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1 - Introduction

A very classical theorem (see [1], Thms 1 of Ch. IX and Ch. X) states, in parti-
cular, that if r is an odd positive integer and a is a non-zero rational number such
that a is an r-th power modulo all but finitely many prime numbers p , then it is
the r-th power of a rational number. On the contrary, for arbitrary r the result is
not true: for example, 16 is an 8-th power in all Qp with pc2 but it is not the 8-th
power of a rational number.

Now, taking r-th powers can be interpreted as multiplying by r in the alge-
braic group Gm ; this rephrasing motivates the following more general question:
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for which algebraic groups A /k and natural numbers r , is the divisibility of a
point P by r in A(k) equivalent to local r-divisibility almost everywhere?

The aim of this paper is to give an account of some cases where one can give
an answer to this question, whether positive or negative. Most of the results we
quote are contained in [5], [6], [7] and [16].

In order to formulate precisely our question and our results, we first introduce
some notation.
In the sequel k denotes a number field with algebraic closure k 4 Q. As usual we
put Gk »4 Gal (k /k). By a prime of k we mean a discrete valuation v of k . The com-
pletion (resp. residue field) at v will be denoted by kv (resp. k(v)).

Let A be a commutative and connected algebraic group defined over k , suppo-
sed to be embedded in some projective or affine space. We shall write A additive-
ly and denote by O its origin (defined over k).

Let m be a positive integer and define A[m] »4 ]P� A(k)NmP4O(. It follo-
ws from the classification of commutative algebraic groups in characteristic 0 (see
for instance [12], Prop. 11, 12 of Ch. III, §2.7 and Cor. of Ch. VII, §2.7) that A[m]
` (Z/(m) )n for a certain integer n4nA depending only on A.

We shall be concerned with the following

P r o b l e m . Let r be a positive integer and let P� A(k). Suppose that for all
but a finite number of primes v of k we have P4rDv , for some Dv �kv . Can one
conclude that there exists D� A(k) such that P4rD?

E x a m p l e 1. The theorem mentioned at the beginning concerns the case
A 4Gm of our problem. In [1] one can find a complete solution to this case. As
mentioned, the answer is affirmative if r is odd, but more than this is true, and in
particular one can always conclude that 2P is divisible by r in A(k). Letting
k4Q , P416, r48, one obtains the simplest example of a case where the an-
swer to the problem is negative.

R e m a r k 1. For almost all v we have that A has good reduction modulo v
(whence the reduction is nonsingular) and that the point P is v-integral. In parti-
cular, for such a v , Hensel’s lemma implies that the existence of Dv is equivalent
to the fact that the reduction of P modulo v is divisible by r in A(k(v) ).

Also, the conclusion becomes trivial, in view of the Čebotarev theorem, if we
assume that all r-th roots of P lie in kv for almost all v .

The paper is organized as follows. In Section 2 we shall interpret the problem in
cohomological terms, as is classical in the context; we shall introduce a certain
cohomology group whose vanishing is sufficient for the local-global principle to
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hold (see Propositions 1 and 2). This condition is possibly not necessary in the ge-
neral case.

In Section 3 we shall give a number of examples where our problem has a po-
sitive answer. We shall start with general commutative algebraic groups A for
which nA is small; later on, we shall consider in some detail the cases when A is
either an elliptic curve or an algebraic torus.

In Section 4 we shall give a number of examples where our problem has a
negative answer. Again, we shall concentrate on the special cases when A is ei-
ther an elliptic curve or an algebraic torus. Finally, we shall quote a result establi-
shing to what extent the sufficient condition given in Proposition 1 is also necess-
ary in order that our problem has a positive answer.

2 - The cohomological interpretation

First of all we note that, by Bezout’s indentity, it is sufficient to study our pro-
blem in the case when r is a prime power. Let then q4r4p e , where p is a prime
and e is an integer and define A[q] % A(k) to be the kernel of the multiplication by
q map. This is a finite abelian p-group.

Let K4k(A[q] ) be the field generated over k by the points in A[q]. Then K is
a Galois extension of k .

Since the abelian group A[q] is isomorphic to (Z/(q) )n , the absolute Galois
group Gk 4 Gal (k /k) acts as a subgroup of GLn (Z/(q) ). We denote by G its image:
observe that G is isomorphic to Gal (K/k).

Let D� A(k) be any point satisfying P4qD and let L4k(D) be the number
field generated by D over k . Then F»4LK% Q is normal over k , with Galois
group S , say. For s�S we have clearly

s(D) 4D1Zs ,(1)

for some Zs� A[q]. A quick computation gives the cocycle equation

Zst4Zs1s(Zt ) ,(2)

for s , t�S . We let c : s O Zs denote this cocycle and [c] its image in
H 1 (S , A[q] ).

Note that [c] 40 if and only if P4qD 8 for some D 8� A(k).
Now let v be a prime of k , unramified in F and satisfying the assumptions of

the problem. We may embed F in a finite extension Fw of kv , corresponding to so-
me prime w of F extending v . We have that Gal (Fw /kv ) is cyclic, generated by so-
me Frobenius automorphism of v relative to F/k . By the basic assumption of the
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problem, P4qDv for some Dv � A(kv ). By the same argument as above, the re-
striction of [c] to H 1 (Gal (Fw /kv ), A[q] ) vanishes. We note that, by the Čebotarev
theorem, Gal (Fw /kv ) varies over all cyclic subgroups of S as w runs over almost
all primes of F . In other words, for each s�S there exists Ws� A[q] such
that

Zs4 (s21) Ws .(3)

This argument motivates the following general definition.

D e f i n i t i o n 1. Let G be a group and let M be a G-module. We say that a co-
cycle [c] 4 []Zg(] �H 1 (G , M) satisfies the local conditions if there exist Wg�M
such that Zg4 (g21)Wg for all g�G . We denote by H 1

loc (G , M) the subgroup of
such cocycles. Equivalently, H 1

loc (G , M) is the intersection of the kernels of the re-
striction maps H 1 (G , M) KH 1 (C , M) as C varies over all cyclic subgroups of G .

Working with all valuations, instead of almost all, we would get the classical
definition of the Selmer group. Modifications of the Selmer group, similar to our
definition, appear in [10]. However, in order to render the paper self-contained,
we prefer to keep our own notation. The next proposition can be obtained from ra-
ther well-known arguments (see for instance [10], Lemma 1.1 (ii)). It gives a suffi-
cient condition for the Problem to have an affirmative answer.

P r o p o s i t i o n 1. Assume that H 1
loc (Gal (K/k), A[q] ) 40. Let P� A(k) be a

rational point with the following property: for all but finitely many primes v of
k , there exists Dv � A(kv ) such that P4qDv . Then there exists D� A(k) such that
P4qD.

Later in the paper we shall study the vanishing of the group
H 1

loc (Gal (K/k), A[q] ) in various special cases.

R e m a r k 2. In some cases, Proposition 1 has a converse, namely:
Suppose that H 1 (Gal (K/k), A(K) ) 40, but H 1

loc (Gal (K/k), A[q] ) c0. Then the
Problem has a negative answer for some P� A(k).

In fact, the non-vanishing of H 1
loc (Gal (K/k), A[q] ) gives a cocycle Zs satisfying

(3) for s� Gal (K/k). Since H 1 (Gal (K/k), A(K) ) 40, we have Zs4s(D)2D for
some D� A(F). Necessarily P4qD� A(k) satisfies the assumptions, but not the
conclusion of the Problem.

Hilbert’s Theorem 90 says that H 1 (Gal (K/k), A(K) ) 40 is true in the case
when A 4Gm of Example 1 above. In general, however, the analogue of Hilbert’s
theorem is false; in those cases there seems to be no obvious reason why the men-
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tioned converse should nevertheless be true. We shall see in Section 4 how to par-
tially overcome this difficulty.

P r o o f o f P r o p o s i t i o n 1. Let S be as at the beginning of this section. The
arguments above show that H 1

loc (S , A[q] ) 40 implies the conclusion of the propo-
sition. Hence we need only to show that we may replace the group H 1

loc (S , A[q] )
by H 1

loc (Gal (K/k), A[q] ).
Since F&K, the action of Gk on A[q] factors through S. Hence Gk and S have

the same image G in Aut(A[q] ). We observe that G is isomorphic to
Gal (K/k).

We denote by S 8 the kernel of the representation of S in Aut(A[q] ). By defini-
tion, S 8 acts trivially on A[q], hence the restriction-inflation exact sequence ([11],
Prop. 4, Ch. IX, §6) takes the form

0 KH 1 (G , A[q] ) KH 1 (S , A[q] ) KH 1 (S 8 , A[q] ) .

We claim that the middle arrow induces an isomorphism

H 1
loc (G , A[q] ) `H 1

loc (S , A[q] ) .

To prove the claim note first that, since the inflation is injective, it induces trivial-
ly an injective map. On the other hand, take an element []Zs(] of H 1

loc (S , A[q] ); it
restricts to zero in H 1 (S 8 , A[q] ), as follows from (3) and the fact that S 8p acts tri-
vially on A[q]. By the exactness of the restriction-inflation sequence, []Zs(] co-
mes from an element []Yt(] �H 1 (G , A[q] ), and now it suffices to check that it
lies in H 1

loc (G , A[q] ): in fact, we may choose []Zs(] such that Yt4Zs for each s

which projects to t; with this choice equation (3) gives the verification. r

In particular, we obtain the following corollary, which can also be easily pro-
ved directly.

C o r o l l a r y 1. Let P� A(k) be a rational point such that for all but finitely
many primes v of k , there exists Dv � A(kv ) such that P4qDv. Then D� A(K)
for all D such that P4qD.

P r o o f . We may view P as a point in A(K). The assumptions imply, a fortio-
ri, that for all but finitely many primes w of K there exists Dw � A(Kw ) such that
P4qDw . Since Gal (K/K) is trivial, we have H 1

loc (Gal (K/K), A[q] ) 40. By Propo-
sition 1 there exists D� A(K) such that P4qD . Finally, if D 8� A(k) also satisfies
P4qD 8 , then D 82D� A[q] % A(K). r
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We have already observed that A[q] ` (Z/(q) )n and that S acts on A[q] as a
subgroup of GLn (Z/(q) ). In the following we shall identify A[q] with (Z/(q) )n and
Aut (A[q] ) with GLn (Z/(q) ).

E x a m p l e 2. We can reinterpret in our language the case A 4Gm of
Example 1 (see also [10], formula (2.5), p.22). In this case nA 41 and G is isomor-
phic to a subgroup of (Z/(q) )* . If q4p a is an odd prime power, then G is cyclic,
hence H 1

loc (G , Z/(q) ) 40 trivially. In virtue of Proposition 1, our Problem has an
affirmative answer in this case. On the other hand, it is easy to verify that, for
k4Q and q48, we have H 1

loc (Gal (Q(z 8 ) /Q), Z/(8 ) ) `Z/(2 ). Since H 1 (GQ , Q*)
40 (Hilbert’s Theorem 90), Remark 2 guarantees the existence of counterexam-
ples to the conclusion of the Problem. An explicit one is given by taking 8-th roots
of 16.

To simplify things further, we define Gp to be a Sylow p-subgroup of G . We
have:

P r o p o s i t i o n 2. An element of H 1
loc (G , (Z/(q) )n ) is zero if and only if its re-

striction to H 1
loc (Gp , (Z/(q) )n ) is zero.

P r o o f . By [11], Thm. 4, Ch. IX, §2, the restriction H 1 (G , (Z/(q) )n )
KH 1 (Gp , (Z/(q) )n ) is injective on the p-primary part of H 1 (G , (Z/(q) )n ), which is
the whole group in the present case, since (Z/(q) )n is a p-group. On the other
hand, if a cocycle satisfies the local conditions (3) relative to G , it satisfies them
relative to any subgroup of G , and the conclusion follows. r

3 - Positive results

We start by considering general commutative algebraic groups A with nA 4n .
The main reference for general results of this kind is [5]. The case when n42
and q4p is particularly simple: since G4Gp is contained in the p-Sylow sub-
group of GL2 (Z/(p) ), we have that the order of Gp divides p , whence Gp is cyclic
and H 1

loc (Gp , (Z/(p) )2 ) 40. By Propositions 1 and 2 we deduce that our problem
has an affirmative answer. In particular, we obtain the following (see [5] and [16]):

T h e o r e m 1. Let E be an elliptic curve defined over a number field k. If a
point P�E(k) is divisible by p in almost all E(kv ), then it is divisible by p in
E(k).

Next, consider the case n42, q4p 2 . Here the situation is more involved.
Letting G0 be the kernel of the reduction map GL2 (Z/(q) ) KGL2 (Z/(p) ), we can
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summarize our results in terms of H4Gp OG0 . Note that H has a natural struc-
ture of Fp-vector space.

P r o p o s i t i o n 3. Suppose that either
(i) pc2, 3 and dim Hc2, or
(ii) p43 and dim HF3, or
(iii) p42 and dim H44.
Then H 1

loc (Gp , (Z/(p 2 ) )2 ) 40.

In all cases not covered by Proposition 3 one can actually have
H 1

loc (Gp , (Z/(p 2 ) )2 ) c0; this remark will be the basis for the construction of an
example where the answer to our Problem is negative (see Section 4, Theorem 5).

Considering now the case n43, we can have H 1
loc (Gp , (Z/(q) )3 ) c0 even when

q4p . However, one can prove that there is essentially one case for which
H 1

loc (Gp , (Z/(p) )3 ) c0, and this occurs only for pc2. We shall use in the proof of
Theorem 4 the exceptionality of the prime 2 in this case, namely

P r o p o s i t i o n 4. H 1
loc (G2 ,(Z/(2 ) )3 ) 40 for any possible G2 ..

On the other hand, more and more examples for which H 1
loc (G , (Z/(p) )n ) c0

can be given for nD3.
Now we restrict our consideration to special commutative groups. We consider

first the important case of elliptic curves (see [7]).

T h e o r e m 2. Let E /Q be an elliptic curve, P� E(Q) be a point which is lo-
cally divisible by p n in E(Qv ) almost everywhere, where p is a prime number and
nF1. If

p�S4 ]2, 3 , 5 , 7 , 11 , 13 , 17 , 19 , 37 , 43 , 67 , 163( .

then P is divisible by p n in E(Q).

P r o o f . (Sketch) Put q4p n and let K4Q(E[q] ) be the field of q-torsion
points on E. Let G4 Gal (K/Q). By Proposition 1 it will suffice to verify that
H 1

loc (G , E[q] ) 40 for p�S ; actually we shall show the stronger condition
H 1 (G , E[q] ) 40.

As usual, we shall view E[q] as (Z/(q) )2 and consequently we shall represent G
as a subgroup of GL2 (Z/(q) ), denoted by the same symbol; also, as before, we de-
note by G0 %GL2 (Fp ) ) the reduction of G modulo p and by H0 its image in
PGL2 (Fp ).

We recall at once that Q(E[p] ), and a fortiori Q(E[q] ), contains a primitive p-
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th root of unity z (see [14], Cor. 8.1.1); the basic properties of the Weil pairing
([14], III.8) entail that the action of G on z is given by g(z) 4z det g for g�G . In
particular, det : GKFp* is surjective and hence p21 divides the order of G0 .

To start with, we deal with the cases when G0 contains a nontrivial multiple of
the identity. By standard arguments in group theory, one sees that G itself must
contain a nontrivial multiple of the identity. We are then reduced to a case cove-
red by Sah’s Theorem (see for instance [9], Ch. V, Thm. 5.1) and we get immedia-
tely H 1 (G , E[q] ) 40 in this case.

Hence, from now on we shall assume that G0 does not contain any scalar ma-
trix of order dD1, which implies that the natural map G0 KPGL2 (Fp ) is injecti-
ve, so H0 `G0 .

We shall now use the classification of subgroups of PGL2 (Fp ), to be found,
e.g., in [13]. Suppose first that p divides the order of G0 . Then, by [13], Prop. 15,
either G0 contains SL2 (Fp ) or it is contained in a Borel subgroup of GL2 (Fp ); this
last possibility means that G0 can be put in triangular form with respect to some
basis for Fp

2 .
Now, the first possibility yields that G0 contains 2I , which has order 2 (recall

pc2), a contradiction. The second possibility is also excluded for p�S ; in fact, if
G0 can be put in (upper) triangular form, it stabilizes the subgroup generated by
the column vector with coordinates (1 , 0 ); equivalently, the subgroup generated
by the corresponding p-torsion point would be stable by the Galois action and
thus rational. Now, a deep theorem of Mazur (see, e.g., [8], Thm. 2.2, p. 128) as-
serts that this cannot happen for p�S .

Therefore in the sequel we shall further assume that p does not divide
JG0 .

Note that we are assuming that JH0 4JG0 is coprime to p and we have ob-
served that it is divisible by p21. Hence, by [13], Prop. 16, H0 `G0 must be of
one of the following types: (i) cyclic; (ii) dihedral; (iii) isomorphic to A4 , to A5 or to
S5 (we denote by An (resp. Sn) the alternating (resp. symmetric) group on n ele-
ments). The rest of the proof consists in excluding, by group-theoretic arguments,
all these cases for p�S .

T h e o r e m 3. Let k be a number field and let E /k be an elliptic curve. Then
there exists p0 4p0 (E, k) such that, if pDp0 and P� E(k) is a point locally divisi-
ble by p n in E(kv ) almost everywhere, P is divisible by p n in E(k).

P r o o f . Let q4p n , K4k(E[q] ) and G4 Gal (K/k) and G0 be the reduction of
G modulo p (via the identification of G with a subgroup of GL2 (Z/(q)). By the re-
sults of Serre [13], there exists p0 4p0 (E, k) such that G0 4GL2 (Z/(p) for pDp0 .
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Then G0 contains a nontrivial multiple of the identity and, by Sah’s Theorem,
H 1 (G , E[q] ) 40, which suffices. r

The next special case we consider is the case of algebraic tori.
We recall that an algebraic k-torus of dimension n is a linear algebraic group,

defined over k , which is isomorphic to Gm
n over k (see for instance [3], Ch. X.1.3).

As recalled in Example 1, our Problem can have a negative answer already in the
simplest case when the torus is isomorphic to Gm over Q . For q4p a prime, how-
ever, the answer in the case of Gm is positive. In this section we restrict our atten-
tion precisely to the case q4p . We shall see in Section 4 that even this restriction
does not imply an affirmative answer in general; however, the answer is positive
under certain conditions. The main result in the positive direction is the follow-
ing.

T h e o r e m 4. Let T be an algebraic k-torus of dimension nG max (3, 2(p21) ).
Then if a point P�T(k) is divisible by p in almost all T(kv ), then it is divisible
by p in T(k).

Preliminary to the proof, we introduce some notation and outline some basic
facts from the theory of algebraic tori.

Let f : TKGm
n be an isomorphism of algebraic groups defined over k. For

s�Gk »4 Gal (k /k) we put

c(s) »4f i (fs )21 .

Then c(s) is a 1-cocycle of Gk with values in the automorphism group of Gm
n . Now

this last group may be identified with GLn (Z), with trivial action of GQ . Therefore
s O c(s) is a homomorphism c : Gk KGLn (Z). Since f is defined over some
number field, the kernel H of c has finite index in Gk and its image is a finite sub-
group D of GLn (Z). We denote by L the fixed field of H ; then L is a normal
extension of k with Galois group Gal (L/k) `D . Moreover, f is defined over L and
L is the minimal splitting field for T , i.e. T becomes isomorphic to Gm

n over L .
Conversely, the triple (k , L , conjugacy class of D in GLn (Z) ) defines a k-torus T
up to k-isomorphism. (For a general account of this topic see for instance [4] or
[15], Ch. 1, §3.)

P r o o f . (Sketch) The isomorphism f shows that T[p] ` (Z/(p) )n is an abe-
lian group. We now analyze the Galois action on T[p]. Let x : Gk K (Z/(p) )* be
the cyclotomic character defined by s(z p ) 4z p

x(s) for a primitive p-th root of unity
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z p . It is easy to verify that Gk acts on T[p] as

t sKx(s) c(s) v

if t�T[p] corresponds to v� (Z/(p) )n . Therefore we have a homomorphism j :
Gk KGLn (Z/(p) ) defined by

j : s O x(s) c(s)
A

,

where the tilde denotes the reduction mod p . The field K4k(T[q] ) is precisely
the fixed field of the kernel of j . Observe that this implies

K%L(z p ) .

(The last assertion can also be derived directly from the fact that f is defined
over L .)

As in Section 2, we denote by G the image of j . Restricting j to Gk(z p ) we have
clearly x(s) 41, so the image of this restriction is a normal subgroup G 8 of G
which is also a normal subgroup D

A
8 of D

A. Both indices [G : G 8 ] and [DA : D
A

8 ] divide
[k(z p ) : k], and hence are coprime to p . It follows that G and D

A have the same p-
Sylow subgroups.

By Propositions 1 and 2, it is sufficient to prove that

H 1
loc (Gp , (Z/(p) )n ) 40 .(4)

By what we have just shown, this is the same as studying the vanishing of
H 1

loc (DAp , (Z/(p) )n ), where D
A

p is a p-Sylow subgroup of D
A. We also notice that the

image of a p-Sylow subgroup of D under reduction mod p is a p-Sylow subgroup
of D

A.
By [2], Ch. III, Exercise 7.6, we have that

(a) Gp `D p except possibly for p42, where the kernel of the reduction has order

at most 2 .

(b) ordp (JD p ) G k n

p21
l1 y n

p(p21)
z1R .

By condition (b) we see that Gp is necessarily cyclic whenever nE2(p21), so the
theorem follows in this case. Also, if nG3, the result follows from Proposition 4.

Hence we assume from now on that n42(p21)F4, so pF3 and nEp(p21).
By (a) above we have Gp `D p and, by (b), D p has order Gp 2 . If D p is cyclic the
vanishing of the relevant H 1

loc is automatic and concludes the proof. Hence we may
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suppose that D p `Gp ` (Z/(p) )3 (Z/(p) ). In particular D p corresponds to a fai-
thful representation of (Z/(p) )3 (Z/(p) ) into GLn (Z).

For the rest of the proof we refer to [5]; essentially, it consists in classifying
all faithful representations of (Z/(p) )2 in GLn (Z) up to equivalence in GLn (Z) and
verifying directly the triviality of the relevant H 1

loc . r

R e m a r k 3. The method of the proof can be probably generalized. For
instance, in a paper not yet published, M. Illengo has announced that the con-
clusion of our Theorem 4 remains true under the weaker assumption n
E max ]4, p(p21)(.

4 - Negative results

This section is devoted to show situations in which our problem has a negative
answer. The first example (see [6]) concerns elliptic curves, and arises from the
analysis of the cases not covered by Proposition 3, where it can well happen that
H 1

loc (Gp , (Z/(p 2 ) )2 ) c0. The example also shows that some restriction on the pri-
me p in Theorem 2 is necessary.

T h e o r e m 5. There exist elliptic curves E defined over Q and points
P� E(Q) such that P�4 E(Qv ) for almost all v�MQ but P�4 E(Q).

P r o o f . (Skecth) Since for an elliptic curve E the group E[4](k) is isomorphic
to (Z/(4 ) )2 , we identify G»4 Gal (Q(E[4] ) /Q with a subgroup of GL2 (Z/(4 ) ). First
of all we want G to be a group for which H 1

loc (G , (Z/(4 ) )2 ) c0. Choosing G
as

G4 {I12 u x

x1y

y

x1y
vNx , y�Z/(4 )}

4 {u1

0

0

1
v, u21

2

0

21
v , u1

2

2

21
v , u21

0

2

1
v} ,

it is straightforward to verify that a nonzero element in H 1
loc (G , (Z/(4 ) )2 ) is given

by the cocycle

Zs4 u2y

0
v , for s4s(x , y) 4I12 u x

x1y

y

x1y
v .(5)

Starting from these data, we seek an elliptic curve E /Q and a point P� E(Q) with
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the following properties. Let K4Q(E[4] ); we first require that the representation
of Gal (K/Q) on (Z/(4 ) )2 corresponds to G with respect to some basis for E[4]
over Z/(4 ), so that in particular [K : Q] 44. Then we require that, for some point
D� E(K) with 4D4P , the cocycle D s2D� E[4] corresponds to Zs (with respect
to the same basis for E[4]), namely

Zs4D s2D .(6)

We first note that the above conditions and (5) yield D s(1 , 0 ) 4D . Thus we seek
D� E(k), where k%K is the fixed field of s(1 , 0 ). We have [k : Q] 42.

Now, for simplicity, we work with curves E having a Weierstrass equation of
the form

y 2 4 (x2a)(x2b)(x2g)

where a , b , g�Q are distinct rationals which satisfy a1b1g40, and we impo-
se that the conjugate D 8 of D over Q satisfies D 84D1 (a , 0 ) (the sum being the
usual sum of points in an elliptic curve). Then we find that our conditions imply
that actually k4Q(k21), g2a and (a2b)(b2g) are (nonzero) rational squa-
res and that Q(E[4] ) 4Q(k21, ka2b).

Now, these arithmetical conditions on a , b , g correspond to rational points on
a certain rational curve. It is easy to parametrize it: setting g2a4j 2 , a2b

4 (b2g) h 2 and combining these equations with a1b1g40, we obtain

a42
j 2 (112h 2 )

3(11h 2 )
, b42

j 2 (12h 2 )

3(11h 2 )
, g4

j 2 (21h 2 )

3(11h 2 )
.(7)

From this parametrization, however, we have to discard the points corresponding
to jh40 (for which a , b , g are not distinct) and to 11h 2 a rational square (for
which [K : Q] 42).

Also, given a , b , g , we can parametrize the points D4 (u0 1u1 k21,
v0 1v1 k21) suitable for us. Namely, setting 2u0 42t 2 2a , 2u1 4s , the suitable
choices for D correspond to the rational points on the (s , t)-plane curve of genus
1 defined by

2s 2 4 t 4 16at 2 1 (b2g)2 . r(8)

R e m a r k 4. It is not hard to recognize that the curve (8) has rational points
for infinitely many values of (j , h), with jhc0 and 11h 2 not a rational square,
giving rise to non-isomorphic curves. We give two examples:
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(a) j45, h42, s48, t41. This gives the point

D4 (714k21, 24122k21) , P4 g 1561

122
,

19459

123 h
on the elliptic curve

y 2 4 (x115)(x25)(x210) .

(b) j465, h48, s4112, t41. This gives the point

D4(1397156k21, 25614192k21), P4g 5086347841

18482
, 2

35496193060511

18483 h
on the elliptic curve

y 2 4 (x12795)(x21365)(x21430) .

It is to be remarked that in this example the point P44D is divisible by 4 in Qp

for all primes p but it is not divisible by 4 in Q .

The second example concerns algebraic tori.
In the proof of Theorem 4 we obtained the conclusion H 1

loc (G , (Z/(p) )n ) 40 un-
der the assumption nG2(p21). As remarked, this assumption can be relaxed,
but for given p some condition on n is necessary. The following theorem, obtained
with the substantial advice of Colliot-Thélène, shows not only that one can have
H 1

loc (G , (Z/(p) )n ) c0, but that the answer to our problem for algebraic tori and
r4p can be negative. The proof is too technical to be even sketched here; the in-
terested reader can find the details in [5].

T h e o r e m 6. There exists a torus T over a number field k and a point P in
T(k) such that P is p-divisible in T(kv ) for almost all v , but not p-divisible in
T(k).

R e m a r k 5. In the proof of Theorem 6 given in [5], an explicit example of a
torus for which the answer to our problem is negative is given. In this example,
the torus is defined over a certain number field k and has dimension n4p 4 2p 2

11; at the cost of increasing the dimension, one can obtain examples of tori T de-
fined over Q and can also satisfy the stronger requirement that there exists a
point P�T(Q) which is divisible by p over all local fields Ql but not over Q . How-
ever, we do not know what is the minimum values of n (in terms of p) for which
such examples exist.
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Finally, we quote a very recent and still unpublished result (see [7]) which set-
tles almost completely the problem raised in Remark 2, namely, to what extent
the condition given in Theorem 1 is also necessary in order that our problem has
a positive answer.

T h e o r e m 7. Let K4k(A[q] ) and let Z be a cocycle of G with values in
A[q] representing a nontrivial element of H 1

loc (G , A[q] ). Then there exists a
number field L such that LOK4k and a point P� A(L) which is divisible by q
in A(Lw ) for all places w of L but is not divisible by q in A(L).

Using Theorem 7, results such as Theorem 6 can be reobtained more simply
(although less explicitly), just by exhibiting a case where the relevant group H 1

loc is
non-trivial.
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A b s t r a c t

Let A be a commutative algebraic group defined over a number field k. We consider
the following question: Let r be a positive integer and let P� A(k). Suppose that for all
but a finite number of primes v of k we have P4rDv , for some Dv� A(kv ). Can one con-
clude that there exists D� A(k) such that P4rD? A complete answer for the case of the
multiplicative group Gm is classical. We study other instances, mainly concerning elliptic
curves and algebraic tori, obtaining results in both directions: namely, we have families
of examples for which the answer is positive and families of examples for which the an-
swer is negative.

* * *


