in
Section 4. We recall that a numerical invariant I is additive if I(FG) 4I(F)
1I(G), and that the H-invariants are additive; hence in particular so is the de-
gree. We refer to Section 4 for the definition of continuous invariants, and recall
that in this case I(S) and I(S l--l) are Lebesgue measurable by Theorem 4.6. We also
recall that, given A %R , A 2 A denotes the set of all real numbers of the form
a2a 8 with a , a 8� A.

The next result is a 0–1 law for additive invariants which, in view of the de-
gree conjectures, is particularly interesting in the case of the degree.

T h e o r e m 6.5. ([31]) Let I be a continuous, additive and real-valued inva-
riant. Then either the set I(S) has Lebesgue measure 0, or I(S)2I(S) 4R. The
same holds for I(S l--l) as well.

A similar result holds in the case of the root number, in the sense that the sets
of values v*(S) and v*(S l--l) taken by the root number v F* over S and S l--l are either
of measure zero or coincide with the unit circle T 1; see Kaczorowski-Perelli [31].
Further, similar results hold for certain subclasses of S l--l, for example Sd and S l--l

d

with a fixed d . Note that we already met related examples, involving the invarian-
ts v*F and j F (v*F is not additive), where both alternatives happen. Indeed, from
Theorems 6.2 and 6.3 we see that

v*(S l--l
1 ) 4T 1 and v*(S1 ) is countable

h(S l--l
1 ) 4h(S1 ) 4 ]21, 0( and u(S l--l

1 ) 4u(S1 ) 4R .
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In the case of the Selberg class S, a stronger form of Theorem 6.5 is suggested
by the following conjecture in Kaczorowski-Perelli [31].

C o n j e c t u r e 6.7. (0–1 law conjecture) Let I be a continuous, additive and
real-valued invariant. Then either the set I(S) is countable or it contains a
half-line.

We conclude the discussion of the measure theoretic results with the following
simple conditional result related to the degree conjectures. Let

E4 ]dD0 : d�N and S l--l
c¯(

be the «exceptional set» for the degree conjecture. Clearly, E is measurable by
Theorem 4.6, and let m(E) denote its Lebesgue measure.

T h e o r e m 6.6. ([14]) Assume that every F� S l--l
d with d�N has a g-factor

with all l j 4
1

2
. Then EOQ4¯ and m(E) 40.

The same result holds for S as well, under the same assumption restricted to the
integer degrees of S. Since Theorem 6.6 is an unpublished result, we give a detai-
led proof.

P r o o f o f T h e o r e m 6.6. Suppose first that there exists a function F(s) of

degree dF 4
d

n
�Q0N , with (d , n) 41 and nD1. Then F n � S l--l

d with d�N , hen-

ce by the assumption and Theorem 4.1, the n-th power of the g-factor of F(s) sati-
sfies an identity of type

g(s)n 4c0 Q s »
j41

l

G g s

2
1m jhnj

,(6.3)

where the m j are distinct. Our first aim is to show that n divides each nj . To this
end consider a row of m j’s with equal imaginary part, and let m j0

be the one with
smallest real part. Since the poles of the g-factor of F(s)n are at the points sj , k 4

22(m j 1k) with k40, 1 , R and j41, R , l , the multiplicity of sj0 , 0 is nj0
. Hence

nNnj0
. Let now m j1

be the next one in the same row. If D(m j1
2m j0

) is not an inte-
ger, then the same argument shows that nNnj1

. If D(m j1
2m j0

) is an integer, then
the multiplicity of sj1 , 0 is nj0

1nj1
, thus nN(nj0

1nj1
) and hence nNnj1

in this case as
well. Arguing similarly with the other m j’s we see that nNnj for j41, R , l as
required.
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But from (6.3) we have

dF n 42 !
j41

l nj

2
4d ,

hence nNd , a contradiction. Therefore EOQ4¯ . Moreover, S l--l is a multiplicative
semigroup, hence for every d�E and d 8�R1 such that d1d 8�Q0N we have
S l--l

d 8 4¯ . Therefore

( (Q0N)2E)OE4¯ ,(6.4)

and hence m(E) 40. In fact, given A and B with m(A), m(B) D0, the set A1B
contains an open segment, see ex. 19 of Ch. 9 of Rudin [45]. Hence, if m(E) D0
there exist r�Q0N and d1 , d2 �E such that r4d1 1d2 , thus r2d1 4d2 contra-
dicting (6.4). r

Note that the first part of the proof of Theorem 6.6 is a special case of the fol-
lowing result (see Molteni [33]): if the multiplicity of all poles of a g-factor g 1 (s) is
divisible by n , then there exists another g-factor g 2 (s) such that g 1 (s) 4g 2 (s)n .
Note also that the crucial point that EOQ4¯ is a direct consequence of the as-
sumption on the shape of the functional equation for integer degrees. A related
problem is

P r o b l e m 6.5. Replace the assumption in Theorem 6.6 by other function-
theoretic properties of the functions with integer degree.

7 - Independence

In Section 3 we presented the simplest independence result in the Selberg
class, namely the linear independence of the functions in S (see Theorem 3.8). We
also remarked that the unique factorization (UF) and the Selberg orthonormality
(SOC) conjectures (see Conjectures 3.2 and 3.3) are stronger forms of independ-
ence. In this section we present other independence results, concerning the fun-
ctions in S and their zeros. Most such results are conditional, but nevertheless
they form a very interesting part of the Selberg class theory.

We start with the following simple consequence of Theorem 3.8, concerning
the algebraic independence in S.

C o r o l l a r y 7.1. ([24]) S has unique factorization if and only if distinct pri-
mitive functions are algebraically independent.
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Clearly, we can’t expect that distinct functions in S are algebraically indepen-
dent, since S is a semigroup. However, we have

T h e o r e m 7.1. ([33]) Let F , G� S satisfy F(s)a 4G(s)b with a , b�N. Then
F(s) 4H(s)b and G(s) 4H(s)a for some H� S.

The proof of Theorem 7.1 is based on the characterization of the solubility in S

of the equation X k 4F(s) in terms of the multiplicities of the zeros of F(s) and of
its Euler factors Fp (s). Note that Theorem 7.1 and the linear independence imply
that pairs of distinct primitive functions in S are algebraically indepen-
dent.

In the 1940’s, Selberg [48], [49] initiated the study of the moments, and hence

of the statistical distribution, of log zg 1

2
1 ith. Later, see [50], he outlined the

extension of such investigations to the functions in S, obtaining their statistical in-
dependence as well. Selberg’s arguments have been streamlined by Bombieri-He-
jhal [3], with the emphasis just on the probabilistic convergence of the relevant
measures, and the goal of applications to the distribution of zeros of linear combi-
nations of certain Euler products. Here we present Bombieri-Hejhal’s version of
Selberg’s results on the normal distribution and statistical independence of the
values of L-functions. Note that Bombieri-Hejhal [3] work in a moderately gene-
ral setting, but their results easily carry over to the Selberg class (see Zanello
[57]). Therefore, although Theorems 7.2, 7.3, 7.4 and 7.7 below were originally
proved in Bombieri-Hejhal’s setting, we state them in the setting of the Selberg
class, and refer to [57] for the needed changes in the proofs. Moreover, we refer
to the survey paper by Bombieri-Perelli [4] for a discussion of these matters and
for a sketch of the proofs of Theorems 7.3, 7.4 and 7.7 below.

We start with two hypotheses needed in the results which follow. The first is a
variant of the Selberg orthonormality conjecture (see Conjecture 3.3).

H y p o t h e s i s S. The coefficients of F1 , R , FN � S satisfy, for xKQ ,

!
pGx

ai (p) aj (p)

p
4d ij nj log log x1cij 1O g 1

log x
h ,

where nj D0, cij �C , and d ij 41 if i4 j and d ij 40 otherwise.

Note that Hypothesis S is quantitatively stronger than SOC. However, it does
not assume that the functions are primitive (in practice, it requires that Fi (s) and
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Fj (s) are coprime if ic j), and does not require nj 41 for primitive functions. No-
te, however, that for most applications of SOC the reqirement nj D0 for primitive
functions would also suffice.

Writing

Nj (s , T) 4 l--l ]r4b1 ig : Fj (r) 40, bFs , NgNGT(,

the second hypothesis is the following density estimate of Selberg [49] type, which
acts as a substitute of GRH in the results below.

H y p o t h e s i s D. The zeros of F1 , R , FN � S satisfy

Nj (s , T) bT
12a(s2

1

2
)
log T

for some 0 EaE1, uniformly for sF
1

2
and j41, R , N.

Note that Hypothesis D is known for the Riemann zeta function, for the Diri-
chlet L-functions and for certain GL(2) L-functions.

We need further notation. Given F1 , R , FN � S we write

Vj (t) 4

log Fjg 1

2
1 ith

kpnj log log t
j41, R , N

and let

m T (V) 4
1

T
N]t� [T , 2T] : (V1 (t), R , VN (t) ) �V(N

be the associated probability measure on CN , where V%CN is an open set and
N A N denotes here the Lebesgue measure of A. Moreover, let e 2pVzV

2
denote the

gaussian measure on CN and dv be the euclidean density on CN .

T h e o r e m 7.2. ([50], [3]) Let F1 , R , FN � S satisfy Hypotheses S and D.
Then, as TKQ , the measure m T converges weakly to the gaussian measure with
associated density e 2pVzV

2
dv.
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By separating real and imaginary parts of the Vj(t), Theorem 7.2 may be expres-
sed as follows. If F1 , R , FN� S satisfy Hypotheses S and D , then the functions

log NF1g 1

2
1 ithN

kpn1 log log t
,

arg F1g 1

2
1 ith

kpn1 log log t
, R ,

log NFNg 1

2
1 ithN

kpnN log log t
,

arg FNg 1

2
1 ith

kpnN loglog t

become distributed, in the limit of large t , like independent random variables, ea-
ch having gaussian density e 2pu 2

du . It is interesting to observe how an independ-
ence hypothesis of SOC type (i.e. Hypothesis S) implies the normal distribution
and statistical independence of the values of log FJ (s) on the critical line (Hypo-
thesis D is a technical hypothesis in this context).

Theorem 7.2 is a deep result, and here we just mention the main steps in Bom-

bieri-Hejhal’s [3] proof. The starting point is the following approximation formula

for log Fjg 1

2
1 ith , obtained by Mellin transform techniques: for j41, R , N and

10 GXGNtN2

log Fjg 1

2
1 ith4S j (t , X)1Rj (t , X) ,(7.1)

where S j (t , X) is a suitable Dirichlet polynomial approximation and Rj (t , X) is a
certain sum over zeros of Fj (s). In order to derive Theorem 7.2, in [3] the mixed
moments of the S j (t , X) are evaluated, and an L 1-norm bound for the error term
Rj (t , X) is obtained:

�
T

2T

NRj (t , X)NdtbT
log T

log X
(7.2)

for 10 GXGT a/2 , and

�
T

2T

»
j41

N

S j (t , X)kj S j (t , X)lj dt

4d kl k! T »
j41

N

(nj log log X)kj 1O g(T(log log X)
K1L21

2 h
(7.3)
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for 10 GXGT 1/(K1L11) , where kj , lj are non-negative integers, k4 (k1 , R , kN )

and K4k1 1R1kN (and similarly for l and L), k!4 »
j41

N

kj ! and d kl 41 if k4 l ,

d kl 40 otherwise. Theorem 7.2 follows then from (7.1), (7.2) and (7.3) by a proba-
bilistic argument.

For future reference, we state here a short intervals version of Theorem 7.2.
Let MF10, h4M/ log T ,

VAj (t) 4

log Fjg 1

2
1 i(t1h)h2 log Fjg 1

2
1 ith

k2pnj log M
j41, R , N

and let mAT be the associated probability measure on CN (like m T above). We have

T h e o r e m 7.3. ([5]) Let F1 , R , FN � S satisfy Hypotheses S and D and let

M4M(T) KQ with MG
log T

log log T
. Then, as TKQ , the measure mAT converges

weakly to the gaussian measure with associated density e 2pVzV

2
dv.

The proof of Theorem 7.3 is a short intervals version of the argument in Theo-
rem 7.2.

It is generally accepted that functional equation and Euler product are crucial
ingredients for the validity of the Riemann Hypothesis. In the opposite direction,
examples of L-functions without Euler product having zeros off the critical line
are well known; see e.g. Section 10.25 of Titchmarsh [54] and Chapter 9 of Daven-
port [13]. Usually, such L-functions are linear combinations of Euler products sa-
tisfying a common functional equation, and fairly general methods often show
that the number of zeros on the critical line up to T is cT (for small degrees). In
some cases, lower bounds of type cTf (T) with concrete functions f (T) KQ have
been obtained, see Section 1 of [3]. Using Theorem 7.2, Bombieri-Hejhal [3] obtai-
ned a very sharp and general result about the zeros on the critical line of linear
combinations of Euler products. In order to state such a result we need the follo-
wing mild condition of well-spacing for zeros.

H y p o t h e s i s H0. Let F1 , R , FN � S satisfy GRH and, moreover, let the ze-
ros of each Fj (s) satisfy

lim
eK01

m lim
TKQ

N]TGgG2T : g 82gGe/ log T(N

T log T
n40 ,

where
1

2
1 ig 8 is the successor of

1

2
1 ig.
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We will return on Hypothesis H0 later on in this section. Given F1 , R , FN � S

satisfying the same functional equation, let

F(s) 4 !
j41

N

cj Fj (s) ,(7.4)

where the coefficients cj are such that cj g g 1

2
1 ith Fjg 1

2
1 ith�R for t�R and

j41, R , N , where g(s) is the common g-factor of the Fj (s)’s.

T h e o r e m 7.4. ([2], [3]) Let F1 , R , FN � S satisfy the same functional equa-
tion, GRH and Hypothesis H0 , and let F(s) be defined as in (7.4). Then all but
o(T log T) zeros of F(s) up to T are simple and lie on the critical line.

Roughly speaking, the proof of Theorem 7.4 rests on the fact that on a given
interval of the critical line of length roughly 1 / log T , one of the functions Fj (s)
dominates with oscillations larger than the others, thus in that interval the fun-
ction F(s) follows fairly closely the behaviour of the Fj (s) with largest oscillation.
The proof is rather complicated because of, among other things, the weak measu-
re theoretic setting in Theorem 7.2.

In view of Theorem 7.4, one may ask about the number of off-line zeros up to
T of the function F(s) in (7.4). We refer to Hejhal [20], [21] for several results in
this direction. Here we only recall that there is some expectation that the order of
magnitude of the number of such zeros is about

T log T

klog log T
.

By Hadamard’s theory, the L-functions are essentially determined by their ze-
ros, thus one expects that «independent» L-functions have «independent» zeros.
One of the simplest forms of independence of the zeros is asking for distinct ze-
ros, in the sense defined below; other forms of independence will be presented la-
ter on in this section. In view of SOC and of Theorem 7.2, distinct primitive fun-
ctions are expected to be independent in several ways, and hence we may expect
that they have few common zeros. Therefore, by factorization, distinct functions in
S should have many distinct zeros. In order to make rigorous and quantitative
such heuristic observations, we need some notation.

Given F , G� S, we define two counting functions of the distinct zeros, with
multiplicity, as follows. The asymmetric difference of the zeros of F(s) and
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G(s), i.e. the number of zeros of F(s) which are not zeros of G(s), is defined
by

D(T ; F , G) 4 !
NgNGT

max (mF (r)2mG (r), 0 ) ,

where r4b1 ig runs over the non-trivial zeros of F(s) and is counted without
multiplicity, and mF (r) (resp. mG (r)) denotes the multiplicitiy of r as zero of F(s)
(resp. of G(s)). The symmetric difference is then defined as

DF , G (T) 4D(T ; F , G)1D(T ; G , F) 4 !
NgNGT

NmF (r)2mG (r)N ,

where r runs over the non-trivial zeros of F(s) G(s) and is counted without multi-
plicity, and counts the number of zeros and poles of F(s) /G(s) in the critical strip
(excluding the contribution of possible trivial zeros, and of poles at s41, of F(s)
and G(s)).

Of course, the asymmetric difference is more difficult to study than the sym-
metric difference since, in general, we cannot expect a positive lower bound for
D(T ; F , G), as the example G(s) 4F(s)2 shows. In the symmetric case we expect
that DF , G (T) cT log T as soon as F(s) cG(s); for example, this is trivially the
case when dF cdG (see (7.5) below). Recalling that f (x) 4V(g(x) ) is the negation
of f (x) 4o(g(x) ), in the general case we have

T h e o r e m 7.5. ([38]) Let F , G� S be distinct. Then DF , G (T) 4V(T).

The proof follows by a comparison of Landau’s formula, expressing the von
Mangoldt function in terms of an exponential sum over the zeros, for F(s) and
G(s). In particular, the Euler products of F(s) and G(s) are used. We remark that
the same V-estimate has been obtained by Bombieri-Perelli [6] for the number of
zeros and poles of a class of exponential sums f (s) assuming only certain function
theoretic properties, disregarding their arithmetic aspects. In this case the proof
is more involved and uses Nevanlinna’s theory. Choosing f (s) 4F(s) /G(s), Theo-
rem 2 of [6] yields V(T) distinct zeros in the case of two Dirichlet series F(s) and
G(s) satisfying the same functional equation, without any assumption on the Eu-
ler product.

Clearly, in order to get non-trivial lower bounds for the asymmetric difference
D(T ; F , G) we have to assure at least that F(s)=G(s). A convenient way to do
this is to assume that dF FdG . Since clearly (see Section 2)

D(T ; F , G) FNF (T)2NG (T) cT log T if dF DdG ,(7.5)
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as far as we are not concerned with asymptotic formulae for D(T ; F , G) we may
simply assume that dF 4dG . An unconditional result in this direction has been ob-
tained by Srinivas [52].

T h e o r e m 7.6. ([52]) Let F , G� S be distinct and dF 4dG . Then for T suffi-
ciently large there exists a zero r of F(s) with mF (r) DmG (r) such that NT2rN

b log log T. Hence, in particular,

D(T ; F , G) c
T

log log T
.

Of course, the same holds switching the roles of F(s) and G(s). The proof is
based on a contour integration argument applied to the quotient G(s) /F(s). The
order log log T of the short intervals in Theorem 7.6 should be compared with the
order 1 / log log log T of the short intervals containing a zero of a given F� S

(extension to S of Littlewood’s theorem, see Theorem 9.12 of [54], obtained by
Anirban-Srinivas, unpublished).

P r o b l e m 7.1. Replace the estimates V(T) in Theorem 7.5 and
cT/ log log T in Theorem 7.6 by the lower bound cT.

Theorem 7.3 allows to obtain the best possible lower bound for D(T ; F , G),
under Hypothesis S and the technical Hypothesis D .

T h e o r e m 7.7. ([5]) Let F , G� S be distinct and satisfy Hypotheses S and
D , and let dF 4dG . Then

D(T ; F , G) cT log T .

Again, the same result holds switching F(s) and G(s). The proof of Theorem
7.7 rests on a similar phenomenon as in Theorem 7.4, i.e. usually one of the fun-
ctions is dominating on short intervals of length roughly 1 / logT . Also, the weak
measure theoretic setting of Theorem 7.3 gives rise to some complications in the
proof. A consequence is that the argument is by contradiction, thus the constant
in the c-symbol is not effectively computable. However, as remarked in Section 4
of Bombieri-Perelli [4], an effective constant can be obtained at the cost of sub-
stantial additional complications in the proof. Further, we already remarked that
Hypothesis D is known for many classical L-functions of degree G2. Since such
L-functions satisfy SOC as well, Theorem 7.7 is unconditional in those cases.
Again, we refer to the survey paper [4] for a discussion of the distinct zeros
problem.
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We remark at this point that the first result on distinct zeros has been obtai-
ned by Fujii [15]. He proved, by Selberg’s moments method, that D(T ; F , G)
cT log T in the case of two Dirichlet L-functions. Moreover, Raghunathan [43],
[44] obtained that D(T ; F , G) KQ for certain classical L-functions F(s) and
G(s), by a method based on converse theorems of Hecke type.

The problem of the strongly-distinct zeros, i.e. the zeros placed at different
points, appears to be more difficult. Conrey-Ghosh-Gonek [11], [12] dealt with the
case of two Dirichlet L-functions, by considering the more difficult problem of
getting simple zeros of L(s , x 1 ) L(s , x 2 ). They obtained cT 6/11 such zeros up to
T and, assuming the Riemann Hypothesis for one of the two functions, got a posi-
tive proportion of strongly distinct zeros. However, apparently the analytic te-
chniques in [11] and [12] do not extend to higher degree L-functions.

P r o b l e m 7.2. Deal with the strongly-distinct zeros problem for the fun-
ctions in S.

We conclude the discussion of distinct zeros with the following conjectures.

C o n j e c t u r e 7.1. (simple zeros conjecture) Let F� S be primitive. Then all
but o(T log T) non-trivial zeros of F(s) up to T are simple.

C o n j e c t u r e 7.2. (distinct zeros conjecture) Let F , G� S be distinct primi-
tive functions. Then all but o(T log T) non-trivial zeros of F(s) and G(s) are
strongly-distinct.

Although apparently Conjecture 7.1 cannot be regarded as an independence
statement, we included it here in view of its relevance in the problem of the stron-
gly-distinct zeros. Conjectures 7.1 and 7.2 are not at all the strongest conjectures
of this type. In fact, it is generally expected that a non-trivial zero with multiplic-

ity greater than 1 of a primitive function can occur only at the point s4
1

2
. The

same phenomenon is expected to hold for the distinct zeros as well, but one has to
more careful here. In fact, the shifts of the primitive functions are expected to be
primitive (see Section 3) and GRH is expected to hold, hence it is likely that di-
stinct primitive function have common zeros other than s4

1

2
. However, if F ,

G� S are primitive and normalized, i.e. the shifts u F and u G vanish (as for the
classical L-functions), then it is expected that the only common zero can occur at

s4
1

2
. The above expectations take into account the Birch and Swinnerton-Dyer

conjecture.
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Another form of independence is the functional independence of the zeros.
By this we mean, roughly speaking, the following problem: given F1 , R , FN � S

and a holomorphic function H(z , s), z4 (z1 , R , zN ), can

H(log F1 (s), R , log FN (s), s) or H g F 81

F1

(s), R ,
F 8N

FN

(s), sh
have only finitely many singularities in the half-plane sF

1

2
?

We consider first the problem with the logarithms. It is clear that one needs to
impose some natural restrictions on the functions F1 , R , FN � S and on H(z , s) in
order to get infinitely many singularities. To this end, we consider a region D

containing the half-plane sF
1

2
and holomorphic functions H(z , s) on CN 3 D

such that for every s0 � D and eD0

H(z , s0 ) be eVzV

VzVKQ ;

we denote by H the ring of such functions. Moreover, we say that deg H40 if for
every s0 � D, H(z , s0 ) is constant as a function of z . Further, for H� H we
write

h(s) 4H(log F1 (s), R , log FN (s), s) ,

which is holomorphic in the region obtained by suitably cutting D at the singulari-
ties of the log Fj (s)’s. Note that the growth condition on H(z , s) cannot be signifi-
cantly relaxed, as shown by the example with N41, F(s) 4z(s)k , H(z , s) 4e z/k

and k�N , where h(s) has only the singularity at s41. Moreover, the
log F1 (s), R , log FN (s) must be linearly independent over Q , otherwise there are
simple examples of H� H such that h(s) has no singularities at all. The following
result shows that h(s) has always infinitely many singularities in the half-plane

sF
1

2
, unless there are obvious reasons for the cancellation of the singulari-

ties.

T h e o r e m 7.8. ([25]) Let F1 , R , FN � S be such that logF1 (s), R , logFN (s)
are linearly independent over Q , and let H� H with degHc0. Then h(s) has
infinitely many singularities in the half-plane sF

1

2
.

Since the polynomials belong to H, Theorem 7.8 provides, in particular, a kind
of algebraic independence of the zeros, in the sense explained above. Moreover, if
the unique factorization conjecture holds (see Conjecture 3.2), then h(s) has infini-
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tely many singularities in sF
1

2
for any distinct primitive functions F1 , R , FN

� S and H� H with deg Hc0. We also remark that Theorem 7.8 allows to de-
scribe the structure of the functions H� H such that h(s) is holomorphic on D,
depending on the number of F1 , R , FN � S with linearly independent logarithms,
see [25]. As a consequence, one obtains the following corollary of Theorem 7.8
(see [25]):

if F1 , R , FN � S and H� H, then h(s) is either holomorphic on D or has infi-

nitely many singularities on sF
1

2
.

Moreover, non-trivial examples of vanishing Q-linear forms of logarithms, and
hence of holomorphic h(s), can be obtained in the framework of Artin and Hecke
L-functions (see Kaczorowski-Perelli [25]).

The proof of Theorem 7.8 is based on the following lemma, which is of some
independent interest. Given r�C we write m(r) 4 (m1 (r), R , mN (r) ), where
mj (r) denotes, as usual, the multiplicity of r as zero of Fj (s). Moreover, r j deno-

tes a non-trivial zero of Fj (s) in the half-plane sF
1

2
.

L e m m a 7.1. ([25]) Let F1 , R , FN � S be as in Theorem 7.8. Then there
exist infinitely many N-tuples (r 1 , R , r N ) such that the vectors
m(r 1 ), R , m(r N ) form a basis of RN.

Very likely, Lemma 7.1 can be made quantitative in the sense that many such
N-tuples (r 1 , R , r N ) up to T can be obtained. Therefore, quantitative versions of
Theorem 7.8 are within reach. Accordingly, we raise the following

P r o b l e m 7.3. Get a quantitative version of Theorem 7.8, with at least V(T)
singularities.

The analogous problem with the logarithmic derivatives in place of the logari-
thms is more delicate, since poles are easier to cancel than logarithmic singulari-
ties. In this case we cannot even expect as general results as before. In fact, let
F1 , R , FN � S, mFj

be the polar order of Fj (s), P(z) be a polynomial of degree
kF1, and let

h(s) 4 g»
j41

N

(s21)mFj11 Fj (s)hk

P g F18

F1

(s), R ,
FN8

FN

(s)h ;

clearly, h(s) in an entire function. We have
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T h e o r e m 7.9. ([25]) Let P(z) be a polynomial with degree D0, F1 , R ,
FN � S, kj , a j �N and h j �C for j41, R , N . Then

h(s) 4P g F18

F1

(a 1 s1h 1 )(k1 ) , R ,
FN8

FN

(a N s1h N )(kN )h
is either constant or has infinitely many poles.

Note that Theorem 7.9 is weaker than the above stated corollary of Theorem
7.8, in the sense that the function h(s) is of less general type and there is no non-
trivial lower bound for the real part of the singularities. The proof of Theorem 7.9
is based on a Mellin transform argument. Similarly to Problem 7.3, one may ask
for explicit lower bounds for the number of poles up to T in Theorem 7.9.

Clearly, the functional independence of the zeros is closely related, at least
morally, to the distinct zeros; we therefore raise the following

P r o b l e m 7.4. Are there direct implications between the results on the fun-
ctional independence and on the distinct zeros?

We finally turn to a very strong form of independence of the zeros, namely the
pair correlation. Following Montgomery [34], given F , G� S and a�R , Murty-
Perelli [39] defined the (asymmetric and normalized) pair correlation func-
tion

F(a ; F , G) 4
p

dF T log T
!

Ng FN , Ng GNGT
T iadF (g F2g G ) w(g F 2g G ) ,

where g F , g G are the imaginary parts of the non-trivial zeros of F(s), G(s) and
w(u) 44/(41u 2 ), and studied the behaviour of F(a ; F , G) under GRH. Writ-
ing

L F (n , x)4

.
`
/
`
´

L F (n) g n

x
h1/2

if nGx

L F (n) g x

n
h3/2

if nDx

and C F3G (x)4 !
n41

Q

L F (n , x) L G (n , x)

they obtained
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P r o p o s i t i o n 7.1. ([39]) Assume GRH and let F , G� S, eD0 and X4T adF .
Then, uniformly for 0 GadF G12e , as TKQ we have

F(a ; F , G) 4
1

dF X log T
C F3G (X)1 (11o(1) ) dG T 22adF log T1o(1) .

We may consider only aF0 since F(2a ; F , G) 4 F(a ; F , G). Note that
C F3G (x) is related by partial summation to

c F3G (x) 4 !
nGx

L F (n) L G (n),

for which SOC suggests the asymptotic formula

c F3G (x) 4 (d F , G 1o(1) ) x log x ,(7.6)

provided F(s) and G(s) are primitive. Therefore, assuming GRH and (7.6), Propo-
sition 7.1 yields

F(a ; F , G) 4d F , G a1 (11o(1) ) dG T 22adF log T1o(1)

uniformly for 0 GadFG12e . This is the analog of the Theorem in Montgomery
[34], and still in analogy with [34], the following conjecture has been stated in [39].

C o n j e c t u r e 7.3. (pair correlation conjecture, PC) Let F , G� S be primiti-
ve. Then

F(a ; F , G) 4
.
/
´

d F , G NaN1 (11o(1) ) dG T 22NaNdF log T1o(1)

d F , G 1o(1)

if NaNG1

if NaNF1

as TKQ , uniformly for a in any bounded interval.

Clearly, Conjecture 7.3 can be suitably modified if F , G� S are not primitive,
see (3.5) of [39]. As already remarked above, Conjecture 7.3 is a very strong inde-
pendence statement. For example, by convolution with suitable kernels (see [34])
PC yields

T h e o r e m 7.10. ([39]) PC implies Conjectures 7.1 and 7.2. Moreover, if the
asymptotic formula of PC holds for some a 0 D0, then the unique factorization
conjecture follows.

We remark that the UF conjecture is deduced in Theorem 7.10 using the pro-
perties of the pair correlation function F(a ; F , G) in a direct way. However, it is
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quite clear from Proposition 7.1 that PC has implications on the following version
of SOC

C F3G (x) 4 (d F , G 1o(1) ) x log x .(7.7)

Precisely, (7.7) follows from GRH and

F(a 0 ; F , G) 4d F , G a 0 1o(1)(7.8)

for a suitably small 0 Ea 0 4a 0 (F , G). But (7.7) can be used as a substitute of
SOC in results like Theorems 3.6 and 3.7. Hence, in turn, GRH and (7.8) imply re-
sults of such type, in particular the Artin conjecture.

The pair correlation conjecture may also be formulated, more explicitly, in ter-
ms of the differences of the imaginary parts of the zeros, as in (12) of [34]. In that
way one sees that Hypothesis H0 is in fact a weak version of PC, dealing only with
the behaviour at a40.

The above treatment of PC follows Montgomery’s [34] approach, thus assumes
GRH. However, Rudnik-Sarnak [46], [47] investigated suitably weighted versions
of the n-level correlation of the zeros of automorphic L-functions (assuming a
mild form of the Ramanujan conjecture when the degree is D4) without assuming
the Riemann Hypothesis for such L-functions, thus getting interesting general re-
sults. This point of view has been carried over by Murty-Zaharescu [40] to the
framework of the Selberg class.

To this end, Murty-Zaharescu [40] defined the pair correlation function in the

following slightly modified way ghere w(z) 4
4

42z 2 h
F
A

(a ; F , G) 4
p

dF T log T
!

Ng FN , Ng GNGT
T adF (r F1r G21) w(r F 1r G 21) ,

so that F
A

(a ; F , G) 4 F(a ; F , G) under GRH. Observing that an off-line zero
r4b1 ig of a primitive F� S gives rise to a term of order T adF (2b21) /T log T in
F
A

(a ; F , F), and that such a term tends to infinity as TKQ provided a is suitably
large, it is clear that Conjecture 7.3, with F

A
(a ; F , G) in place of F(a ; F , G), mo-

rally (at least) assumes GRH. In order to have a GRH-free form of PC, in [40] the
following conjecture has been formulated.
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C o n j e c t u r e 7.4. (weak pair correlation conjecture, WPC) Let F , G� S be
primitive. Then there exists a constant cF , G D0 such that for any 0 Ea

EcF , G

F
A

(a ; F , G) 4d F , G a1o(1) as TKQ .

As pointed out in [40], results of this type are indeed proved in Rudnik-Sarnak
[47] in the framework of automorphic L-functions. Moreover, it is clear from the
second statement of Theorem 7.10 and from the discussion after it that WPC has
interesting consequences. In fact, the following unconditional version of Proposi-
tion 7.1 holds (recall that w F appears in axiom (v) of the Selberg class).

P r o p o s i t i o n 7.2. ([40]) Let F , G� S, eD0 and X4T adF . Then for eGadF

G12e , as TKQ we have

F
A

(a ; F , G) 4
1

dF X log T
C F3G (X)1O(T 2d ) ,

where d4emin g 1

2
, 12w F 2w Gh .

In view of the discussion after Theorem 7.10, WPC implies (7.7) and hence

C o r o l l a r y 7.2. ([40]) WPC implies UF, the Artin conjecture and the Lan-
glands reciprocity conjecture for solvable extensions of Q.

It is natural to raise at this point the following

P r o b l e m 7.5. Prove that some form of PC implies SOC.

The proof of Proposition 7.2 is based on a suitable version of Landau’s formu-
la, see Proposition 1 of [40]. Such a technique allows to introduce weight fun-
ctions, thus giving more general explicit formulae for the pair correlation of the
zeros of functions in S, of type

!
Ng FN , Ng GNGT

f (r F 1r G ) 4 !
n41

Q

L F (n) L G (n) g(n)1error ,(7.9)

where g(u) is a suitable weight function and f (s) is its Mellin transform (see Theo-
rems 3 and 4 and Corollaries 1 and 2 in Murty-Zaharescu [40]).

In Section 6 we already met an extension to S l--l of the classical Rankin-Selberg
convolution, namely F3F(s). Of course, the same type of convolution can be defi-
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ned more generally for two functions F , G� S l--l as

F3G(s) 4 !
n41

Q

aF (n) aG (n) n 2s .(7.10)

Another type of extension to S of the Rankin-Selberg convolution appears in Na-
rayanan [41], and is defined as follows (see also [40]). For F , G� S define

F7G(s) 4»
p

(F7G)p (s) ,(7.11)

where for all but finitely many primes p

log (F7G)p (s) 4 !
m41

Q mbF (p m ) bG (p m )

p ms
.

Note that in view of the multiplicity one property of S (see Theorem 3.4) the defi-
nition of the Euler factors at a finite number of primes is not critical. Note also
that the convolutions (7.10) and (7.11) are closely related, and that (7.11) is expec-
ted to have better analytic properties (see Chapter II of Moroz [36]).

Assuming that F7G� S, from (7.11) we see that (apart from n4p m with p in
a finite set)

L F (n) L G (n) 4L(n) L F7G (n) ,(7.12)

where L(n) denotes the classical von Mangoldt function associated with z(s).
Hence the explicit formulae of type (7.9) and Proposition 7.2 imply

C o r o l l a r y 7.3. ([40]) Let F , G� S be such that F7G� S. Then for f (s) as
in (7.9)

!
Ng FN , Ng GNGT

f (r F 1r G ) 4 !
NgN , Ng F7G NGT

f (r1r F7G )1error ,

where r and r F7G denote the non-trivial zeros of z(s) and F7G(s). Moreover,
for eD0 and eGadF G12e , as TKQ

F
A

(a ; F , G) 4 F
A

(a ; z , F7G)1O(T 2d ) ,

where d4e min g 1

2
, 12w F 2w Gh .

Corollary 7.3 reflects once again the universality of the pair correlation of the
L-functions, as well as the expectation that F,G� S are coprime if and only if the
Rankin-Selberg convolution F7G(s) is holomorphic at s41 (or, equivalently, if
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and only if F7G(s) is coprime with z(s)). Another consequence of Proposition
7.2 pointed out in [40] is that, in analogy to Rudnik-Sarnak [47], if F , G� S are
primitive and F7G(s) has nice analytic properties, then WPC holds for
F
A

(a ; F , G). In fact, by standard arguments in prime number theory one gets, via
(7.12), the expected asymptotic formula (7.7) from mild information on the analytic
continuation, polar structure at s41 and zero-free regions of F7G(s).

We finally state a natural problem on the extension of the pair correlation pro-
blems (see Section 7 of [40]).

P r o b l e m 7.6. Investigate the N-level correlation of the zeros of functions
in S (or the correlation of the zeros of N-tuples of functions in S).
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A b s t r a c t

This is the second part of a survey of the Selberg class S of L-functions. This part con-
tains the following topics: linear and non-linear twists of the L-functions in S; classifica-
tion of the L-functions with degree between 1 and 2; independence problems for the L-
functions in S.
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