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1 - Introduction

1.1 - Kinetic equations

We usually denote by «kinetic equations» those equations in which the unkno-
wn is the phase space density

f (t , x , v) F0(1)

of particles which at time t and point x move with velocity v .
Such a modeling is in some situations an alternative to the study of equations

(such as the Navier-Stokes system) in which the unknowns (such as the usual density
r , the mean velocity u or the internal energy e) only depend on t and x .

The phase space density (1) typically verifies an equation of the form

¯t f1v Q˜x f4R ,(2)

where R often depends on f . The reason for that is that when there is no interac-
tion between the particles and their surrounding environment (including themsel-
ves), they will move at a constant velocity and along straight lines. In other wor-
ds, for all times t and t , point x and velocity v , a particle which at time t sits at
point x and move with velocity v will sit at time t1t at point x1vt and will keep
its velocity v . This entails that

(t , f (t1t , x1vt , v) 4 f (t , x , v),(3)

or, after differentiation with respect to t ,

¯t f1v Q˜x f40.(4)

Then, the left-hand side R appears as the contribution of the environment on the
motion of the particles.

Note that formulas like (2) are typical of classical mechanics. When relativistic
or quantum effects must be taken into account, the variable v is replaced by the
momentum p or the wave vector k , and equation (2) becomes

¯t f1v(p) Q˜x f4R(5)

or

¯t f1v(k) Q˜x f4R(6)

Those are still considered as kinetic equations, as long as the function v is not
constant on some substantial part of the domain of variation of p or k (this is of
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course always true in the relativistic context, and in most of the other situa-
tions).

Equations like (5) are also typical of the kinetic formulations of conservation
laws.

Note finally that in many situations (e.g. in the study of radiative transfer and
in the study of realistic gases, or in the modeling of sprays), the density f also de-
pends on extra variables (such as the frequency n of the photons for the radiative
transfer, the internal energy I of diatomic gases, the size r , the temperature u

and even sometimes the eccentricity y of the droplets for the sprays).
The behavior of the solutions of eq. (2) strongly depends on the form of the

term R .
When a given force F(t , x) acts on the particles (such a force can also depend

on v in specific situations, for example when the particles are charged and feel the
action of a magnetic field, or when the force is the drag force due to a surroun-
ding gas), the particles will follow the trajectories of the following system of diffe-
rential equations:

x
.
(t) 4v(t),(7)

v
.
(t) 4F(t , x(t) ),(8)

and the corresponding partial differential equation satisfied by f (that is, the PDE
whose characteristic curves are exactly the solutions of eq. (7), (8)), is the Vlasov
equation

¯t f1v Q˜x f1F(t , x) Q˜v f40.(9)

In many cases, the force F is itself related to f (through Poisson’s or Maxwell’s
equations for example). That leads to the classical Vlasov-Poisson or Vlasov-Ma-
xwell systems.

The equations we wish to investigate in this document are of a different type.
We describe them in the sequel.

1.2 - The Boltzmann equation

When the forces acting on the particles are mainly due to the collisions of the
particles between themselves, one is led to write down the Boltzmann equation.
This equation is valid when one is interested in a situation where the typical di-
mension of the physical objects under study are of the same order as the mean
free path of the particles (that is, the length of the trajectory of a typical particle



5ABOUT THE USE OF THE FOURIER TRANSFORM...[5]

between two collisions). When this is the case, the gas is said to be rarefied. For
gases which are not rarefied, one has to use the equations of fluid mechanics
(such as the compressible or incompressible Euler or Navier-Stokes systems).

Many features of the Boltzmann equation are related to the hypothesis that
the gas is rarefied. In particular, this assumption implies that the collisions are bi-
nary (that is, the ternary, etc., collisions are neglected), they are localized in time
and space (that is, the size of the region in which the velocities of the particles va-
ry is small in front of the size of the objects under study), and no correlations oc-
cur between the velocities of the particles (that is, roughly speaking, collisions do
not occur very often, so that the probability for a particle to encounter a particle
which has already interacted with it (through other particles) is negligeable).

Starting from the general form (2) of kinetic equations, we see thanks to the
property of locality in space and time that

R(t , x , v) 4R( f (t , x , Q) )(v).

It is therefore sufficient to define the effect of R on a function f depending on v
only.

We denote by f2 (v1 , v2 ) the joint density of two particles with respective velo-
cities v1 and v2 . We see (thanks to the assumption that the collisions are binary)
that we must take into account only two distinct phenomena which modify the
number density of particles with velocity v .

First, because of a possible collision with a particle of velocity v*, a particle
which had v for velocity will end up with a velocity v 8 (its partner in the collision
will end up with velocity v 8*).

Secondly, some particle with a velocity w will encounter a particle with velocity
w* and will end up with a velocity v after the collision (its partner in the collision
will end up with velocity w 8*).

We now denote by p(v1 , v2 Kv3 , v4 ) the (density of) probability that for two
particles sitting at the same point x at a given time t , a collision occurs and tran-
sforms the ingoing velocities v1 and v2 in the outgoing velocities v3 , v4 (we shall
see that in the so-called non cutoff case, this quantity is in fact far from being a
probability density, since it is not integrable).

We see that R( f ) is the sum of two terms 2R 2 ( f ) and R 1 ( f ) which respect-
ively correspond to the two phenomena described above.

According to their definition, R 2 and R 1 write

R 2 ( f )(v) 4�
v*

�
v 8

�
v 8*

f2 (v , v*) p(v , v*Kv 8 , v 8*) dv 8* dv 8 dv*,



6 LAURENT DESVILLETTES [6]

and

R 1 ( f )(v) 4�
w

�
w*

�
w 8*

f2 (w , w*) p(w , w*Kv , w 8*) dw 8* dw* dw .

According to the hypothesis that no correlations occur, we can replace in the
previous formula f2 (v , v*) by f (v) f (v*) and f2 (w , w*) by f (w) f (w*). Then, R is
clearly quadratic as a function of f . As a consequence, we shall from now on deno-
te it by Q( f , f ), and we obtain the formulas

Q( f , f ) 4Q 1 ( f , f )2Q 2 ( f , f ),

with

Q 2 ( f , f )(v) 4�
v*

�
v 8

�
v 8*

f (v) f (v*) p(v , v*Kv 8 , v 8*) dv 8* dv 8 dv*,

and

Q 1 ( f , f )(v) 4�
w

�
w*

�
w 8*

f (w) f (w*) p(w , w*Kv , w 8*) dw 8* dw* dw .

We now introduce the microreversibility assumption

(v1 , v2 , v3 , v4 , p(v1 , v2 Kv3 , v4 ) 4p(v3 , v4 Kv1 , v2 ).

This assumption is justified by the fact that the motion of two interacting particles
is modeled by ordinary differential equations which are reversible.

We get the formula

Q( f , f )(v) 4�
v*

�
v 8

�
v 8*

( f (v 8 ) f (v 8*)2 f (v) f (v*) ) p(v , v*Kv 8 , v 8*) dv 8* dv 8 dv*.

Then, we use the conservation of momentum and kinetic energy in a colli-
sion:

v1v*4v 81v 8*,(10)

NvN2

2
1

Nv*N2

2
4

Nv 8N2

2
1

Nv 8*N2

2
.(11)

Note that the conservation of kinetic energy holds only in the case of monoatomic
gases. For gases of the real atmosphere such as diatomic nitrogene N2 and diato-
mic oxygene O2 , only the conservation of the total energy holds : one has to intro-
duce various kinds of internal energy (vibration, rotation) in order to get a reali-
stic modeling.

As a consequence, the measure p is concentrated on the set defined by identi-
ties (10) and (11). At this point, it is useful to parametrize those equations.
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When we are interested in a two-dimensional situation, the best way to para-
metrize seems to use the center of mass reference frame, that is, the frame mo-

ving with velocity
v1v*

2
. Then, the conservation of energy simply becomes

Nv2v*N2 4Nv 82v 8*N2 .

Finally, v 8 and v 8* are defined by

v 84
v1v*

2
1Rug v2v*

2
h ,

v 8*4
v1v*

2
2Rug v2v*

2
h ,

where Ru is the rotation of angle u .
The situation is not so good in dimension N equal or bigger than three. Then,

two different parametrizations are traditionally used. The first one uses symme-
tries, and has the advantage of being linear with respect to v , v*. It writes

v 84v1 ( (v*2v) Qv) v ,

v 8*4v*2 ( (v*2v) Qv) v ,

with v varying in the sphere (or half sphere) S N21 .
We shall however rather use the parametrization which uses the center of

mass reference frame, and which writes

v 84
v1v*

2
1

Nv2v*N

2
s ,(12)

v 8*4
v1v*

2
2

Nv2v*N

2
s ,(13)

with s varying in the sphere S N21 .
Note that s and v are related by a simple change of variables (Cf. [19] for

example to get a precise formula for the corresponding Jacobian).
The Galilean invariance which holds in the context of binary collisions entails

that the measure p(v , v*Kv 8 , v 8*) can only depend on Nv2v*N and
v2v*

Nv2v*N
Qs

(or N v2v*
Nv2v*N

QvN, or even NuN in dimension 2).
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We now can write down the «final» form of Boltzmann’s collision operator:

Q( f , f )(v) 4 �
v*�RN

�
s�S N21

( f (v 8 ) f (v 8*)2 f (v) f (v*) )

3B gNv2v*N ,
v2v*

Nv2v*N
Qsh ds dv*,

(14)

where B is called the cross section (sometimes a slightly different definition of the
cross section is presented, namely B/Nv2v*N), and v 8 , v 8* are given by formulas
(12), (13).

We shall also use the bilinear form Q( g , f ) related to the quadratic form
Q( f , f ), and defined by

Q( g , f )(v) 4 �
v*�RN

�
s�S N21

( f (v 8 ) g(v 8*)2 f (v) g(v*) )

3B gNv2v*N ,
v2v*

Nv2v*N
Qsh ds dv*.

(15)

Finally, we write down the standard form of the Boltzmann equation:

¯t f1v Q˜x f4Q( f , f ),(16)

where Q is given by (14).
For a general exposition of the theory of the Boltzmann equation, we refer to

[23], [25] and [70].
The rigorous derivation of the Boltzmann equation starting from the dynamics

of N particles in interaction is performed in [53] and [22] in the context of local (in
time) solutions or of global (in time) solutions close to vacuum.

1.3 - Cross sections

It is possible to (almost) explicitly compute the cross section B when the inter-
particle force is proportional to r 2s (with r denoting the interparticle distance and

sD2). In such a case (and in dimension 3), B writes (with cos u4
v2v*

Nv2v*N
Qs) :

B (Nv2v*N , cos u ) 4Nv2v*N
s25

s21 b( cos u),
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with b a smooth function except at point 1 and

sin ub( cos u) AuK0
K

NuN
s11

s21

,(17)

with KD0.

Since
s11

s21
D1, the singularity in the angular variable u is always non inte-

grable. Because of the difficulties entailed by this singularity, Grad has proposed
to introduce an angular cutoff near u40 (Cf. [42]). It means that we replace B by
a new cross section

BA (Nv2v*N , cos u ) 4Nv2v*N
s25

s21 bA( cos u),

with bA smooth, or at least such that uO sin ubA( cos u) is integrable near u40.
In the sequel, we shall speak of cutoff cross sections (or cutoff potentials)

when B is locally integrable, and of non cutoff cross sections (or non cutoff poten-
tials) when B has a singularity like in (17).

Note that the decomposition Q4Q 12Q 2 , with

(18) Q 1 ( f , f )(v) 4 �
v*�RN

�
s�S N21

f (v 8 ) f (v 8*) B gNv2v*N ,
v2v*

Nv2v*N
Qsh ds dv*,

(19) Q 2 ( f , f )(v) 4 �
v*�RN

�
s�S N21

f (v) f (v*) B gNv2v*N ,
v2v*

Nv2v*N
Qsh ds dv*,

holds only when the cross section B is integrable (that is, cutoff).
We shall also speak of hard potentials when BK1Q as its first variable tends

to infinity, of soft potentials when BK0 as its first variable tends to infinity, and
of Maxwellian molecules when B does not depend on the first variable (what we
shall call cutoff Maxwellian molecules in the sequel is sometimes called pseudo
Maxwellian molecules).

Finally, note that the case when s42 (that is, the Coulomb potential), leads to
a different equation, namely the Fokker-Planck-Landau equation.

1.4 - Basic properties of Boltzmann’s kernel

We shall systematically use in the sequel the so-called pre/post collisional
change of variables (v , v*, s) O (v 8 , v 8*, s) which ensures that for all functions
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ff f (v , v*, v 8 , v 8*, s), one has (at the formal level):

�
RN

�
RN

�
S N21

f (v , v*, v 8 , v 8*, s) ds dv* dv

4 �
RN

�
RN

�
S N21

f (v 8 , v 8*, v , v*, s) ds dv* dv .

This formula is obvious when one uses the parametrization with u in dimension
two (or, in fact, the parametrization with v in higher dimension). The proof can be
found for example in [19].

We shall also use the change of variables (v , v*, s) O (v*, v , s), which ensu-
res that for all function ff f (v , v*, v 8 , v 8*, s), one has (still at the formal
level)

�
RN

�
RN

�
S N21

f (v , v*, v 8 , v 8*, s) ds dv* dv

4 �
RN

�
RN

�
S N21

f (v*, v , v 8*, v 8 , s) ds dv* dv .

As an immediate consequence of those formulas, we get the following various
weak formulations for Boltzmann’s kernel Q:

�
RN

Q( f , f )(v) f(v) dv4 �
RN

�
RN

�
S N21

(f(v 8 )2f(v) )

3f (v) f (v*) B ds dv* dv ,

(20)

�
RN

Q( f , f )(v) f(v) dv4
1

2
�

RN

�
RN

�
S N21

(f(v 8*)1f(v 8 )2f(v 8 )2f(v) )

3f (v) f (v*) B ds dv* dv ,

(21)

�
RN

Q( f , f )(v) f(v) dv42
1

4
�

RN

�
RN

�
S N21

(f(v 8*)1f(v 8 )2f(v 8 )2f(v) )

3 ( f (v 8 ) f (v 8*)2 f (v) f (v*) ) B ds dv* dv .

(22)

Plugging f(v) 41, vi ,
NvN2

2
in formula (21), we get the conservation of mass,
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momentum and energy at the level of the Boltzmann operator:

�
RN

Q( f , f )(v) u 1
vi

NvN2

2

v dv40.(23)

Boltzmann’s H-theorem is obtained by plugging f4 log f in (22).
Defining the entropy dissipation by

D( f ) 42 �
RN

Q( f , f )(v) log f (v) dv

we get

D( f ) 4
1

4
�

RN

�
RN

�
S N21

( f (v 8 ) f (v 8*)2 f (v) f (v*) )

3 log g f (v 8 ) f (v 8*)

f (v) f (v*)
h B ds dv* dv .

(24)

We observe (this is the first part of Boltzmann’s H-theorem) that D( f )F0.
Then, it is possible to prove (under suitable, but rather weak assumptions on B

and f ) that

D( f ) 40 ` (v�RN , Q( f , f )(v) 40

` )rF0, TD0, u�RN , f (v) 4
r

(2pT)N
exp g2 Nv2uN2

2T
h .

This is the second part of Boltzmann’s H-theorem (Cf. [70]).

1.5 - A priori estimates

Since this work is more concerned with the qualitative properties of the sol-
utions of Boltzmann’s equation than with the existence theory, we shall only state
some basic a priori estimates related to the conservation properties of the pre-
vious section, and only one theorem of existence.

We first introduce the Cauchy problem for the spatially homogeneous Boltz-
mann equation. That consists in looking for solutions to the full Boltzmann equa-
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tion (16) which only depend on the variables t and v , a compatible initial datum
being given.

In other words, it writes

¯t f (t , v) 4Q( f , f )(t , v),(25)

f (0 , Q) 4 fin .(26)

According to the results of the previous subsection, the solutions of this equa-
tion (at least formally) satisfy the conservation of mass, momentum and en-
ergy

(tF0, �
v�RN

f (t , v) u 1
vi

NvN2

2

v dv4 �
v�RN

fin (v) u 1
vi

NvN2

2

v dv ,(27)

and the decay of the entropy (defined by s f log f dv and not by 2s f log f dv as in
physics)

(tF0, �
v�RN

f (t , v) log f (t , v) dv1�
0

t

D( f )(s) ds

G �
v�RN

fin (v) log fin (v) dv .

(28)

Then, it is easy to show (still at the formal level) that as soon as the initial da-
tum has finite mass, energy and entropy (in the two next formulas, f log f is repla-
ced by fN log fN , so that only nonnegative quantities are considered : this does not
lead to any difficulties), that is when

Kin 4 �
v�RN

fin (v) (11NvN2 1N log fin (v)N) dvE1Q ,(29)

there exists for all TD0 a constant CTD0 (only depending on Kin) such that

sup
t� [0 , T]

�
v�RN

f (t , v) (11NvN2 1N log f (t , v)N) dv1�
0

T

D( f )(s) dsGCT .(30)

In the sequel, we shall use the following (now classical) theorem of existence,
proven in [8], [9] and [40]:
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T h e o r e m 1. Let B be a (nonnegative) cross section satisfying ( for x�R
and u� [0 , p]),

sin uB(x , cos u) GK(11NxN) NuN212g ,

for some KD0 and gE2 (that is, cutoff or non cutoff hard potentials or Maxwel-
lian molecules).

Let also fin be a (nonnegative) measurable function from RN to R such that
Kin E1Q (Kin is defined by (29)).

Then, there exists a solution ff f (t , v) lying in L Q (R1 ; L 1
2 (RN ) ) and

C(R1 ; D8 (RN ) ) to eq. (25) written in the weak form (Cf. eq. (21)) for all test fun-
ctions f� D(RN ),

¯t �
RN

f (t , v) f(v)dv4
1

2
�

RN

�
RN

�
S N21

(f(v 8*)1f(v 8 )

2f(v*)2f(v) ) f (t , v) f (t , v*) B ds dv* dv .

This solution can be constructed in such a way that the conservations of mass,
momentum and energy and the decrease of the entropy hold.

1.6 - Simplified models

In the sequel, we shall be led to consider various simplifications of Boltzmann’s
kernel, which we now describe.

The first one is the so-called Kac’s operator (Cf. [47]). It acts on functions of a
one-dimensional variable (v�R) and writes

Q( f , f )(v) 4�
R

�
0

2p

( f (v cos u2v* sin u) f (v sin u1v* cos u)

2f (v) f (v*) ) b(NuN) du dv*

(31)

for some nonnegative cross section b . We shall conserve for this model the termi-
nology on cross sections that we adopted for the Boltzmann equation. That is, it is
said to be cutoff if b is integrable, and non cutoff if b(u) AuK0 NuN212g , for
g�]0 , 2[.

Mass and energy, but not momentum, are conserved for this operator. The H
theorem is also valid except that in the second part of the theorem, the set of all
Maxwellians must be replaced by the set of centered Maxwellians. As we shall see
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in the sequel, this operator is very close to the Boltzmann operator for Maxwel-
lian molecules when it is restricted to the radially symmetric functions.

The second model that we shall introduce is even simpler. It acts on functions
of a periodic variable (v�T 1), and writes

Q( f , f )(v) 4 �
21/2

1/2

�
T1

[ f (v1u) f (v 82u)2 f (v) f (v 8 ) ] b(NuN) du dv 8 .(32)

This operator is close to a linear operator in the sense that (at the formal
level)

Q( f , f )(v) 4 �
T1

f (w) dw �
21/2

1/2

( f (v1u)2 f (v) ) b(NuN) du .(33)

It is associated to a spatially inhomogeneous equation which writes

¯t f (t , x , v)1cos (2pv) ¯x f (t , x , v) 4Q( f , f )(t , x , v),(34)

where the unknown is the number density ff f (t , x , v). Here, tF0 is the time va-
riable, the position variable is x�T1 , and v�T1 parametrizes the velocity
cos (2pv) of the particles. This model was introduced in [30].

Finally we introduce the classical linear Fokker-Planck operator

Q( f )(v) 4˜ Q (˜f1vf ),

and the corresponding (confined) linear Vlasov-Fokker-Planck equation (someti-
mes also called kinetic Fokker-Planck equation)

¯t f1v Q˜x f2˜x V(x) Q˜v f4˜v Q (˜v f1vf ),(35)

where V is the confining potential. Here x and v vary in RN , and the equation mo-
dels the motion of a particle in a thermal bath.

1.7 - The Fourier transform in the context of the Boltzmann equation

For a given function f : RN KR , we define its Fourier transform f× (someti-
mes also denoted by F f ) by the formula

f×(j) 4 �
RN

e 2ix Qj f (x) dx .
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With this definition, the inversion formula writes

f (x) 4 (2p)2N �
RN

e ix Qj f×(j) dj ,

and Plancherel’s formula becomes

�
RN

N f×(j)N2 dj4 (2p)N �
RN

Nf (x)N2 dx .

We shall also use the relationship between derivatives and moments. Denoting by
a a multiindex of NN , we have

¯a f×(j) 4 (ij)a f×(j),

and

(2 ix×)a f (j) 4¯a f×(j).

In the sequel, we shall use the Fourier transform with respect to various va-
riables (t and x , x and v , v only, etc.). We shall therefore systematically recall
which variables are concerned and what are the name of the corresponding Fou-
rier variables.

Like for other PDEs, the Fourier transform is useful in many ways in the con-
text of the Boltzmann equation. For example, it enables to obtain explicit solutions
in some situations (typically, in the case of Maxwellian molecules, which somehow
plays a role in the theory of the Boltzmann equation analogous to that played in
the theory of PDEs by the linear equations with constant coefficients, Cf. [15] and
[16] ). It is also extremely useful for the study of the smoothness of the solutions,
as we shall see repeatedly in the sequel.

We recall that the large NjN behavior of f×(j) is related to the smoothness of f .
This link is best seen in the context of Sobolev spaces based on L 2 . Precisely, for
all s�N , the norms

u !
NaNGs

�
RN

N¯a f (x)N2 dxv1/2
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and

u �
RN

N f×(j)N2 (11NjN2 )s djv1/2

are equivalent and define the same space H s (RN ).
So are the norms

u �
RN

Nf (x)N2 dx1 �
RN

�
RN

Nf (x)2 f (y)N2

Nx2yNN12s
dy dxv1/2

and

u �
RN

N f×(j)N2 (11NjN2 )s djv1/2

,

for the space H s (RN ) with s�]0 , 1[.

1.8 - Some notations for spaces of functions

In addition to the norms of H s defined above, that is

V f VH s (RN ) 4 u �
RN

N f×(j)N2 (11NjN2 )s djv1/2

,

we introduce for 0 EsEN/2 the homogeneous Sobolev space H
.

s (RN ) of functions
f of L 2N/(N22s) (RN ) such that f×�L 1

loc (RN ) and NjNs f×(j) �L 2 (RN
j ). Its norm is

given by

V f VH
. s (RN ) 4 u �

j�RN

N f×(j)N2 NjN2s djv1/2

.(36)

We shall also use for pF1, qF0, the weighted space L p
q (RN ) embedded with

the norm

V f VL pq (RN ) 4 u �
v�RN

Nf (v)Np (11NvN)pq dvv1/p

,(37)
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and for k�N the Sobolev spaces

W k , Q (RN ) 4 ]f�L Q (RN ), (a�NN , NaNGk , V¯a f VL Q (RN ) E1Q( ,

embedded with the norm

V f VW k , Q (RN ) 4 !
NaNGk

V¯a f VL Q (RN ) .

2 - Averaging lemmas

2.1 - Introduction

Averaging lemmas are designed for the study of the regularity of the solutions
of kinetic (transport) equations of type

¯t f (t , x , v)1v Q˜x f (t , x , v) 4g(t , x , v)(38)

or of the (space independant) type

v Q˜x f (x , v) 4g(x , v).(39)

Because of the hyperbolicity of the operators v Q˜x and ¯t 1v Q˜x (their respec-
tive symbols are (with obvious notations) iv Qj and it1 iv Qj), there is no hope that
the solution f of eq. (38) (or eq. (39)) be smoother than the right-hand side g . In
fact, for any f (that is, as singular as one wants), f (x2vt , v) is a (weak) solution
of eq. (38) with g40.

However, the set of j (different from 0) such that v Q
j

NjN
40 varies when v

varies, so that when one takes averages in v of f (weak) solution of eq. (38) (or
eq. (39)), there is some hope of getting a function (of t , x) smoother than g .

Unfortunately, though eq. (38) has a very simple explicit solution, namely

f (t , x , v) 4 f (0 , x2vt , v)1�
0

t

g(s , x2v(t2s), v) ds ,

it seems very difficult to prove such a gain of smoothness by using this formula
without Fourier transform.

The use of the Fourier transform, on the other hand, enables to obtain this
gain of smoothness. This was first observed in [39], [38] and [1].

In the next two subsections, we give two proofs using the Fourier transform,
but in a very different way. In the first one, better adapted to a steady equation,
or to a situation in which one needs smoothness in the time variable, the Fourier
transform is taken with respect to t and x . In the second one, better adapted to si-
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tuations where smoothness in the time variable is not required, the Fourier tran-
sform is taken with respect to x and v .

2.2 - Use of the Fourier transform in x or t , x

We begin here by recalling the proof of [38] in the case of the steady equation,
when the averaging function f is L Q (and compactly supported). We give estima-
tes which are fully explicit, but not necessarily optimal in some respects. In parti-
cular, sums of norms instead of products appear in the right-hand sides of our
estimates.

T h e o r e m 2. Let ff f (x , v) be a function of L 2 (RN 3RN ) such that g4v
Q˜x f also lies in L 2 (RN 3RN ). Then, for all function f in L Q (RN ) with its sup-
port included in [2R , R]N , the following estimate holds:

V

�
RN

f (Q , v) f(v) dv
VH 1/2 (RN )

2

G4(2R)N21
VfVL Q (RN )

2 (V f VL 2 (RN3RN )
2 1VgVL 2 (RN3RN )

2 ) .

(40)

P r o o f . We denote by f× the Fourier transform of f in the x variable only, and
by j the corresponding Fourier variable. Then, g×(j , v) 4 i(v Qj) f×(j , v).

The idea is to consider separately those v�RN such that Nv Q
j

NjN
N is large

and those such that Nv Q
j

NjN
N is small.

The computation gives (for some function dfd(j) which will be chosen later on)

N �
RN

f×(j , v) f(v) dvN
2
G2 N �

Nv Q
j

NjN
NFd

f×(j , v) f(v) dvN
2

12 N �
Nv Q

j

NjN
NGd

f×(j , v) f(v) dvN
2

G2 N �
Nv Q

j

NjN
NFd

1

NjN

Nv QjN

Nv Q
j

NjN
N

f×(j , v) f(v) dvN
2
12 N �

Nv Q
j

NjN
NGd

f×(j , v) f(v) dvN
2
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G
2

NjN2
�

Nv Q
j

NjN
NFd

Nf(v)N2

Nv Q
j

NjN
N

2
dv �

RN

Ng×(j , v)N2 dv

12 �
Nv Q

j

NjN
NGd

Nf(v)N2 dv �
RN

N f×(j , v)N2 dv

G
2

NjN2
VfVL Q (RN )

2 (2R)N21 2 �
d

1Q
dv1

v1
2
�

RN

Ng×(j , v)N2 dv

12VfVL Q (RN )
2 (2d) (2R)N21 �

RN

N f×(j , v)N2 dv

G4(2R)N21
VfVL Q (RN )

2 u 1

dNjN2
�

RN

Ng×(j , v)N2 dv1d �
RN

N f×(j , v)N2 dvv .

We conclude by taking d(NjN) 4
1

NjN
.

Note that a different choice of d would enable to obtain at the end a product of
norms of f and g instead of a sum of such norms. r

This result can be extended in many ways. We give here the proof of two use-
ful such extensions.

The first one enables to treat the case of kinetic equations with right-hand si-
des including derivatives in the v variable (first-order derivatives as in Vlasov, or
second-order derivatives as in Landau, but also fractional derivatives such as in
the non cutoff Boltzmann equation). The second one enables to treat space-depen-
dant equations. Of course those two extensions can be combined in a single theo-
rem, but we shall not write down such a theorem in this work, since we wish to
present only typical proofs, not optimal results.

We begin with the theorem adapted to the Vlasov equation. The estimate
given here is almost explicit (that is, explicit up to a numerical constant which can
be estimated). With respect to the previous theorem, It needs more derivatives of
the averaging functions f . The proof is very close to that of [34].

T h e o r e m 3. Let ff f (x , v) be a function of L 2 (RN 3RN ) such that g4v
Q˜x f is of the form g4¯K

v h , where h�L 2 (RN 3RN ) and ¯ v
K denotes any derivati-

ve in the v variable of order K . Then, for all function f in W K , Q (RN ) with its
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support included in [2R , R]N , the following estimate holds (for some constant
CK D0):

V

�
RN

f (Q , v) f(v) dv
VH 1/2(K11) (RN )

2
GCK R N21

VfVW K , Q (RN )
2

3(V f VL 2 (RN3RN )
2 1VhVL 2 (RN3RN )

2 ) .

(41)

P r o o f . We still denote by f× the Fourier transform of f in the x variable only,
and by j the corresponding Fourier variable.

Moreover, we introduce (for dfd(j) to be chosen later) a cutoff function x d of
D(R) which takes its values in [0 , 1 ], has its support in [22d , 2d], and satisfies
x d (x) f1 for x� [2d , d]. We still use the identity g×(j , v) 4 i(v Qj) f×(j , v).

We compute:

N �
RN

f×(j , v) f(v) dvN
2
G2 N �

RN

f×(j , v) x dgv Q
j

NjN
h f(v) dvN

2

12 N �
RN

f×(j , v) g12x dgv Q
j

NjN
hh f(v) dvN

2

G2N �
RN

f×(j, v) x dgv Q
j

NjN
hf(v) dvN

2
12N �

RN

¯K
v h×(j, v)

v Qj
g12x dgv Q

j

NjN
hhf(v) dvN

2

G2 N �
RN

f×(j , v) x dgv Q
j

NjN
h f(v) dvN

2

1 !
P1Q1R4K

CP , QN �
RN

h×(j , v) g j

NjN
hP

¯P (12x d ) gv Q
j

NjN
h ¯Q f(v)

j R

(v Qj)R11
dvN

2

(with obvious notations)

G2 �
Nv Q

j

NjN
NG2d

Nf(v)N2 dv �
RN

N f×(j , v)N2 dv

1 !
P1Q1R4K

CP , Q �
Nv Q

j

NjN
NF2d

d22P N¯Q f(v)N2 NjN2R

Nv QjN2R12
dv �

RN

Nh×(j , v)N2 dv

G8d(2R)N21
VfVL Q (RN )

2 �
RN

N f×(j , v)N2 dv
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1 !
P1Q1R4K

CP , Q (2R)N21 d22P

NjN2
V¯Q fVL Q (RN )

2

3 �
Nv1NFd

dv1

Nv1N
2R12

�
RN

Nh×(j , v)N2 dv

GCK R N21gdVfVL Q (RN )
2 �

RN

N f×(j , v)N2 dv

1 !
P1Q1R4K

d22P22R21

NjN2
V¯Q fVL Q (RN )

2 �
RN

Nh×(j , v)N2 dvh .

Choosing

d4NjN
2

1

K11 ,

the previous computation yields the estimate

N �
RN

f×(j , v) f(v) dvN2 GCK R N21
VfVW K , Q (RN )

2

3gNjN
2

1

K11 �
RN

N f×(j , v)N2 dv1 !
SGK

NjN
221

2S11

K11 �
RN

Nh×(j , v)N2 dvh .

This in turn enables us to write down the estimate

�
NjNF1

NjN
1

K11 N �
RN

f×(j , v) f(v) dvN
2
djGCK R N21

VfVW K , Q (RN )
2

3u� �
NjNF1

N f×(j , v)N2 dv dj1 !
SGK

� �
NjNF1

NjN
2 S2K

K11 Nh×(j , v)N2 dv djv .

Since on the other hand, it is easy to estimate

�
NjNG1

NjN
1

K11 N �
RN

f×(j , v) f(v) dvN
2
dj

by the L 2 norm of f , we conclude the proof. r

We now treat the second extension of theorem 2. This is the case when f ,
which also depends on t , satisfies eq. (38) on R3RN 3RN . It enables to get
smoothness of the averages in v of f in both variables t and x . The proof is close to
that of [38]. In order to use such a result in the context of the study of the Cauchy
problem for a partial differential equation, one has in general to use techniques of
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truncation, etc., in the time variable. Those technicalities can sometimes be avoi-
ded when one uses the results of next chapter.

T h e o r e m 4. Let ff f (t , x , v) be a function of L 2 (R3RN 3RN ) such that g
4¯t f1v Q˜x f lies in L 2 (R3RN 3RN ). Then, for all function f in L Q (RN ) with
support included in [2R , R]N , the following estimate holds:

V

�
RN

f (Q , Q , v) f(v) dv
VH 1/2 (R3RN )

2
G4VfVL Q (RN )

2 (2R)N22 (5114 R112 R 218 R 3 )

3(V f VL 2 (R3RN3RN )
2 1VgVL 2 (R3RN3RN )

2 ) .

(42)

P r o o f . We now denote by f× the Fourier transform of f in the t and x varia-
ble only, and by t and j the corresponding Fourier variables. The relation bet-
ween f× and g× is now g×(t , j , v) 4 i(t1v Qj) f×(t , j , v).

We compute (for any d)

N �
RN

f×(t , j , v) f(v) dvN
2
G4 N1NjNG1, NtNF2R �

RN

g×(t , j , v)

i(t1v Qj)
f(v) dvN

2

14 N1NjNG1, NtNG2R �
RN

f×(t , j , v) f(v) dvN
2
14 N1NjNF1 �

Nt1v QjNGd

f×(t , j , v) f(v) dvN
2

14 N1NjNF1 �
Nt1v QjNFd

g×(t , j , v)

i(t1v Qj)
f(v) dvN

2

G4 1NjNG1, NtNF2R VfVL Q (RN )
2 u �

NvNGR

dv

Nt1v QjN2 v g �
RN

Ng×(t , j , v)N2 dvh
14 1NjNG1, NtNG2R VfVL Q (RN )

2 u �
NvNGR

dvv u �
RN

N f×(t , j , v)N2 dvv

14 1NjNF1 VfVL Q (RN )
2 u �

Nt1v QjNGd , NvNGR

dvv u �
RN

N f×(t , j , v)N2 dvv

14 1NjNF1 VfVL Q (RN )
2 u �

Nt1v QjNFd , NvNGR

dv

Nt1v QjN2
v u �

RN

Ng×(t , j , v)N2 dvv .
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We now observe that

1NjNG1, NtNF2R �
NvNGR

dv

Nt1v QjN2
G

(2R)N

1

2
NtN2 2R 2

1NjNG1, NtNF2R ,

1NjNG1, NtNG2R �
NvNGR

dvG (2R)N 1NjNG1, NtNG2R ,

1NjNF1 �
Nt1v QjNGd , NvNGR

dvG (2R)N21 d

NjN
1NjNF1, NtNGd1RNjN ,

1NjNF1 �
Nt1v QjNFd , NvNGR

dv

Nt1v QjN2
G

(2R)N21

NjN2
�

NwNF
d

NjN
, Nw2

t

NjN
NGR

dw

NwN2
1NjNF1

G (2R)N21g1NtNG2RNjN

1

dNjN
11NtNF2RNjN

1

tNjN
h 1NjNF1 .

Then,

� �
R3RN

(NtN1NjN )N �
RN

f×(t , j , v) f(v) dvN
2
dj dt

G� �
NjNG1

(NtN1NjN )N �
RN

f×(t , j , v) f(v) dvN2 dj dt

1� �
NjNF1, NtNG2RNjN

(NtN1NjN )N �
RN

f×(t , j , v) f(v) dvN
2
dj dt

1� �
NjNF1, NtNF2RNjN

(NtN1NjN )N �
RN

f×(t , j , v) f(v) dvN
2
dj dt

G� �
NjNG1

(NtN11 )N �
RN

f×(t , j , v) f(v) dvN
2
dj dt

1� �
NjNF1, NtNG2RNjN

(112R) NjNN �
RN

f×(t , j , v) f(v) dvN2 djdt
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1� �
NjNF1, NtNF2RNjN

(NtN1NjN) N �
RN

f×(t , j , v) f(v) dvN2 dj dt

G4VfVL Q (RN )
2 (2R)N21� �

R3RN

(NtN11) m 8R

NtN2
1NtNF2R 12R1NtNG2Rn

3{ �
RN

N f×(t , j , v)N2 dv1 �
RN

Ng×(t , j , v)N2 dv} dj dt

14VfVL Q (RN )
2 (2R)N21� �

NjNF1

(112R) NjNm d

NjN
1

1

dNjN
n

3{ �
RN

N f×(t , j , v)N2 dv1 �
RN

Ng×(t , j , v)N2 dv} dj dt

14VfVL Q (RN )
2 (2R)N21� �

NtNF2R , NjNF1

NtN1NjN

NtNNjN

3{ �
RN

N f×(t , j , v)N2 dv1 �
RN

Ng×(t , j , v)N2 dv} dj dt .

Note finally that d41 yields the theorem. r

Many more extensions of the previous results can be found in the works of
[36], [37], [35], [12], [58], [64] and [52]. Among those extensions, one can write do-
wn results in L p instead of L 2 (those are obtained by interpolation techniques),
one can replace v by a(v), where a is any function satisfying a non degeneracy
condition, and finally one can introduce in the right-hand side of the equation de-
rivatives in t , x of order strictly less than one.

2.3 - Use of the Fourier transform in x , v

We now introduce a different way of looking at averaging lemmas. We are in-
terested in this section only in the time-dependant case, but we don’t try to get re-
gularity in the t variable. As a consequence, the results we shall get are more
adapted to solutions of the transport equation which are defined on a time inter-
val [0 , T], for which the initial datum is given.
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Though the results are weaker than those of the previous section, the proofs
turn out to be more easily extendable in the case of discretized in time
equations.

The idea used here consists in writing down the Fourier transform in x and v
of the free transport operator, instead of its Fourier transform in t and x . This
procedure was used in particular by Golse (Cf. [37]) and by P.-L. Lions and Per-
thame (Cf. [59]).

As we noticed previously, the interest of this method lies in the fact that it
yields results when some discretization in time is in order. Such a situation is de-
scribed in [31]. In this work, the operator splitting technique between the free
transport part and the collisional part of the Boltzmann equation is studied, in the
framework of renormalized solutions. We give in next subsection another example
of dicretization in time.

The proof given here is inspired of [20]. We denote by L 2 2w the weak topo-
logy of L 2 .

T h e o r e m 5. Let f�C( [0 , T], L 2 (RN
x 3RN

v )2w) solve eq. (38) for some
g�L 2 (]0 , T[3RN

x 3RN
v ). We denote f0 4 f (0 , Q). Then, for any c�Cc

Q (RN ), the
average quantity

r c (t , x) 4 �
RN

f (t , x , v) c(v) dv(43)

lies in L 2 (]0 , T[, H 1/2 (RN
x ) ), and for all sD (N21) /2 ,

Vr c VL 2 (]0 , T[, H 1/2 (RN
x ) ) GCN , su� �

RN3RN

Nf0 (x , v)N2 Nc(v)N2 (11NvN2 )s dv dx

1� � �
[0 , T]3RN3RN

(Nf (t , x , v)N2 1Ng(t , x , v)N2 ) Nc(v)N2 (11NvN2 )s dv dx dtv .

(44)

P r o o f . Let us denote f×(t , j , v) the Fourier transform of f in the x variable,
and F f (t , j , h) the Fourier transform of f in the x , v variables. Then, (38)
yields

¯t f×1iv Qj f×4 g× .(45)
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Solving this equation in the sense of distributions, we get

f×(t , j , v) 4e 2iv Qjt f×0 (j , v)1�
0

t

e 2iv Qjs g×(t2s , j , v) ds .(46)

Multiplying (46) by c(v), we obtain

f×(t , j , v) c(v) 4e 2iv Qjt f0 c×(j , v)1�
0

t

e 2iv Qjs gc×(t2s , j , v) ds ,(47)

and after integration in v ,

r×c (t , j) 4 F ( f0 c)(j , tj)1�
0

t

F ( gc)(t2s , j , sj) ds .(48)

This type of formula with double Fourier transform evaluated at (j , tj) was
used in [37]. For a.e. j�RN , we estimate this quantity thanks to Cauchy-Schwarz
inequality, and get

Nr×c (t , j)N2 G2N F ( f0 c)(j , tj)N2 12 t�
0

t

N F ( gc)(t2s , j , sj)N2 ds .(49)

Integrating this estimate on ]0 , T[, and using the variable t4 t2s , we
obtain

�
0

T

Nr×c (t , j)N2 dtG2 �
0

T

N F ( f0 c)(j , tj)N2 dt

12T�
0

T

�
0

T

N F(gc)(t , j , sj)N2 dt ds

G
2

NjN
�

0

TNjN

NF ( f0 c) gj , u
j

NjN
hN

2
du1

2T

NjN
�

0

T

�
0

TNjN

NF (gc) gt , j , u
j

NjN
hN

2
dt ds .

(50)

Let us now state a very classical trace lemma.

L e m m a 1. Let f�H s (RN
h ) with sD (N21) /2 . Then, for any s�RN such

that NsN41,

Vf(zs)VL 2 (z�R) GCN , s V(Id2D h )s/2 fVL 2 (RN
h ) .(51)
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For each integral in z , we use this lemma and Plancherel’s identity. We get for
a.e. j ,

�
0

T

Nr×c (t , j)N2 dtG
CN , s

NjN
�

v�RN

N f0 c×(j , v)N2 (11NvN2 )s dv

1
CN , s

NjN
�

t40

T

�
v�RN

Ngc×(t , j , v)N2 (11NvN2 )s dv dt .

Then,

�
0

T

�
RN

NjNNr×c (t , j)N2 dj dtGCN , su� �
RN3RN

Nf0 (x , v)N2 Nc(v)N2

3(11NvN2 )s dv dx1�� �
[0 , T]3RN3RN

Nf (t , x , v)N2 Nc(v)N2 (11NvN2 )s dv dx dtv . r

2.4 - Time discretization

We use here the techniques of the previous subsection to get averaging lem-
mas adapted to a time discretization of eq. (38). More precisely, we present the
Euler implicit scheme and the second-order Crank-Nicolson scheme correspon-
ding to the free transport equation (that is, eq. (38) with g40). The results of this
subsection are extracted from [20].

Note that another example of time discretization is presented in [20]. It con-
cerns the convergence of the operator splitting method for the Boltzmann equa-
tion in the renormalized framework (Cf. [31]). Let us also mention that there
exists another method to prove the convergence of the splitting algorithm, which
does not use averaging lemmas, see [72].

Finally, we underline the fact that the results of this subsection belong to the
general class of the so-called «averaging lemmas at the limit». Those are designed
to prove the convergence of the numerical schemes towards the solutions of the
kinetic equations. They can concern other variables than t .

We introduce implicit methods for solving the free transport equation ¯t f1v
Q˜x f40. The distribution function f is approximated by f n at time nDt (DtD0,
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n�N). We treat the cases of the Euler implicit scheme

f n11 2 f n

Dt
1v Q˜x f n11 40,(52)

and of the second-order Crank-Nicolson scheme

f n11 2 f n

Dt
1v Q˜x

f n 1 f n11

2
40.(53)

The initial datum fin 4 f 0 is assumed to belong to L 2 (RN
x 3RN

v ). Then f n is uni-
formly bounded in L 2 , V f n

VL 2 (RN
x 3RN

v ) GV f 0
VL 2 (RN

x 3RN
v ) . For any test function

c�C Q
c (RN

v ), we define the averages

r c
n (x) 4 �

RN

f n (x , v) c(v) dv�L 2 (RN
x ).(54)

We begin with an easy computation for the Euler implicit scheme.

T h e o r e m 6. For the Euler implicit scheme (52), r c
n �H 1/2 (RN ) for any

nF1, and for any sD (N21) /2 ,

Dt !
n41

Q

Vr c
n

VH
.

1 /2 (RN )
2

GCN , s Vc(v)(11NvN2 )s/2
VL Q (RN

v )
2

V f 0
VL 2 (RN

x 3RN
v )

2 .(55)

P r o o f . We denote by f× or by F f the Fourier transform of f with respect to
the x variable, and by j the corresponding Fourier variable.

The solution f n11 of (52) is given in terms of f n by

f n11 (x , v) 4�
0

Q

e 2s f n (x2Dtsv , v) ds ,(56)

and we easily deduce by induction that for any nF1,

f n (x , v) 4�
0

Q

e 2s s n21

(n21) !
f 0 (x2Dtsv , v) ds ,

f×n (j , v) 4�
0

Q

e 2s s n21

(n21) !
e 2iDtsv Qj f×0 (j , v) ds .

(57)
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Then, for a.e. j�RN , the Fourier transform r c of the average in v of f ,

r×c
n (j)4 �

RN

f×n (j , v) c(v) dv

4�
0

Q

e 2s s n21

(n21) !
F ( f 0 c)(j , Dtsj) ds .

(58)

According to the Cauchy-Schwarz inequality,

Nr×c
n (j)N2 G�

0

Q

e 2s s n21

(n21) !
ds�

0

Q

e 2s s n21

(n21) !
N F ( f 0 c)(j , Dtsj)N2 ds ,(59)

and since the first integral has value 1 ,

Dt !
n41

Q

Nr×c
n (j)N2GDt�

0

Qg !
n41

Q

e 2s s n21

(n21) !
hN F ( f 0 c)(j , Dtsj)N2 ds

4
1

NjN
�

0

Q

NF( f 0 c) gj , z
j

NjN
hN

2
dz

G
CN , s

NjN
�

v�RN

N f×0 (j , v)N2 dvVc(v)(11NvN2 )s/2
VL Q (RN

v )
2

(60)

by the same estimate as in Theorem 5. The result (55) follows by integration with
respect to the variable j . r

We now turn to the Crank-Nicolson scheme, and propose a very different type
of estimate.

T h e o r e m 7. For the Crank-Nicolson scheme (53), the following compac-
tness estimate for averages in time holds. For any RD0,

�
NjNDR

NDt !
n40

m

x n r×c
n (j) N

2
djGCcgDt 2 A 2 1

AB

R
h V f 0

VL 2 (RN
x 3RN

v )
2 ,(61)

where m�N , (x n )0 GnGm are arbitrary complex numbers, and

A4 !
n40

m21

Nx n 2x n11N1Nx mN , B4Dt !
n40

m

Nx nN(62)

represent respectively the total variation and the L 1 norm of x .
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P r o o f . We use the same notations as in the proof of Theorem 6.
The solution f n11 of (53) is given in terms of f n by

f n11 (x , v) 42 �
0

Q

e 2s f ngx2
Dt

2
sv , vh ds2 f n (x , v),

f×n11 (j , v) 4

12 i
Dt

2
v Qj

11 i
Dt

2
v Qj

f×n (j , v).

(63)

Therefore, for any nF0, we obtain by induction

f×n (j , v) 4 u 12 i
Dt

2
v Qj

11 i
Dt

2
v Qj

vn

f×0 (j , v),(64)

and

r×c
n (j)4 �

RN

f×n (j , v) c(v) dv

4 �
RN

u 12 i
Dt

2
v Qj

11 i
Dt

2
v Qj

vn

f×0 (j , v) c(v) dv .

(65)

Let us now introduce the angle u�]2p , p[ defined by

12 i
Dt

2
v Qj

11 i
Dt

2
v Qj

4e 2iu ,(66)

or equivalently u42 Arctg g Dt

2
v Qjh . Then,

Dt !
n40

m

x n r×c
n (j) 4 �

RN

W(u) f×0 (j , v) c(v) dv ,(67)

W(u) 4Dt !
n40

m

x n e 2inu .(68)
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Using Abel’s transform, we get

W(u) 4Dt !
n40

m21

(x n 2x n11 ) g!
l40

n

e 2iluh1Dtx m !
l40

m

e 2ilu ,

NW(u)NG
DtA

Nsin (u/2 )N

(69)

Now, since sin (u/2 ) 4
Dt

2
v Qj/o11 g Dt

2
v Qjh2

, we obtain

NW(u)NGDtA1
2A

Nv QjN
.(70)

But we can also use the trivial estimate NW(u)NGB , and combined with (70) this
yields

NW(u)NGDt A1min g 2A

Nv QjN
, Bh .(71)

Now, coming back to (67) we get for a.e. j�RN

NDt !
n40

m

x n r×c
n (j) N

2
G �

RN

N f×0 (j , v)N2 dv �
RN

NW(u)N2 Nc(v)N2 dv

G2 �
RN

N f×0 (j , v)N2 dv yDt 2 A 2 �
RN

Nc(v)N2 dv1 �
RN

min2g 2A

Nv QjN
, BhNc(v)N2 dvz .

(72)

The last integral can be computed,

�
RN

min2g 2A

Nv QjN
, BhNc(v)N2 dv

4 �
u42Q

Q

min2g 2A

NjNNuN
, Bh u �

v 8�j»

Nc gu
j

NjN
1v 8hN

2
dv 8v du

GCN , s Vc(v)(11NvN2 )s/2
VL Q (RN

v )
2 �

2Q

Q

min2g 2A

NjNNuN
, Bh du

4CN , s Vc(v)(11NvN2 )s/2
VL Q (RN

v )
2 8AB

NjN
.

(73)
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Finally, estimate (72) gives for any sD (N21) /2

NDt !
n40

m

x n r×c
n (j) N

2
G2 �

RN

N f×0 (j , v)N2 dv

3gVcVL 2 (RN )
2 Dt 2 A 2 1CN , s Vc(v)(11NvN2 )s/2

VL Q(RN
v )

2 AB

NjN
h ,

(74)

and (61) follows by integration in j . r

Let us now emphasize the big difference between the two schemes described
above. Using the implicit scheme (52), we immediately see that for nF1,
f n1Dtv Q˜x f n�L 2

x , v . Therefore, according to [38], r c
n �Hx

1/2 . However, in general
r c

0 �H 1/2 (for example, take for f 0 a tensor product). Then, in an estimate like (61),
we only get a term in 1/R (a term in Dt appears if the sum starts at n40).

For the Crank-Nicolson scheme (53), the situation is very different since there is
time reversibility, as in the continuous case (the L 2 norm of f n is constant). When f 0

varies in L 2 , f n also varies in L 2 , and thus r c
n only lies in Lx

2 (for a given n). Compac-
tness only occurs for averages in time, and we must have a term in Dt in (61). How-
ever, the situation here is worse than in the continuous case, since we can only esti-
mate an average in time with respect to a smooth function x(t) (of bounded variation),
whereas in the continuous case, an L 2 function is enough. Note that this regularity of
x is really needed. There is no inequality like (61) with the L 2 norm in time instead of
the average with respect to x . This can be seen by writing (65) as

r×c
n (j)4 �

u42p

p

e 2inu �
v 8�j»

f 0 c× gj ,
2

DtNjN
tan

u

2

j

NjN
1v 8h dv 8

11tan2 u

2

DtNjN
du .(75)

Then by Parseval’s formula

Dt !
n�Z

Nr×c
n (j)N2

42pDt �
u42p

p

N �
v 8�j»

f 0 c× gj ,
2

DtNjN
tan

u

2

j

NjN
1v 8h dv 8

11 tan2 u

2

DtNjN
N

2
du

42p �
u42Q

Q

N �
v 8�j»

f 0 c× gj , u
j

NjN
1v 8h dv 8N

2
11 g Dt

2
NjNuh2

NjN
du ,

and it is impossible to control the term in Dt 2 NjN .
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3 - Regularity of Q 1

3.1 - Introduction

We recall the general form of the positive part Q 1 of the Boltzmann operator (18),

Q 1 ( f , f )(v) 4 ��
v*�RN

s�S N21

f g v1v*
2

2
Nv2v*N

2
sh f g v1v*

2
1

Nv2v*N

2
sh

3B gNv2v*N ,
v2v*

Nv2v*N
Qsh ds dv*,

(76)

where B is the cross section.
The classical assumption of angular cutoff of Grad (Cf. [42]) that B is integra-

ble will always be made in this section.
The properties of Q 1 with the assumption of angular cutoff of Grad (without

this assumption, Q 1 is not defined even for very smooth functions f ) have first
been investigated by P.-L. Lions in [54], [55]. In this work, it is proven that if B is
a very smooth function with support avoiding certain points, then

VQ 1 ( f , f )VH
. (N21) /2 (RN

v ) GCV f VL 1 (RN
v ) V f VL 2 (RN

v )(77)

for any f�L 1 OL 2 (RN
v ).

The proof of this estimate used the theory of Fourier integral operators. The
very restricting conditions on B were not a serious inconvenience since in the ap-
plication to the inhomogeneous Boltzmann equation, only the strong compactness
in L 1 of Q 1 ( f ) was used, and not the estimate itself, so that these assumptions
could be relaxed by taking a suitable approximation of B .

An extension of this work to the case of the relativistic Boltzmann kernel can
be found in [6].

Then, a simplified proof of (77) was given by Wennberg (Cf. [78] and [79]) with
the help of the regularizing properties of the (generalized) Radon transform. The
hypothesis on B were considerably diminished, so that for example forces in r 2s

with angular cutoff and sF9 were included.
We intend here to give a yet simplified proof of (77)-like estimates, using only

elementary properties of the Fourier transform. Moreover, we prove that the esti-
mate holds for a large class of cross sections B , including all hard potentials with
cutoff (that is when sF5).

One of the drawbacks of the results here given is that instead of having a L 1

norm times a L 2 norm in the right-hand side of (77), we only get a L 2 norm to the
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square. The proofs of this section are extracted from [19]. They are also close of
that of [60].

3.2 - A simplified situation

We begin with the simplest possible cross section, that is Bf1. We only treat
here the three-dimensional case for the sake of simplicity (the two-dimensional ca-
se is in fact slightly more involved because some part of the computation cannot
be written down explicitly).

Our theorem writes :

T h e o r e m 8. For any eD0, there exists a constant Ce only depending on e

such that for any f�L1
1 (R3 )OL 2

(31e) /2 (R3 ), Q1 ( f ) � H
.

1 (R3 ) with

VQ1 ( f , f )VH
. 1 (R3 ) GCe V f V

2
L 2

(11e) /2
.(78)

P r o o f . We note first that for all f�L1
1 (R3 )OL 2

(31e) /2 (R3 ), the kernel
Q1 ( f , f ) lies in L 1 (R3 ).

Therefore, we can compute the Fourier transform of Q1 ( f , f ),

Q 1 ( f ,× f )(j) 4 ���
v , v*�R3

s�S 2

e 2iv Qj f g v1v*
2

2
Nv2v*N

2
sh

3f g v1v*
2

1
Nv2v*N

2
sh ds dv dv*

4 ���
v , v*�R3

s�S 2

e 2ij Q (v1v*2Nv2v*Ns) /2 f (v) f (v*) ds dv dv*,

(79)

according to the pre-post collisional change of variables.
We then note that

�
s�S 2

e iNv2v*Ns Qj/2 ds42p �
u421

11

e iNv2v* NNjNu/2 du

48p

sin g 1

2
Nv2v*NNjNh

Nv2v* NNjN
.
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Thus we obtain

Q 1 ( f ,× f )(j) 48p ��
v , v*�R3

e 2ij Q (v1v*)/2 f (v) f (v*)

sin g 1

2
Nv2v*NNjNh

Nv2v*NNjN
dv dv*.(80)

Using the variables

z4
v1v*

2
, w4v2v*,(81)

we get

Q 1 ( f ,× f )(j) 48p� �
R33R3

e 2iz Qj f (z1w/2 ) f (z2w/2 )

3

sin g 1

2
NwNNjNh

NwNNjN
dw dz

4
8p

NjN
�

R3

f gQ1 w

2
h f
×gQ2 w

2
h

sin g 1

2
NwNNjNh

NwN
dw .

According to Cauchy-Schwarz’s inequality and Plancherel’s identity,

�
R3

NjN2 NQ 1 ( f× )(j)N2 djG64p 2�
R3

dw

NwN2 (11NwN)11e

3�
R3

�
R3

N f gQ1 w

2
h f
×gQ2 w

2
h (j) N

2
dj(11NwN)11e dw

GCe�
R3

�
R3

N f gz1
w

2
h f gz2

w

2
hN

2
(11NwN)11e dw dz

GCe�
R3

�
R3

f (v)2 f (v*)2 (11Nv2v*N)11e dv dv*

GCe V f V

4
L 2

(11e) /2

and the proof is complete. r
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3.3 - General cutoff cross sections

We now turn to the general case, that is when cutoff hard potentials (or Max-
wellian molecules) are considered (note that assumption (82) below is satisfied
only by potentials gently cutoff).

The proof, extracted from [19], follows the same lines as that of the previous
section, but is slightly more involved. We still only consider dimension three.

T h e o r e m 9. Let B be a continuous cross section from ]0 , Q[3[21, 1 ] to
R , admitting a continuous derivative in the second variable. We assume that B
satisfies the estimate:

(xD0, (u� [21, 1 ], NB(x , u)N1N ¯B

¯u
(x , u) N GKB (11x).(82)

Then, for any eD0, there exists a constant Ce only depending on e such that for
any f�L1

1 (R3 )OL 2
(31e) /2 (R3 ), Q1 ( f , f ) � H

.
1 (R3 ) with

VQ1 ( f , f )VH
. 1 (R3 ) GCe KB V f V

2
L 2

(31e) /2
.(83)

P r o o f . We first note that since NB(x , u)NGKB (11x), the integral (76) de-
fining Q1 ( f , f ) is absolutely convergent for a.e. v . Moreover, Q1 ( f , f ) �L 1 (R3 ),
and

VQ1 ( f , f )VL 1 G4pKB V f V

2
L1

1 .(84)

Therefore, we can compute the Fourier transform of Q1 ( f , f ),

Q 1 ( f ,× f )(j) 4 ���
v , v*�R3

s�S 2

e 2iv Qj f g v1v*
2

2
Nv2v*N

2
sh f g v1v*

2
1

Nv2v* N

2
sh

3B gNv2v*N ,
v2v*

Nv2v*N
Qsh ds dv dv*(85)

4 ���
v , v*�R3

s�S 2

e 2ij Q (v1v*2Nv2v*Ns) /2 f (v) f (v*) B gNv2v*N ,
v2v*

Nv2v*N
Qsh ds dv dv*,
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according to the pre-post collisional change of variables. Thus we obtain

Q 1 ( f ,× f )(j) 4 ��
v , v*�R3

e 2ij Q (v1v*) /2 f (v) f (v*) D(v2v*, j) dv dv*,(86)

where for any w , j�R3 0]0(

D(w , j) 4 �
s�S 2

e iNwNs Qj/2 B gNwN ,
w

NwN
Qsh ds

4 �
u421

11

e iNwNNjNu/2 �
W40

2p

(87)

B uNwN , u
j

NjN
Q

w

NwN
1k12u 2o12 g j

NjN
Q

w

NwN
h2

cos Wv dW du ,

with spherical coordinates and

u4s Q
j

NjN
.(88)

Integrating by parts, we get

D(w , j) 42 �
u421

11
2e iNwNNjNu/2

iNwNNjN

3 �
W40

2pu j

NjN
Q

w

NwN
2

u

k12u 2 o12 g j

NjN
Q

w

NwN
h2

cos Wv

3
¯B

¯u
uNwN , u

j

NjN
Q

w

NwN
1k12u 2o12 g j

NjN
Q

w

NwN
h2

cos Wv dW du

1
2e iNwNNjN/2

iNwNNjN
2pB gNwN ,

j

NjN
Q

w

NwN
h2

2e 2iNwNNjN/2

iNwNNjN
2pB gNwN , 2

j

NjN
Q

w

NwN
h ,

(89)

and therefore

ND(w , j)NG
4p

NwNNjN
KB (11NwN) �

21

11

u11
NuN

k12u 2
v du

1
8p

NwNNjN
KB (11NwN)(90)

G
24p

NjN
KB (111/NwN).
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Coming back to (86) and using the variables

z4
v1v*

2
, w4v2v*,(91)

we get

Q 1 ( f ,× f )(j) 4 �
w�R3

W( f )(w , j) D(w , j) dw ,(92)

where

W( f )(w , j) 4 �
z�R3

e 2iz Qj f (z1w/2 ) f (z2w/2 ) dz(93)

is a Wigner-type transform of f . Then, according to Cauchy-Schwarz’s inequality,
we get for any eD0

NQ 1 ( f ,× f )(j)N2 G �
w�R3

NW( f )(w , j)N2 (11NwN)31e dw

3 �
w�R3

ND(w , j)N2 dw

(11NwN)31e
(94)

GCe

KB
2

NjN2
�

w�R3

NW( f )(w , j)N2 (11NwN)31e dw .
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Finally, using Plancherel’s identity, we obtain

�
j�R3

NjN2 NQ 1 ( f ,× f )(j)N2 dj

GCe KB
2 �
w�R3

u �
j�R3

NW( f )(w , j)N2 djv (11NwN)31e dw

4Ce KB
2 (2p)3 �

w�R3

u �
z�R3

Nf (z1w/2 ) f (z2w/2 )N2 dzv (11NwN)31e dw

4Ce KB
2 (2p)3 ��

v , v*�R3

Nf (v) f (v*)N2 (11Nv2v*N)31e dv dv*

GCe KB
2 (2p)3

V f V

4
L 2

(31e) /2
,

(95)

and the proof is complete. r

Note that assumption (82) can be relaxed (in order to treat (not too) soft po-
tentials for example). The estimate is then not as good as in the previous theorem
(Cf. [19] for more details).

3.4 - Propagation of singularities for the spatially homogeneous Boltzmann equation

The results obtained in the previous subsections can be directly applied to the
study of the propagation of singularities for the spatially homogeneous Boltzmann
equation.

This is due to the fact that as soon as the cross section is cutoff, the Boltzmann
operator Q can be written under the form

Q( f , f ) 4Q1 ( f , f )2 f Lf ,

where Q1 is defined by (18) and

Lf (v) 4 (A˜f )(v),

with

A(x) 4 �
s�S N21

B gx ,
x

NxN
Qsh ds .
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As a consequence, a solution of (25), (26) can be written under the «Duhamel»
or mild form

f (t) 4 fin exp u2�
0

t

(A˜f )(t) dtv

1�
0

t

Q1 ( f , f )(s) exp u2�
s

t

(A˜f )(t) dtv ds .

(96)

Let us look for example at cross sections like

B(x , u) 4NxNa b(u),

where a�]0 , 1[ and b is of class C 1 on [21, 1 ] (that is, typical cutoff hard
potentials).

We consider solutions of (25), (26) which lie in L Q (R1 ; L 2
s (RN ) ) for some lar-

ge s (such solutions are known to exist as soon as the initial datum also lie in the
same space).

Then, for all s, tF0, (Ã f )(t)�H N/21a
loc (RN) and Q1( f , f )(s) �H (N21)/2 (RN).

According to formula (96), we see that for all tF0, and pG (N21) /2 ,

fin �H p
loc (RN ) ` f (t) �H p

loc (RN ).

This can be seen as a theorem of propagation of singularities. As can be deduced
from formula (96), the singularities of the initial datum are propagated (in a trivial
way: they stay at the same position in the space of velocities) and decrease expo-
nentially fast. Such a behavior is confirmed by numerical simulations.

4 - Propagation of singularities for the spatially inhomogeneous Boltzmann

equation

4.1 - Introduction

In this section, we investigate the smoothness (more precisely, the lack of
smoothness, that is, the singularities) of the solution of the full cutoff Boltzmann
equation (16).

In the sequel, we shall in fact limit ourselves to cross sections B which satisfy
the following assumption:
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A s s u m p t i o n 1. The nonnegative cross section B lies in W 1,Q(R13[21, 1]).
We denote as in the previous section

A(x) 4 �
s�S N21

B gx ,
x

NxN
Qsh ds ,

and

Q( f , f ) 4Q1 ( f , f )2 f Lf .

Note that the classical cross sections of (cutoff) Maxwellian molecules or (cu-
toff) regularized soft potentials satisfy this assumption. The case of (cutoff) hard
potentials, which do not satisfy Assumption 1 because of the large relative veloci-
ties, is briefly discussed in a remark at the end of section 2.

In this section, we shall deal with solutions of the full Boltzmann equation (16),
for which many kinds of solutions exist.

Global renormalized solutions have been proven to exist for
a large class of initial data by DiPerna and P.-L. Lions in [33] (Cf. also [54] and
[55]). Global solutions (in the whole space) close to the equilibrium have been stu-
died by Imai and Nishida in [46] and Ukai and Asano in [71]. Finally, global sol-
utions for small initial data were introduced by Kaniel and Shinbrot (Cf. [48]) and
studied by Bellomo and Toscani (Cf. [11]), Goudon (Cf. [41]), Hamdache (Cf. [43]),
Illner and Shinbrot (Cf. [45]), Mischler and Perthame (Cf. [61]), Polewczak (Cf.
[65]) and Toscani (Cf. [68]).

In our study of how the singularities of the initial datum are propagated by
the Boltzmann equation, we need some smoothness (basically, we need that f be
L Q with some decay in x , v), and we shall therefore concentrate on the frame-
work of small initial data, where such estimates are available. We think that our
work is likely to extend to solutions close to the equilibrium, but we shall not inve-
stigate this case.

We consider only the dimension three for the sake of simplicity.
We recall here one of the theorems of existence of such small solutions. We

use a formulation adapted to our study, which is inspired from [61].

T h e o r e m 10. Let B be a cross section satisfying assumption 1 and fin be
an initial datum such that, for all x , v�R3 3R3 ,

0 G fin (x , v) G (81VAVL Q )21 exp g2 1

2
(NxN2 1NvN2 )h .(97)
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Then there exists a global distributional solution f to Boltzmann equation (16)
with initial datum fin , such that, for all TD0, t� [0 , T] and x , v�R3 3R3 ,

0 G f (t , x , v) GCT exp g2 1

2
(Nx2vtN2 1NvN2 )h »4MT (t , x , v),(98)

where CT is a constant only depending on T and VAVL Q .

We now state the main result of this section. It concerns the form of the singu-
larities of the solution of the Boltzmann equation (in our setting), and is extracted
from [21]. An analogous result in a different setting can be found in [7].

T h e o r e m 11. Let B be a cross section satisfying assumption 1 and fin be
an initial datum such that (97) holds. Then we can write, for all (t , x , v) �R1

3R3 3R3 ,

f (t , x , v) 4 fin (x2vt) G 1 (t , x , v)1G 2 (t , x , v),

where G 1 , G 2 �H a
loc (R13R3 3R3 ) for all a�]0 , 1 /25[.

This theorem shows that the singularities of the initial datum (that is, for
example, the points around which fin is in L 2 but not in H s for any sD0) are pro-
pagated with the free flow, and decrease exponentially fast (since in fact G 1 has
an exponential decay).

In particular, an x-dependant version of the result of subsection 3.4 holds. Na-
mely, for all tF0 and sE1/25 ,

f (t) �H s (R3 3R3 ) ` fin �H s (R3 3R3 ).

The proof of Theorem 11 uses the regularizing properties of the kernel Q1

presented in the previous section. We recall that they were first studied by P.-L.
Lions in [58], and extended by Wennberg in [78], [79], by Bouchut and Desvillet-
tes in [19], and by Lu in [60]. We also recall that those properties are exactly what
is needed to give the form of the singularities of the solutions to the spatially ho-
mogeneous cutoff Boltzmann equation (this is the result of subsection 3.4). In or-
der to conclude in our inhomogeneous setting, we also have to use the averaging
lemmas of Golse, P.-L. Lions, Perthame and Sentis (Cf. [38]), in the form of Theo-
rem 5.

P r o o f . We briefly sketch the proof of Theorem 11 before detailing it. The
main idea is the following: we write down the Duhamel form of the solution of the
Boltzmann equation (as in the spatially homogeneous case), also called the mild
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exponential form. For (t , x , v) �R13R3 3R3 , we have

f (t , x , v) 4 fin (x2vt , v) exp u2�
0

t

Lf (s , x2v(t2s), v) dsv

1�
0

t yQ1 ( f , f )(s , x2v(t2s), v)(99)

3exp u2�
s

t

Lf (s , x2v(t2s), v) dsvz ds .

We are going to prove that both Lf and Q1 ( f , f ) lie in L 2
loc (R1 ; H a

loc (R3 3R3 ) )
for any a�]0 , 1 /25[.

We now begin to give a detailed proof. Next subsection is devoted to the study
of the regularity of Lf .

4.2 - Regularity of Lf

Denoting by BR the ball of radius R and center 0 in R3 , we prove the following
intermediate result:

P r o p o s i t i o n 1. Suppose that B satisfies assumption 1 and that fin is such
that (97) holds. Then, for any TD0 and RD0, there exists KT , R D0 such
that

VLf VL 2 ( [0 , T]; H 1/2 (BR3 BR ) ) GKT , R VAVL Q (R3 ) .

P r o o f . Let us choose TD0. Since Lf is the convolution with respect to v by
A , we obviously have that, under assumption 1, Lf�L 2 ( [0 , T]t 3R3

x ; H 1/2
loc (R3

v ) )
(in fact, Lf lies in L 2 ( [0 , T]t 3R3

x ; W 1, Q
loc (R3

v ) )) and satisfies

VLf VL 2 ( [0 , T]3 BR ; H 1/2 (BR ) ) GK 8T , R VAVW 1, Q (R3 ) .

It remains to prove that Lf�L 2 ( [0 , T]t 3R3
v ; H 1/2

loc (R3
x ) ).
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Let us define the function Tl , 0 ElE1/2 , by Tl (v*) 4e2lv* , and study the
following quantity

VLf V

2
L 2 ( [0 , T]t3R3

v ; H 1/2 (R3
x ) )

4 �
t , v

�
x , h

N �
v*

A(v2v*)( f (t , x1h , v*)2 f (t , x , v*) ) dv*N
2
dx

dh

NhN4
dv dt .

(100)

We want to use Theorem 5, which we here recall under the form:

L e m m a 2. Let f�C( [0 , T]t ; L 2
w (R3

x 3R3
v*

) ) solve the equation

¯t f1v* Q˜x f4g in ]0 , T[3R3 3R3 ,

for some g�L 2 ( [0 , T]3R3 3R3 ).
Then, for any c� D(R3 ), the average quantity defined by

r c ( f )(t , x) 4 �
v*�R3

f (t , x , v*) c(v*) dv*

belongs to L 2 ( [0 , T]; H 1/2 (R3 ) ) and satisfies, for any sD1,

Vr c ( f )V

2
L 2 ( [0 , T]; H 1/2 (R3 ) ) GCsy �

x , v

Nf (0 , x , v*)N2 Nc(v*)N2 (11Nv*N2 )s dv* dx

1 �
t,x,v*

Ng(t , x , v*)N2 Nc(v*)N2 (11Nv*N2 )s dv* dx dtz ,

where Cs is a constant only depending on s .
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Using Lemma 2, eq. (100) becomes, for any sD1 and any open ball BR of R3 ,

VLf V

2
L 2 ( [0 , T]t3 BRv ; H 1/2 (R3

x ) )

G �
v� BR

V

r A(v2 Q) Tlg f

Tl

h
V

2

L 2 ( [0 , T]; H 1/2 (R3 ) )
dv

GCs �
v� BR

y �
x , v*

N fin (x , v*)

Tl (v*) N
2
NA(v2v*)N2 NTl (v*)N2 (11Nv*N2 )s dv* dx

1 �
t,x,v*

N(¯t 1v* Q˜x)
f

Tl
N

2
NA(v2v*)N2 NTl (v*)N2 (11Nv*N2 )s dv* dx dtz dv

GCR , s Ml , s
2

VAV

2
L Q (R3 )g

V

fin

Tl
V

2

L 2 (R33R3 )
1

V

(¯t 1v Q˜x)
f

Tl
V

2

L 2 ( [0 , T]3R33R3
h ,

(101)

where CR , s is a constant and

Ml , s 4 sup
v*�R3

NTl (v*)(11Nv*N2 )s/2N .(102)

Note that, since we have (97), the following estimate holds:

0 G
fin (x , v)

Tl (v)
Gk e2NxN2 /2 e(l21/2)NvN2

,

where k is an absolute constant, so that (recall that 0 ElE1/2) we can find a
constant ClD0 such that

V

fin

Tl
VL 2 (R33R3 )

GCl .(103)

Moreover, we have

N(¯t 1v Q˜x )
f

Tl
N G

NQ1 ( f , f )N

Tl

1
NfLfN

Tl

.(104)

It is clear, by (98), that

Nf (t , x , v) Lf (t , x , v)N

Tl (v)
G

MT (t , x , v) LMT (t , x , v)

Tl (v)

GCT
2 (2p)3/2

VAVL Q e
2

1

2
Nx2vtN2

e
(l2

1

2
)NvN2

.
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Hence there exists a constant Cl such that

V

fLf

Tl
VL 2 ( [0 , T]3R33R3 )

GCl .(105)

It is also clear that, for (t , x , v) � [0 , T]3R3 3R3 ,

NQ1 ( f , f )(t , x , v)N

Tl (v)
4

1

Tl (v) N �
v*, s

f (t , x , v 8 ) f (t , x , v*8 ) B ds dv*N

G
Q1 (MT , MT )(t , x , v)

Tl (v)

4
MT (t , x , v) LMT (t , x , v)

Tl (v)
,

so that

V

Q1 ( f , f )

Tl
VL 2 ( [0 , T]3R33R3 )

GCl .(106)

Taking (105)-(106) into account, (104) implies that

V

(¯t 1v Q˜x )
f

Tl
VL 2 ( [0 , T]3R33R3 )

GCl .(107)

Then, using (103) and (107) in (101), we get

VLf V

2
L 2 ( [0 , T]t3R3

v ; H 1/2 (R3
x ) ) GCs Cl

2 Ml , s
2

VAVL Q
2 .

Recalling that Lf�L 2 ( [0 , T]t 3R3
x ; H 1/2

loc (R3
v ) ), we finally obtain that

Lf�L 2 ( [0 , T]; H 1/2
loc (R3

x 3R3
v ) ),(108)

which ends the proof of Proposition 1. r

We now turn to the more complicated term Q1 ( f , f ).

4.3 - Regularity of Q1 ( f , f )

Studying Q1 ( f , f ), a new difficulty arises when we try to prove that this term
is (somewhat) smooth in x , v . Namely, Q1 ( f , f ) itself cannot easily be expressed
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in terms of averages in v of f , whereas it was possible for Lf in the previous
section.

However, its own averages in v (that is, for z smooth, quantities like
s
v

Q1 ( f , f )(t , x , v) z(v) dv) can be expressed in terms of averages in v of f . More

precisely, they are integrals with respect to an auxiliary parameter of such avera-
ges in v .

Therefore, the strategy of proof is now the following: in a first step, we show that
averages in v of Q1( f , f ) are somewhat smooth in x , and we keep track of the ave-
raging function z in the estimate which expresses this smoothness. Then, in a second
step, we approximate Q1( f , f ) by Q1( f , f ) ṽ z e , where z e is a smoothing family of
functions. The quantity Q1( f , f ) ṽ z e is (somewhat) smooth in x according to the
first step. It simply remains to use the properties of smoothness in v of Q1( f , f )
(that is, the results of the previous section) to control the difference between
Q1( f , f ) and Q1( f , f ) ṽ z e , and to optimize the parameter e .

We begin with the first part of this program.

4.3.1 - S t u d y o f t h e a v e r a g e s ( i n v e l o c i t y ) o f Q1 ( f , f )

This part is devoted to the proof of the

P r o p o s i t i o n 2. Let z� D(R3
v ), B satisfying assumption 1, and fin such that

(97) holds. Then we have, for any TD0 and h�R3 ,

�
t , x

N �
v

[Q1 ( f , f )(t , x1h , v)2Q1 ( f , f )(t , x , v) ] z(v) dvN
2
dx dt

GKT VzV

2
W 1, Q (R3 ) NhN2/5 ,

(109)

where KT is a constant that depends on T (more precisely on the constant CT in
(98) and on VBVW 1, Q (R13 [0 , 1] )).

P r o o f . Let z� D(R3
v ). We have

�
R3

Q1 ( f , f )(v) z(v) dv4 �
v , v*, s

f (v 8 ) f (v*8 ) Bz(v) ds dv* dv .(110)

By changing pre/post collisional variables, eq. (110) becomes

�
R3

Q1 ( f , f )(v) z(v) dv4 �
v , v*

f (v) f (v*) �
s

Bz(v 8 ) ds dv* dv .(111)
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Let us set

Z(v , v*) 4�
s

Bz(v 8 ) ds ,(112)

which depends neither on t nor on x and belongs to L Q (R3 3R3 ). As a matter of
fact, we have

VZVL Q (R33R3 ) G4pVBVL Q (R33S 2 ) VzVL Q (R3 ) .

Note that we still cannot directly express the quantity s
R3

Q1 ( f , f )(v) z(v) dv in

terms of averages in v of f , because Z is not a tensor product. As a consequence,
we approximate Z by (integrals) of such tensor product.

This is done by taking a mollifying sequence (c e )eD0 of functions of v . Thanks
to (111), we get

�
R3

Q1 ( f , f )(v) z(v) dv

4 �
v , v*

f (v) f (v*) u �
w , w*

Z(w , w*) c e (v2w) c e (v*2w*) dw* dwv dv* dv

1 �
v,v*

f (v) f (v*) y �
w,w*

(Z(v, v*)2Z(w, w*)) c e (v2w) c e (v*2w*) dw*dwz dv*dv.

(113)

We name I1 (respectively I2) the first (respectively second) integral in (113). They
are functions of t�R1 and x�R3 .

l Estimate on I1 .

The integral I1 can be rewritten as

I1 4 �
w , w*

Z(w , w*) r c e (Q2w) ( f )(t , x) r c e (Q2w*) ( f )(t , x) dw* dw ,

where r c ( f ) denotes the average quantity of f with respect to c .
Let us study the norm Vt h I1 2I1 VL 2 ( [0 , T]3R3 ) , for h�R3 , with the notation

t h g(x) 4g(x1h).
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The following equality holds:

�
t , x

Nt h I1 2I1N
2 dx dt

4 �
t , x

N �
w , w*

Z(w , w*)[r c e (Q2w) ( f )(t , x1h) r c e (Q2w*) ( f )(t , x1h)

2r c e (Q2w) ( f )(t , x) r c e (Q2w*) ( f )(t , x) ] dw* dwN
2
dx dt .

We immediately get

�
t , x

Nt h I1 2I1N
2 dx dtGCVZV

2
L Q (R33R3 ) �

t , x

dt dxN �
w , w*

N(r c e (Q2w) ( f )(t , x1h)2r c e (Q2w) ( f )(t , x) ) r c e (Q2w*) ( f )(t , x1h)

1r c e (Q2w) ( f )(t , x) (r c e (Q2w*) ( f )(t , x1h)2r c e (Q2w*) ( f )(t , x) )Ndw* dwN
2

GCVZV

2
L Q (R33R3 )y �

t , x

dt dxN �
w , w*

N( (t h 2Id ) r c e (Q2w) ( f ) )(t , x)

3t h r c e (Q2w*) ( f )(t , x)Ndw* dwN
2
dx dt

1 �
t , x

dt dxN �
w , w*

N( (t h 2Id ) r c e (Q2w*) ( f ) )(t , x) r c e (Q2w) ( f )(t , x)Ndw* dwN
2
dx dtl.

In the previous inequality, the two terms can be similarly treated. For example,
let us study the second one, which we name J .

J4 �
t , x

g �
w

r c e (Q2w) ( f )(t , x) dwh2

3u �
w*

N( (t h 2Id ) r c e (Q2w*) ( f ) )(t , x)Ndw*v
2

dx dt

GCT �
t , x

u �
w*

N( (t h 2Id ) r c e (Q2w*) ( f ) )(t , x)Ndw*v
2

dx dt ,
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where CT is the constant in (98). Let us choose 0 EuElE1/2 . Using the nota-
tion Tl as in subsection 4.2, we have

JGCTu �
w*

e2uNw*N2
dw*v

3u �
t,x,w*

( (t h 2Id ) r c e (Q2w*) ( f ) )2 (t , x) euNw*N2
dw* dx dtv

GCT , u NhN �
w*

dw* euNw*N2

V

r c e (Q2w*) Tlg f

Tl

h
V

2

L 2 ( [0 , T]; H 1/2 (R3 ) )
.

Then, thanks to the averaging lemma (Lemma 2), we obtain

JGCT , u , s NhN �
w*

dw* euNw*N2

3y �
x , v*

fin (x , v*)2

Tl (v*)2
c e (v*2w*)2 Tl (v*)2 (11Nv*N2 )s dv* dx

1 �
t , x , v*

g(¯t 1v* Q˜x )
f

Tl

h (t , x , v*)2

3c e (v*2w*)2 Tl (v*)2 (11Nv*N2 )s dv* dx dtl .

Let us take care of the term with fin (the other one is treated in the same way
thanks to (107)). We notice that, for any w*� B(v*, e),

euNw*N2
Ge2uNv* N2

e2ue2
.

We thus have

�
w*

euNw*N2 �
x , v*

fin (x , v*)2

Tl (v*)2
c e (v*2w*)2 Tl (v*)2 (11Nv*N2 )s dv* dx dw*

G �
x , v*

fin (x , v*)2

Tl (v*)2
Tl (v*)2 (11Nv*N2 )s
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3u �
w*� B(v*, e)

euNw*N2
c e (v*2w*)2 dw*v dv* dx

G �
x , v*

fin (x , v*)2

Tl (v*)2
Tl2u (v*)2 (11Nv*N2 )s e2ue2

Vc e V

2
L 2 dv* dx

G
( eu Ml2u , s )2

e 3 V

fin

Tl
V

2

L 2 (R33R3 )
,

for 0 EeE1.
Note that we have used that Vce V

2
L 2Ge23 and Ml2u, s is defined by (102).

Hence we get, thanks to (103),

JG
Cl , u , s

e 3
,

and finally

Vt h I1 2I1 V

2
L 2 ( [0 , T]3R3 ) GCl , u , s VZV

2
L Q (R33R3 ) e

23 NhN .(114)

l Estimate on I2 .

Let us now study the norm Vt h I2 2I2 VL 2 ( [0 , T]3R3 ) , with the same notation t h

as before. We successively have

Vt h I2 2I2 V

2
L 2 ( [0 , T]3R3 )

4 �
t , x

dt dxN �
v , v*

( f (t , x1h , v) f (t , x1h , v*)2 f (t , x , v) f (t , x , v*) )

3u �
w , w*

(Z(v , v*)2Z(w , w*) ) c e (v2w) c e (v*2w*) dw* dwv dv* dvN
2

GCVZV

2
W 1, Q (R33R3 )g �

w

NwNc e (w) dwh2

3 �
t , x

dt dx u �
v , v*

(t h 1Id ) (Nf (t , x , v) f (t , x , v*)N ) dv* dvv2

.

(115)

Thanks to (98), the second integral term is bounded by a constant KT F0. Hence
there exists a constant CT F0 such that

Vt h I2 2I2 VL 2 ( [0 , T]3R3 )
2 GCT VZV

2
W 1, Q (R33R3 ) e

2 .(116)

l Estimate on the average quantity.
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Under assumption 1, the following inequality clearly holds:

VZVW 1, Q (R33R3 ) GCVzVW 1, Q (R3 ) ,(117)

where C is a constant depending on T and VBVW 1, Q (R13 [21, 1] ) . Consequently,
using (113)-(117), we get, for h�R3 ,

�
t , x

N �
v

[Q1 ( f , f )(t , x1h , v)2Q1 ( f , f )(t , x , v) ] z(v) dvN
2
dx dt

GKT VzV

2
W 1, Q (R3 ) (e 2 1e23 NhN),

that gives (109), if we choose e4NhN1/5 .
Thus, we conclude the proof of Proposition 2. r

4.3.2 - S t u d y o f Q1 ( f , f )

We turn back to the proof of our theorem.
Let us once again choose a mollifying sequence (c d )dD0 of functions of v . We

obviously have, for all dD0,

Q1 ( f , f ) 4 (Q1 ( f , f )2c d ṽ Q1 ( f , f ) )1c d ṽ Q1 ( f , f ).

Note that, thanks to (109), for any h�R3 and dD0,

�
t , x

N �
w

[Q1 ( f , f )(t , x1h , w)2Q1 ( f , f )(t , x , w) ] c d (v2w) dwN
2
dx dt

GCVc d (v2 Q)V

2
W 1, Q (R3 ) NhN2/5 GCd28 NhN2/5 .

(118)

On the other hand, we know that thanks to the regularizing properties of Q1

(theorem 9), and thanks to the fact that f�L Q ( [0 , T]3 BR ; L 2
s (R3

v ) ) (for all s ,
RD0), Q1 ( f , f ) �L Q ( [0 , T]3 BR ; H 1 (R3

v ) ) and therefore

VQ1 ( f , f )2c d ṽ Q1 ( f , f )VL 2 ( [0 , T]3 BR3 BR ) GCd .(119)

Using again the translations t h in the variable x (h�R3), and assuming that
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NhNG1, we successively have

�
(t , x , v) � [0 , T]3 BR3 BR

Nt h Q1 ( f , f )2Q1 ( f , f )N2 dv dx dt

GC k �
t , x , v

N(Q1 ( f , f )2c d ṽ Q1 ( f , f ) )(t , x , v)N2 dv dx dt

1 �
t , x , v

N(t h (c d ṽ Q1 ( f , f ) )2c d ṽ Q1 ( f , f ) )(t , x , v)N2 dv dx dtl
GCR (d 2 1NhN2/5 d28 ),

(120)

thanks to (118)-(119).
Then for a good choice of d (that is, d4NhN1/25) in (120), we find the following

estimate:

u �
0

T

�
(BR )x

�
(BR )v

Nt h Q1 ( f , f )2Q1 ( f , f )N2 dv dx dtv1/2

GCNhN1/25 ,

which ensures that Q1( f , f ) �L 2 ( [0, T]3(BR)v ; H a( (BR)x) ), for any 0EaE1/25.
Besides, we know that Q1 ( f , f ) �L 2 ( [0 , T]3 (BR )x ; H 1 ( (BR )v ) ).
Then, by a standard interpolation result, we can state that for all

a�]0 , 1 /25[,

Q1 ( f , f ) �L 2 ( [0 , T]; H a
loc (R3 3R3 ) ).(121)

4.4 - Conclusion

Let us now conclude the proof of Theorem 11. Note that if we use the notation
f J(t , x , v)4f(t , x1vt , v), formula (99) is (at least formally) easily rewritten as

f J (t , x , v) 4exp u2�
0

t

Lf J (s , x , v) dsv3

ufin (x , v)1�
0

t yQ1 ( f , f )J (s , x , v) exp u �
0

s

Lf J (s , x , v) dsvz dsv .

(122)

In (122), we name E1 the first exponential term and E2 the whole integral term
with Q1 .
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We first notice that since Lf has the same H 1/2 smoothness in both variables x
and v , it is clear that Lf J�L 2 ( [0 , T]; H 1/2

loc (R3 3R3 ) ). In the same way,
Q1 ( f , f )J lies in L 2 ( [0 , T]; H a

loc (R3 3R3 ) ) for all a�]0 , 1 /25[.
Besides, we have, for any h�L 2([0, T]; H a(BR3BR)), RD0, a�]0, 1/25[,

�
0

T

V

�
0

t

h(s) ds
V

2

L 2 ( [0 , T]; H a (BR3 BR ) )
dtGT 2

VhV

2
L 2 ( [0 , T]; H a (BR3 BR ) ) .(123)

Using (123) with h4Lf J , we immediately obtain that for any t� [0 , T],

�
0

t

Lf J (s) ds�L 2 ( [0 , T]; H 1/2
loc (R3 3R3 ) ).

Its time derivative is exactly Lf J which also lies in L 2 ( [0 , T]; H 1/2
loc (R3 3R3 ) ).

Consequently, we have proven that

�
0

t

Lf J (s) ds�H 1
loc (R1 ; H 1/2

loc (R3 3R3 ) ) %H 1/2
loc (R13R3 3R3 ).

Since xOex is a bounded C Q function on [2T max Lf , T max Lf ], we can con-
clude that E1 belongs to H 1/2

loc (R13R3 3R3 ).

Then, we notice that E2 is the integral of the product of two terms which are
both in A4L 2 ( [0 , T]; H a

loc (R3 3R3 ) )OL Q (R13R3 3R3 ) for all a�]0 , 1 /25[.
The previous vector space A is in fact an algebra, so E2 is the integral of a term
that lies in A . Using once again (123), we find that E2 belongs to H a

loc (R13R3

3R3 ) for all a�]0 , 1 /25[.
Since E1 and E2 are obviously in A , G

A
1 4E1 and G

A
2 4E1 3E2 lie in A too, so

that both quantities belong to H a
loc (R13R3 3R3 ) for all a�]0 , 1 /25[.

Finally, from (122) back to the standard formulation, we obtain (99) with the
required smoothness on both G 1 and G 2 , because G

A
1 and G

A
2 have the same smoo-

thness in the three variables t , x and v . r

In this proof, we have only considered cross sections B lying in the space
W 1, Q (R13 [21, 1 ] ), which covers the case of (cutoff) Maxwellian molecules and
(cutoff) regularized soft potentials.

We briefly explain here how to transform the proof to get a result in the case
of hard potentials (with angular cutoff) or hard spheres.

Note first that the solutions of [61], which have an exponential decay in both x
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and v , are replaced by solutions with an algebraic decay in at least one of the va-
riables, like those of [11] or [65]. Then, throughout the proof, if the algebraic de-
cay concerns the variable v , the function Tl is replaced by Sl (v*) 4 (1

1Nv*N2 )
2

l

2 . The estimate on
Q1 ( f , f )

Sl

becomes then more intricate (but is still

valid).

Then, one has to replace the estimates in W 1, Q by estimates in C 0, b (except
for hard spheres) because the cross sections of hard potentials are only Hölder
continuous, not Lipschitz continuous.

Finally, the L Q estimates must be replaced by weighted L Q estimates because
the cross sections of hard potentials (and hard spheres) tend to infinity when
Nv2v*N tends to infinity. At the end, the exponent in the Sobolev space is less
than 1 /25 (and may be very small for hard potentials close to Maxwellian molecu-
les, because of the bad smoothness of the cross section for small relative
velocities).

The situation for true soft potentials (that is, when one keeps the true singula-
rity of the cross section for small relative velocities) is not so good, and one pro-
bably needs to find new estimates to prove a result of smoothness in such a
case.

Finally, when one considers a cross section without cutoff, or the Landau
kernel, a very different behaviour is expected, and will be described in the
sequel.

5 - The Fourier transform of the Boltzmann operator with Maxwellian molecules

and applications

5.1 - Introduction

Up to now, we have used the Fourier transform Q ( f ,× f ) of Boltzmann’s kernel
Q( f , f ), but we have only written it in terms of f itself and not in terms of f×.

In this section, we shall use a formula, written down by Bobylev in [13], [16],
which enables to express directly Q ( f ,× f ) (or Q 1 ( f ,× f )) in terms of f×. This formula
is computed in subsection 5.2.

However, this formula is easily tractable only for a special kind of cross sec-
tions, namely the Maxwellian molecules. We recall that in our terminology, it
means that B depends only on the second variable. As a consequence, many resul-
ts are valid only for that particular type of cross sections, and many others, whose
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validity is larger, are more easily proven in the case of Maxwellian molecu-
les.

In subsection 5.2, we write down Bobylev’s identity, which expresses Q ( f ,× f ) in
terms of f×. Then, in the remaining subsections, we treat only the case of
Maxwellian molecules, and give at the same time results which are only valid for
this cross section (study of explicit and eternal solutions, uniqueness in the non
cutoff case) and results which have a larger validity, but which can be proven mo-
re easily when Maxwellian molecules are considered (a new proof of the regulari-
zation properties of Q1 ( f , f ), and the study of the smoothness of the solutions of
the non cutoff spatially homogeneous Boltzmann equation).

5.2 - Bobylev’s identity

We write down here the proof of an identity due to Bobylev, which enables to
obtain a simple expression of the Fourier transform of Boltzmann collision opera-
tor (or even, separately, its positive and negative part) in terms of the Fourier
transform of f . The proof is extracted from [15].

T h e o r e m 12. We consider Boltzmann’s kernel Q in the case when B does
not depend on Nv2v*N:

Q( g , f )(v) 4 �
RN

�
S N21

] g(v 8*) f (v 8 )2g(v*) f (v)( b g v2v*
Nv2v* N

Qsh ds dv*.

Then, the following formulas hold ( f× or F f both denote the Fourier transform of f
in the variable v):

F [Q1 ( g , f ) ](j) 4 �
S N21

b g j

NjN
Qsh g×(j2 ) f×(j1 ) ds ,(124)

F [Q2 ( g , f ) ](j) 4 �
S N21

b g j

NjN
Qsh g×(0) f×(j) ds .(125)

In the previous formulas, we have used the shorthand notation

j14
j1NjNs

2
, j24

j2NjNs

2
.(126)

P r o o f . We perform here the calculation of the Fourier transform of the gain
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term in a general Boltzmann collision operator:

Q1 ( g , f )(v) 4 �
RN

�
S N21

B gNv2v* N ,
v2v*

Nv2v*N
Qsh g(v 8*) f (v 8 ) ds dv*.

First of all, for any test-function W(v), holds

�
RN

Q1 ( g , f )(v) W(v) dv4 �
R2N3S N21

B gNv2v*N ,
v2v*

Nv2v*N
Qsh

3g(v*) f (v) W(v 8 ) dv dv* ds .

Plugging W(v) 4e 2iv Qj in this identity, we get

F [Q1 ( g , f ) ](j) 4 �
R2N3S N21

g(v*) f (v)

3B gNv2v*N ,
v2v*

Nv2v*N
Qsh e

2i v1v*
2

Qj
e

2i Nv2v*N

2
s Qj

dv dv* ds .

A key remark by Bobylev is that

�
S N21

B gNv2v*N ,
v2v*

Nv2v*N
Qsh e

2i Nv2v*N

2
s Qj

ds

4 �
S N21

B gNv2v*N ,
j

NjN
Qsh e

2i NjN

2
s Q (v2v*)

ds .

This is a consequence of the general equality

�
S N21

F(k Qs , l Qs) ds4 �
S N21

F(l Qs , k Qs) ds , NlN4NkN41

(due to the existence of an isometry on S N21 exchanging l and k).
Thus,

F [Q1 ( g , f ) ](j) 4 �
R2N3S N21

g(v*) f (v) B gNv2v*N ,
j

NjN
Qsh

3e
2ij Q

v1v*
2 e 2iNjNs Q

v2v*
2 dv dv* ds

4 �
R2N3S N21

g(v*) f (v) B gNv2v*N ,
j

NjN
Qsh e 2iv Qj1

e 2iv* Qj2

dv dv* ds ,

where j1 and j2 are defined by (126).
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By the Fourier inversion formula, this is also

1

(2p)N
�

R2N3S N21

{ �
R2N

g×(h *) f×(h) B gNv2v*N ,
j

NjN
Qsh

3e iv* Qh * e iv Qh e 2iv Qj1

e 2iv* Qj2

dh * dh} dv dv* ds

4
1

(2p)N
�

R2N3S N21

g×(h *) f×(h)

3y �
R2N

B gNv2v*N ,
j

NjN
Qsh e iv* Q (h *2j2 ) e iv Q (h2j1 ) dv dv*z ds dh dh *.

By the change of variables q4v2v*,

�
R2N

B gNv2v*N ,
j

NjN
Qsh e iv* Q (h *2j2 ) e iv Q (h2j1 ) dv dv*

4 �
RN

�
RN

B gNqN ,
j

NjN
Qsh e iv Q (h *1h2j– j1 ) e 2iq Q (h *2j2 ) dq dv

4 (2p)N/2 B×gNh *2j2 N ,
j

NjN
Qsh d[h4j2h *],

where d is the Dirac measure, and B×(NjN , cos u) 4 s
RN

B(NqN , cos u) e 2iq Qj dq deno-

tes the Fourier transform of B in the relative velocity variable.
Thus the Fourier transform of Q1 ( g , f ) is given by

1

(2p)N/2
�

RN3S N21

g×(h *) f×(j2h *) B×gNh *2j2N ,
j

NjN
Qsh dh * ds .
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Writing j *4h *2j2 , we find in the end

F [Q1 ( g , f ) ](j) 4
1

(2p)N/2
�

RN3S N21

g×(j21j *) f×(j12j *)

3B× gNj *N ,
j

NjN
Qsh dj * ds .

(127)

In the particular case considered here (that is, when B(NzN , cos u) 4b( cos u)),
we have

B×(Nj *N , cos u) 4 (2p)N/2 d[j *40] b( cos u),

and as a consequence

F [Q1 ( g , f ) ](j) 4 �
S N21

g×(j2 ) f×(j1 ) b g j

NjN
Qsh ds .

The formula for F [Q2 ( g , f ) ](j) is then easily obtained by the same kind of com-
putations (but much simpler). r

We now write down a simpler form of the Fourier transform of Boltzmann’s
kernel (in the case of Maxwellian molecules) for functions which are radially sym-
metric (or, equivalently, for functions the Fourier transform of which is radially
symmetric). We observe that

Nj1N2 4NjN2

11
j

NjN
Qs

2
, Nj2N2 4NjN2

12
j

NjN
Qs

2
,

so that if we define u by

cos (2u) 4
j

NjN
Qs ,

we obtain

Nj1N2 4NjN2 cos2 u , Nj2N2 4NjN2 sin2 u .

Then, the Fourier transform of Boltzmann’s kernel (in the case of Maxwellian mo-
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lecules) for functions which are radially symmetric writes (with j�R)

F [Q1 ( g , f ) ](j) 4 �
u42p/2

p/2

g×(j sin u) f×(j cosu) b(NuN) du ,(128)

F [Q2 ( g , f ) ](j) 4 �
u42p/2

p/2

g×(0) f×(j) b(NuN) du ,(129)

where

b(NuN) 4
1

2
sin (2NuN) b( cos (2u) )

(in dimension 3). Remember that f× and g× are even functions of j in the previous
formulas.

Those formulas are sometimes called the Fourier transform of Kac’s operator,
since its corresponds to taking the Fourier transform in (31), that is, when v�R
and

Q( g , f )(v)

4�
R

�
2p

p

] g(v sin u1w cos u) f (v cos u2w sin u)2g(w) f (v)( b(NuN) dw du .
(130)

5.3 - Explicit and eternal solutions of Boltzmann’s equation with Maxwellian

molecules

Using formulas (128) and (129) and making the change of variables

x4
j 2

2
, s4cos2 u ,

together with the change of function

f(t , x) 4 f×(t , j),

Boltzmann’s equation for radially symmetric functions writes

¯t f(t , x) 4 �
s40

1

]f(t , sx) f(t , (12s) x)2f(t , 0 ) f(t , x)( G(s) ds ,(131)

where G is related to b .
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The systematic study of this equation was made by Bobylev and Cercignani.
The results of this subsection are extracted from their articles [17] and [18].

First, we look for solutions to (131) of the form

f(t , x) 4e 22ax f 0 (xe 22lt ),

for a , l�R .
The equation satisfied by f 0 is

22lyf 08 (y) 4�
0

1

]f 0 (sy) f 0 ( (12s) y)2f 0 (0) f 0 (y)( G(s) ds .(132)

We see that f 0 (y) 4 (11y) e 2y is a solution to eq. (132) as soon as

l4
1

2
�

0

1

s(12s) G(s) ds .

As a consequence, we obtain solutions f to eq. (131) of the form

f(t , x) 4e 22ax (11xe 22lt ) exp (2xe 22lt ) .

Those in turn lead to the following formula for the Fourier transform of the Boltz-
mann equation:

f×(t , j) 4e 2aNjN2g11
1

2
NjN2 e 22lth exp g2 1

2
NjN2 e 22lth .

The well-known BKW mode (Cf. [13], [14] and [51]) is then recovered by ta-

king the inverse Fourier transform of the previous formula (with a4
1

2
, and in

dimension 3):

f (t , v) 4 (2p (12e 2lt ) )23/2g11
e 2lt

3(12e 2lt )
g NvN2

12e 2lt
23hh

3exp g2 NvN2

2(12e 2lt )
h .

This has long been the only (up to some transformations) known nonnegative
(nontrivial) explicit solution to the (spatially homogeneous) Boltzmann equa-
tion.

However, Bobylev and Cercignani recently discovered (Cf. [17]) new nonnega-
tive explicit solutions in the particular case when G41.
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We only write here the simplest one. It is given by the formula

f (t , v) 422
1

2 p2
5

2 e 2t�
0

Q
ue 2u

gu1
NvN2 e 22 t/3

2
h2

du .(133)

This solution is said to be eternal. This means that it is defined and nonnegati-
ve for all times t�R .

This does not contradict the conjecture that all eternal (nonnegative) solutions
with finite mass and energy of the (spatially homogeneous) Boltzmann equation
are trivial (that is, Maxwellian). The reason for that is that the solution given by
(133) has infinite energy.

In fact, Bobylev and Cercignani recently made a significant step towards this
conjecture by proving the following result (Cf. [18]):

T h e o r e m 13. Let f be a radially symmetric nonnegative eternal solution of
the Boltzmann equation with Maxwellian molecules such that all its moments of
even order

mn (t) 4 �
RN

f (t , v) NvN2n dv

are finite for all t�R . Then, f is a (constant) Maxwellian.

P r o o f . We can suppose that m0 41 and m1 4N without loss of generality
(this is possible thanks to a multiplication and dilatation of f ). Then, we want to
prove that

f (t , v) 4 (2p)2N/2 e
2

NvN2

2 .

We now use the Fourier transform of f and keep the notations (f , s , G , etc.) of
this subsection. For the sake of simplicity, we write down the proof only in the ca-
se when Gf1.

The equation satisfied by f is (131). The same equation is satisfied by c defi-
ned by

c(t , x) 4e x f(t , x),
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that is

¯t c(t , x) 4 �
s40

1

]c(t , sx) c(t , (12s) x)2c(t , 0 ) c(t , x)( G(s) ds .(134)

According to the definition of c , we simply want to prove that for all t�R , x
�R1 , c(t , x) 41.

Then, writing (with the convention that the derivatives concern the second
variable)

f(t , x) 4 !
n40

1Q f (n) (t , 0 )

n!
x n ,

c(t , x) 4 !
n40

1Q c (n) (t , 0 )

n!
x n ,

we see that for all nF2,

¯t c
(n) (t , 0 )2l n c (n) (t , 0 ) 4 !

p1q4n , p , q� [1 , n21]

n!

p! q!

3c (p) (t , 0 ) c (q) (t , 0 ) �
0

1

s p (12s)q ds ,

(135)

with l n 4
2

n11
21.

We now suppose that we do not have c(0 , x) f1 (that is, f is not a Maxwellian
initially), so that there exists p�N* such that c (i) (0 , 0 ) 40 for i41, R , p21,
and c (p) (0 , 0 ) c0.

Then, thanks to (135), it is clear (by induction) that for all t�R , c (i) (t , 0 ) 40
for i41, R , p21. Again by induction, for all t�R , c (i) (t , 0 ) 4e l i t c (i) (0 , 0 )
for i4p , R , 2p21, and

c (2p) (t , 0 ) 4 yc (2p) (0 , 0 )2
Bp c (p) (0 , 0 )2

2l p 2l 2p

z e l 2p t 1
Bp c (p) (0 , 0 )2

2l p 2l 2p

e 2l p t ,

with

Bp 4
(2p) !

(p! )2
�

0

1

s p (12s)p ds .
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Then, we observe that 2l p El 2p , so that

Bp c (p) (0 , 0 )2

2l p 2l 2p

e 2l p t E0.

Because

f(x) 4e 2x c(x),

one has for all n�N

f (n) (t , 0 ) 4 !
a1b4n

n!

a! b!
(21)a c (b) (t , 0 ),

so that

f (2p) (t , 0 ) 4 !
b4p

2p (2p) !

(2p2b) ! b!
(21)2p2b c (b) (t , 0 )

4 !
b4p

2p21 (2p) !

(2p2b) ! b!
(21)2p2b e 2l b t

1yc (2p) (0 , 0 )2
Bp c (p) (0 , 0 )2

2l p 2l 2p

z e l 2p t 1
Bp c (p) (0 , 0 )2

2l p 2l 2p

e 2l p t .

When tK2Q , the dominant term in the previous formula is the term in e 2l p t ,
and it is strictly negative.

This means that there exists a time T (negative and large enough in absolute
value) such that f (2p) (T , 0 ) is negative.

We now recall that expanding

f×(t , NkN) 4�e iNkNx1 f (t , x) dx4f gt ,
NkN2

2
h

in power series, we get for all n�N ,

f (n) (t , 0 )

2n n!
4

(21)n

2n
�x1

2n f (t , x) dx ,

so that the assumption that f be nonnegative entails the nonnegativity of
f (2p) (t , 0 ) for all t�R and p�N , and we have a contradiction. Then, f is initially
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a Maxwellian and (thanks to a standard theorem of uniqueness), it will remain a
Maxwellian for all times.

We also notice that in the computation above, there is no need that the power
series (of f or c) converge, nor is it compulsory for the equation on f to be defi-
ned for all time: those are only used at the formal level to write equations on the
moments of f , and could be removed from the proof. r

Note that the only other known result concerning the eternal solutions of
some spatially homogeneous kinetic equation is the result by Villani (Cf. [76]) for
the Fokker-Planck-Landau equation.

5.4 - Uniqueness for Boltzmann’s equation with Maxwellian molecules without angu-

lar cutoff

We present here a result of stability of the (cutoff or non cutoff) spatially ho-
mogeneous Boltzmann equation with Maxwellian molecules in a weak norm due to
Toscani and Villani (Cf. [69]).

In the non cutoff case, no other proof of uniqueness is known.
First, we define by

d2 ( f , g) 4 sup
j�RN

N f×(j)2g×(j)N

NjN2
,

a distance between functions f , g�L 1
2 (RN ) such that

�
RN

f (v)
.
`
´

1
v

NvN2

2

ˆ
`
˜

dv4 �
RN

g(v)
.
`
´

1
v

NvN2

2

ˆ
`
˜

dv4
.
`
´

1
0

N/2

ˆ
`
˜

.

Note that for such functions f , g , the quantity d2 ( f , g) is indeed finite.
Then, the following property holds :

T h e o r e m 14. Let B be a cross section verifying B(x , u) 4b(u) (that is, of
Maxwellian molecules type) with Nsin uNb( cos u) GKNuN212g and KD0, gE2
(in other words, cutoff or non cutoff ).
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Then, for all (nonnegative) energy-conserving solutions f , g of the spatially
homogeneous Boltzmann equation (25) with respective initial data fin and gin

satisfying

�
RN

fin (v)
.
`
´

1
v

NvN2

2

ˆ
`
˜

dv4 �
RN

gin (v)
.
`
´

1
v

NvN2

2

ˆ
`
˜

dv ,

(such solutions are known to exist thanks to Theorem 1), one has the relation

(tF0, d2 ( f (t , Q), g(t , Q) ) Gd2 ( fin , gin ).

P r o o f . We can impose (up to a translation, a dilatation and a multiplication)
that

�
RN

fin (v)
.
`
´

1
v

NvN2

2

ˆ
`
˜

dv4 �
RN

gin (v)
.
`
´

1
v

NvN2

2

ˆ
`
˜

dv4
.
`
´

1
0

N/2

ˆ
`
˜

.

Then, thanks to the identites (124) and (125), we see that f and g satisfy

(tF0, f×(t , 0 ) 4 g×(t , 0 ) 41,

so that

¯t f×(j) 4 �
S N21

(f×(j2 ) f×(j1 )2 f×(j)) b g j

NjN
Qsh ds ,

¯t g×(j) 4 �
S N21

(g×(j2 ) g×(j1 )2g×(j) ) b g j

NjN
Qsh ds ,

and

¯t ( f×(j)2g×(j) )4 �
S N21

[ (f×(j2 ) f×(j1 )2g×(j2 ) g×(j1 ) )2( f×(j)2g×(j) ) ] b g j

NjN
Qsh ds .



67ABOUT THE USE OF THE FOURIER TRANSFORM...[67]

But

N f×(j2 ) f×(j1 )2g×(j2 ) g×(j1 )

NjN2 N GN f×(j1 )NN f×(j2 )2g×(j2 )

Nj2 N2 N Nj2 N2

NjN2

1Ng×(j2 )NN f×(j1 )2g×(j1 )

Nj1N2 N Nj1N2

NjN2

G sup
j�RN

N f×(j)2g×(j)

NjN2 Ng Nj2N2 1Nj1N2

NjN2 h

G sup
j�RN

N f×(j)2g×(j)

NjN2 N.

Then, denoting h(j) 4
f×(j)2g×(j)

NjN2
, we obtain

¯t h(j) G �
S N21

[VhVL Q (RN ) 2h(j) ] b g j

NjN
Qsh ds .

Supposing momentarily that b is integrable (cutoff assumption), we immediately
get that d2 ( f , g) 4 sup

j�RN
Nh(j)N decreases with t .

Since this estimate does not depend on b , it also holds in the non cutoff case
(this is easily obtained by imposing a cutoff depending on a parameter such that,
when this parameter goes to 0 , the cutoff cross section converges to the non cu-
toff one). r

Note that the previous estimate immediately implies a property of uniqueness
(as we already pointed out, such a property can easily be obtained without the
Fourier transform in the cutoff case, but the proof above is the only one up to now
in the non cutoff case).

5.5 - Alternative proof for the properties of Q1

We now propose a proof of the smoothing properties of Q1 which uses Bobyle-
v’s identity and which is therefore particularly simple when Maxwellian molecules
are considered. The assumption and the conclusion are close to that of Theorems
8 and 9, but are not exactly the same.
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We shall use the following formula to compute some integrals on the sphere
S N21 (NF2). It deals with functions which only depend on one component: for
any function b defined on ]21, 1[,

�
S N21

b(v N ) dv4
2p (N21) /2

G(
N21

2
)

�
21

1

b(u)(12u 2 )(N23) /2 du .(136)

We now state our result. The proof is close to the one used in [19]:

T h e o r e m 15. Assume that

b�L 2 (]21, 1[, (12u 2 )(N23) /2 du).(137)

Then for any f�L 2
1 (RN ), Q1 ( f ) � H

.
(N21) /2 (RN ) and

VQ1 ( f )VH
. (N21) /2 (RN ) GCN VbVL 2 (]21, 1[, (12u 2 )(N23) /2 du) V f V

2
L 2

1 (RN ) .(138)

P r o o f . We know that

Q 1 ( f ,× f )(j) 4 �
s�S N21

f× g j2NjNs

2
h f× g j1NjNs

2
h b g j

NjN
Qsh ds .(139)

We have by Cauchy-Schwarz’s inequality

NQ 1 ( f ,× f )(j)N2 G �
s�S N21

N f× g j2NjNs

2
h f× g j1NjNs

2
hN

2
ds

3 �
s�S N21

Nb g j

NjN
QshN

2
ds ,

(140)

and the last integral can be computed by (136),

�
s�S N21

Nb g j

NjN
QshN

2
ds4

2p (N21) /2

G g N21

2
h �

21

1

Nb(u)N2 (12u 2 )(N23) /2 du .(141)
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Then,

�
s�S N21

N f× g j2NjNs

2
h f× g j1NjNs

2
hN

2
ds

4 �
s�S N21

�
r4NjN

Q

2
¯

¯r N f× g j2rs

2
h f× g j1rs

2
hN

2
dr ds

G �
s�S N21

�
r4NjN

Q

N f× g j2rs

2
hN

2

N f× g j1rs

2
hNN˜ f× g j1rs

2
hNdr ds

4 �
NhNDNjN

N f× g j2h

2
hNN f× g j1h

2
hNN˜ f× g j1h

2
hN dh

NhNN21
.

Therefore,

�
j�RN

djNjNN21 NQ×1 ( f , f )(j)N2

GCN ��
j , h�RN

N f× g j2h

2
hNN f× g j1h

2
hNN˜ f× g j1h

2
hNdj dh

GCN ��
l , m�RN

N f×(l)NN f×(m)NNvf×N(m)Ndm dl

GCN V f VL 2 (RN ) Vvf VL 2
1 (RN ) . r

As we shall see in the sequel, it is possible to extend this proof to non Maxwel-
lian molecules cross sections.

5.6 - Gain of smoothness for Kac equation without angular cutoff

In this subsection, we investigate the smoothness of the solutions of the spa-
tially homogeneous Boltzmann equation when the cutoff assumption of Grad is
not made. The result is quite different from that of the cutoff case, since we shall
in fact prove that an immediate effect of smoothing occurs, as in the heat
equation.

In order to put into evidence this effect, we investigate here the simplest non-
trivial model, that is Kac’s equation (defined by (130)) or, equivalenty, Boltzman-
n’s equation with Maxwellian molecules in a radially symmetric context.
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We shall even restrict our attention to a typical non cutoff cross section, that is

b(NuN) 4Nsin uN22 cos u1NuNGp/4 ,(142)

rather than try to give general conditions.
We state a theorem which was first proven in [26]. The proof given here is how-

ever extracted from [29].

T h e o r e m 16. We consider Kac’s operator Q defined by (130), together with
the cross section (142).

Then, for all measurable even initial datum f in F0 a.e. on R satisfying

E( fin ) »4�
R

(11v 2 1N log f in N) f in dvE1Q ,(143)

the Cauchy problem

¯t f (t , v) 4Q( f , f )(t , v), f (0 , Q) 4 fin(144)

has an a.e. even nonnegative solution f such that

sup
tD0

�
R

(11v 2 1N log f (t , v)N) f (t , v) dvE1Q .(145)

In addition, for all tD0,

f�L Q
loc ( [t , 1Q[, H Q (Rv ) ) .(146)

P r o o f . We admit the existence of an even a.e. nonnegative solution to eq.
(144) such that the conservation of mass and energy holds, and such that the entro-
py decreases. Moreover, we shall write down the estimates on f as if it were smooth.
In order to justify all our computations, we should in fact write them on the solution
of an approximated problem. We shall not do that here for the sake of
simplicity.

According to formulas (128) and (129), we see that

F [Q( g , f ) ](j) 4 �
u42p/2

p/2

[g×(j sin u) f×(j cos u)2g×(0) f×(j) ] b(NuN) du .
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Then, for all aF0,

�
R

F [Q( g , f ) ](j) f×(j)NjN2a dj4A1B ,(147)

with

A4�
R

�
2p/4

p/4kf×(j cos u) g×(j sin u) f×(j)

2
1

2
g×(0) (N f×(j)N2 1N f×(j cos u)N2)hlNjN2a Nsin uN22 cos u du dj

(148)

and

(149) B4
1

2
�

R

�
2p/4

p/4

g×(0) (N f×(j cos u)N2 2N f×(j)N2)NjN2a Nsin uN22 cos u du dj .

Changing variables by j cos uOz shows that

NBN4
1

2 N �
R

�
2p/4

p/4

g×(0)N f×(z)N2 NzN2a [ ( cos u)22a21]Nsin uN22 cos u duN

GEa�
R

g(v) dvV f VH 2a
2 ,

(150)

with

Ea4
1

2
�

2p/4

p/4

[ ( cos u)22a21]Nsin uN22 cos u duE1Q .(151)

The most important estimate is the one concerning A:

AG2
1

2
�

R

�
2p/4

p/4

(N f×(j)N2 1N f×(j cos u)N2)

3(g×(0)2Ng×(j sin u)N)NjN2a cos u

Nsin uN2
du dj(152)

G2
1

2
�

R

�
2p/4

p/4

N f×(j)N2 (g×(0)2Ng×(j sin u)N)NjN2a Nsin uN22 cos u du dj

(since gF0 a.e., g×(0) 4VgVL 1 FNg×(j)N for all j�R).
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We now use the change of variables (j , u) O (j , j sin u) (this is where the spe-
cial form (142) of the cross section helps) and get

AG2
1

2
�

R

�
2NjN/k2

NjN/k2

(g×(0)2Ng×(u)N)N f×(j)N2 NjN2a11 du

NuN
dj

G2
1

2
�

21

1

�
R

g(x) (16cos (ux)) dx du(
V f V

2
H a11/2 2k2V f V

2
H a) .

(153)

As a consequences of estimates (150) and (153), we see that

�
R

F [Q( g , f ) ](j) f×(j) NjN2a djG2Cg , a V f V

2
H a11/2 1Dg , a V f V

2
H a ,(154)

where Cg , a and Dg , a are nonnegative constants depending only on aD0 and E( g)
(defined in (143)).

We now take the Fourier transform (in v) to both sides of (144) and multiply the
resulting equation by f×(t , j)NjN2a (remember that f× is real because f is even).

We know that thanks to estimate (154),

d

dt
V f (t)VH a

2 G2Cf , a V f (t)V

2
H a11/2 1Df , a V f (t)V

2
H a .(155)

Here, Cf , a and Df , a only depend on a because the evolution semigroup of (144) con-
serves the mass and energy of f and decreases the H function.

Using an interpolation of H a between H a11/2 and H 2d for d large enough
(typically dD1/2 so that L 1

2 %H 2d , estimate (155) becomes (for some sa , Ka ,
LaD0),

d

dt
V f (t)VH a

2 G2Ka V f (t)VH a
21sa 1La .(156)

Then, using a Gronwall type inequality, we see that for all a , t0 , TD0,

sup
t0G tGT

V f (t)VH a E1Q .

Note that the method used here is very close to that of Nash for the parabolic
equations.

The proof described in this subsection applies to the 3D homogeneous (non ra-
dially symmetric) Boltzmann equation for Maxwell molecules without angular cu-
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toff: for all a.e. nonnegative measurable initial data with finite mass, energy and en-
tropy, the number density f satisfies f (t , Q) �C Q (R3 ) for all tD0. This is partly
proven (in 2D) in [28].

6 - Extensions in the case of other cross sections

6.1 - Introduction

One could think that though somehow complicated, the formula giving the Fou-
rier transform of Q( f , f ) in terms of the Fourier transform of f when the cross sec-
tion is not that of Maxwellian molecules will enable to extend the results of the pre-
vious section.

However, it turns out that this idea is hard to put in application. Among the rare
works using this formula, one can quote [27] and [66].

In fact, in order to extend the theorems of the previous section, it seems a better
idea to find estimates in the standard space in which appears the cross section of
Maxwellian molecules, and only then, to take the Fourier transform.

In this section, we present two applications of this vague idea. The first one ena-
bles to extend the proof of the regularity properties of Q1 obtained in the previous
section. The second one deals with the non cutoff spatially homogeneous Boltzmann
equation.

Finally, we conclude this introduction by pointing out the analogy between the
role of the Maxwellian molecules (with respect to other cross sections) and the role
of the linear PDEs with constant coefficients (with respect to the linear PDEs with
variable coefficients). The ideas developed in this section have their origin in this
analogy.

6.2 - Properties of Q1

We now propose an extension of the result of Subsection 5.5 in the case of hard
potentials. We obtain a result which is close to that of Theorem 9, but still with an
assumption and a conclusion slightly different. The theorem and its proof are
extracted from [19].

We shall make on the cross section the following assumption:

A s s u m p t i o n 2. We suppose that B takes the form

B gNv2v*N ,
v2v*

Nv2v*N
Qsh4b1 (Nv2v*N) b2g v2v*

Nv2v*N
Qsh ,(157)
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where b1 and b2 are functions defined on ]0 , Q[ and ]21, 1[ respectively, and
satisfy for some Kb F0, a b F0,

(xD0, Nb1 (x)NGKb (11x)a b ,(158)

and

b2 �L 2 (]21, 1[, (12u 2 )(N23) /2 du).(159)

Then, the following result holds:

T h e o r e m 17. Under Assumption 2, for any f�L 2
11a b

(RN ), Q1 ( f , f )
� H

.
(N21) /2 (RN ), and there exists a constant CN D0 such that

VQ1 ( f , f )VH
. (N21) /2 (RN ) GCN Kb Vb2 VL 2 (]21, 1[,(12u 2 )(N23) /2 du) V f V

2
L 2

11a b (RN ) .(160)

P r o o f . We first define the operator Q1 for functions of two variables
F(v1 , v2 ), v1 , v2 �RN by

Q1 (F)(v) 4 ��
v*�RN

s�S N21

F g v1v*
2

2
Nv2v*N

2
s ,

v1v*
2

1
Nv2v*N

2
sh

3b2g v2v*
Nv2v*N

Qshds dv*.

Then, Theorem 17 is the direct consequence of the following proposition:

P r o p o s i t i o n 3. For the linear operator (161), we have
(i) If b2 �L 1 (]21, 1[, (12u 2 )(N23) /2 du), then for any F�L 1 (RN 3RN ),

Q1 (F) �L 1 (RN ) and

VQ1 (F)VL 1 (RN ) G
2p (N21) /2

G g N21

2
h Vb2 VL 1 (]21, 1[,(12u 2 )(N23) /2 du) VFVL 1 (RN3RN ) .(162)

(ii) If b2 �L 2 (]21, 1[, (12u 2 )(N23) /2 du), then for any F�L 2 (RN 3RN ) such
that (v2 2v1 )F�L 2 (RN 3RN ), the integral (161) is absolutely convergent for a.e.
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v , Q1 (F) � H
.

(N21) /2 (RN ) and

VQ1 (F)VH
. (N21) /2 (RN ) GCN Vb2 VL 2 (]21, 1[,(12u 2 )(N23) /2 du)

3VFVL 2
1 /2

V(v2 2v1 )FVL 2
1 /2 .

(163)

Let us postpone the proof of Proposition 3 and deduce Theorem 17.

P r o o f o f T h e o r e m 17. Let us define

F(v1 , v2 ) 4 f (v1 ) f (v2 ) b1 (Nv2 2v1N) .(164)

Then, it is clear that Q1 ( f , f ) 4Q1 (F). Now, by (158) we have

NF(v1 , v2 )NGNf (v1 )V f (v2 )NKb (11Nv2 2v1N)a b

GKb Nf (v1 )NN f (v2 )N(11Nv1 N1Nv2N)a b

GKb N(11Nv1N)a b f (v1 )NN(11Nv2N)a b f (v2 )N .

(165)

Therefore,

VFVL 1 GKb V f VL 1
a b

2 , VFVL 2 GKb V f VL 2
a b

2 ,(166)

and since

N(v2 2v1 )F(v1 , v2 )NGNv1NNF(v1 , v2 )N1Nv2NNF(v1 , v2 )N

GKb N(11Nv1N)11a b f (v1 )NN(11Nv2N)a b f (v2 )N

1Kb N(11Nv1N)a b f (v1 )NN(11Nv2N)11a b f (v2 )N ,

we also have

V(v2 2v1 ) FVL 2 G2Kb V f VL 2
a b

V f VL 2
11a b

.(167)

Now since b2 �L 2 by (159), we can apply Proposition 3 (ii), and we obtain that
Q1 ( f , f ) 4Q1 (F) � H

.
(N21) /2, and

VQ1 ( f , f )VH
. (N21) /2 GCN Vb2 VL 2 Kb V f V

3/2
L 2

a b
V f V

1/2
L 2

11a b
,(168)

and (160) follows since V f VL 2
a b

GV f VL 2
11a b

. r

P r o o f o f P r o p o s i t i o n 3. Estimate (i) is easy, and we only prove (ii).
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By a computation similar to that of Subsection 5.2, we get

Q 1 (F×)(j) 4 �
s�S N21

F× g j2NjNs

2
,

j1NjNs

2
h b2g j

NjN
Qsh ds .(169)

Then, the computation closely follows that of Theorem 15.
We have by Cauchy-Schwarz’s inequality

(170) NQ 1(F×)(j)N2G �
s�S N21

NF× g j2NjNs

2
,

j1NjNs

2
hN

2
ds �

s�S N21

Nb g j

NjN
Q shN

2
ds ,

and the last integral can be computed by (136).
Then,

�
s�S N21

NF× g j2NjNs

2
,

j1NjNs

2
hN

2
ds

G �
NhNDNjN

NF× g j2h

2
,

j1h

2
hNN(˜2 F×2˜1 F×) g j2h

2
,

j1h

2
hN dh

NhNN21

where ˜1 F× and ˜2 F× are the gradients of F× with respect to the first and second va-
riables. Therefore,

�
j�RN

djNjNN21 �
s�S N21

NF× g j2NjNs

2
,

j1NjNs

2
hN

2
ds

G2N (2p)2N
VFVL 2 (RN3RN ) V(v2 2v1 ) FVL 2 (RN3RN ) ,

and together with (170), we obtain (163). r

6.3 - Gain of smoothness in the non cutoff case

6.3.1 - I n t r o d u c t i o n a n d p r e s e n t a t i o n o f t h e e s t i m a t e

As specified in the general introduction of this section, we shall not try here to
use the formula which gives the Fourier transform of Q( f , f ) in terms of the Fou-
rier transform of f for non Maxwellian molecules. Instead, we shall choose a quanti-
ty (the entropy dissipation) which is monotonous with respect to the cross section,
so that it is possible to estimate it in terms of the same quantity for Maxwellian mo-
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lecules. Then, a computation close to that of subsection 5.6 yields an estimate of re-
gularity (typically, some Sobolev norm of kf can be estimated by the entropy
dissipation).

In this subsection, we consider only the dimension three, and we take a cross
section B which satisfy the two following assumption (for all xF0, u� [0 , p]):

K0 NuN212nGsin uB(x , cos u) GK1 (11NxN) NuN212n ,(171)

for some K0 , K1 D0 and n�]0 , 2[.
This is a typical assumption of non cutoff hard potentials (including Maxwellian

molecules), except that usually for hard potentials, the cross section takes the value
0 for x40. This last difficulty leads to tremendous technicalities but can be overco-
me. We shall not present those difficulties here. This subsection presents works
which are included in [4]. In this reference can be found a much more complete
overview of the problems tackled here.

We shall prove here the following estimate:

T h e o r e m 18. Under assumption (171) on the cross section, one has

D( f ) Fc1 Vkf V

2
H n/2 2c2 V f VL 1

2

2 .(172)

for some constants c1 and c2 which may depend on K0 , n and (only) on the mass, en-
tropy and energy of f.

6.3.2 - P r o o f o f t h e e s t i m a t e

First we use the monotonicity of D with respect to the cross section B in order

to replace B by bfb g v2v*
Nv2v*N

Qsh defined by

sin ub( cos u) 4K0 NuN212n .(173)

We get

D( f ) 42 �
R2N3S N21

( f (v 8*) f (v 8 )2 f (v*) f (v)) log f (v) B dv dv* ds(174)

F2 �
R2N3S N21

(f (v 8*) f (v 8 )2 f (v*) f (v)) log f (v) b dv dv* ds .(175)
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Then, we rewrite D( f ) using the standard pre/post collisional change of
variables:

D( f ) F2 �
R2N3S N21

( f (v 8*) f (v 8 )2 f (v*) f (v)) log f (v) b dv dv* ds

F �
R2N3S N21

f (v*) f (v) log
f (v)

f (v 8 )
b dv dv* ds

4 �
R2N3S N21

f (v*) gf (v) log
f (v)

f (v 8 )
2 f (v)1 f (v 8 )h b dv dv* ds

1 �
R2N3S N21

f (v*) ( f (v)2 f (v 8 ) ) b dv dv* ds .

(176)

This decomposition splits D( f ) into two parts, the first of which is signed and
retains all the smoothness control. As for the second, it involves strong cancella-
tions due to the presence of the term f (v)2 f (v 8 ).

Under our assumptions on the cross-section, a general lemma (called cancella-
tion lemma) of [4] gives a bound for the second term on the right,

� f (v*) ( f (v)2 f (v 8 ) ) b dv dv* dsGc2 V f VL 1
2

2 .

For the first term, we use the inequality

x log
x

y
2x1yF (kx2ky)2 ,

which can be proven easily using the fact that it is homogeneous of degree
one.

Hence

D( f )1c2 V f VL 1
2

2 F� f (v*) gkf (v 8 )2kf (v)h
2
b dv dv* ds .(177)

From now on, we let

F(v) 4kf (v)

and we use the notation F 8 for F(v 8 ).
Then we use the following result (written in an arbitrary dimension N):
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L e m m a 3. The following Plancherel-type identity holds for arbitrary func-
tions g�L 1 (RN ), F�L 2 (RN ):

�
R2N

�
S N21

g(v*) (F 82F)2 b g v2v*
Nv2v*N

Qsh dv dv* ds

4
1

(2p)N
�

RN

�
S N21

[g×(0)NF×(j)N2 1g×(0)NF×(j1 )N2

2g×(j2 ) F×(j1 ) F×(j)2g×(j2 ) F×(j1 ) F×(j)] b g j

NjN
Qsh dj ds ,

(178)

with the notations of (126).

P r o o f o f L e m m a 3. Expanding the quadratic term in (178) gives three
terms,

F 82 22FF 81F 2 .(179)

From now on, we denote by Qb (and Q1
b ) Boltzmann’s operator (and its positi-

ve part) with the cross section b (that of Maxwellian molecules).
We begin with the middle term. By the pre/post collisional change of variables

and Parseval’s identity,

�b g v2v*
Nv2v*N

Qsh g(v*) F 8 F dv dv* ds4�Q1
b ( g , F) F dv

4
1

(2p)N
�F [Q1

b ( g , F) ] F× dj .

Then, we invoke Bobylev’s identity (124) and deduce that

�b g v2v*
Nv2v*N

Qsh g(v*) F 8 F dv dv* ds

4
1

(2p)N
�b g j

NjN
Qsh g×(j2 ) F×(j1 ) F×(j) dj ds .

Of course, this expression is also equal to its own complex conjugate. This sho-
ws how to compute the cross-products in (178).
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Next, we note that, since s
S N21

b(k Qs) ds does not depend on the unit vector k ,

�b g v2v*
Nv2v*N

Qsh g(v*) F 2 dv dv* ds4�ds�g(v*) dv*�F 2 dv

4
1

(2p)N
�b g j

NjN
Qsh g×(0) NF×N2(j) ds dj ,

(180)

where we have applied the usual Plancherel identity.
For the term involving F 82 , we first make the change of variables (v , v*)

K (v2v*, v*), and then vKv 8 to obtain

��g(v*) b g v

NvN
QshNt 2v*

F g v1NvNs

2
hN

2
dv ds dv*

4��g(v*) b(c(v 8 , s) )
2N21

g v 8

Nv 8 N
Qsh2

Nt 2v*
F(v 8 )N2 dv 8 ds dv*,

(181)

where

c(v 8 , s) 42 g v 8

Nv 8N
Qsh2

21 ,

and t 2v*
F4F(v*1 Q).

Because N F(t h F)N4N F(F)N , and using the fact that s
S N21

b(k Qs) ds does not
depend on k , we obtain

1

(2p)N
�g(v*) u�b(c(j , s) )

2N21

g j

NjN
Qsh2

NF×(j)N2 dj dsv dv*.

Finally we note that the inner integral does not depend on v*, so that, reversing
the change of variables, we can rewrite the last expression as

1

(2p)N
g×(0)�b g j

NjN
QshNF× g j1NjNs

2
hN

2
dj ds .
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Putting all the pieces together, we conclude the proof of the identi-
ty. r

As a consequence, we see that

�
R2N

�
S N21

b g v2v*
Nv2v*N

Qsh g(v*) (F 82F)2 dv dv* ds

F
1

2(2p)N
�

RN

NF×(j)N2{ �
S N21

b g j

NjN
Qsh ( g×(0)2Ng×(j2 )N ) ds} dj .

Then, we use the following result:

L e m m a 4. Suppose that b satisfies assumption (173). Then, there exists a
positive constant Cg depending only on the mass, energy and entropy of g and b
such that for NjNF1,

�
S 2

b g j

NjN
Qsh (g×(0)2Ng×(j2 )N) dsFCg NjNn .(182)

This lemma is itself a consequence of the two lemmas below.

L e m m a 5. There exists a positive constant C 8g , depending only on the
mass, energy and entropy of g such that for all j�R3 ,

g×(0)2Ng×(j)NFC 8g (NjN2 R1).
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P r o o f o f L e m m a 5. Note first that for some u�R ,

g×(0)2Ng×(j)N4 �
R3

g(v) (12cos (v Qj1u) ) dv

42 �
R3

g(v) sin2g v Qj1u

2
h dv

F2sin2 e �
]NvNGr , (p�Z , Nv Qj1u22ppNF2e(

g(v) dv

F2 sin2 e{VgVL 1 (R3 ) 2
VgVL 1

1 (R3 )

r
2 �

NvNGr , )p�Z , Nv Q
j

NjN
1

u

NjN
2p 2p

NjN
NG2 e

NjN

g(v) dv}
F2 sin2 e {VgVL 1 (R3 ) 2

VgVL 1
1 (R3 )

r
2 sup

NANG
4e

NjN
(2r)2 (11

rNjN

p
)

�
A

g(v) dv} .

(183)

When NjNF1, we obtain our lemma with

C 8g 42 sin2 e {VgVL 1 (R3 ) 2
VgVL 1

1 (R3 )

r
2 sup

NANG4e(2r)21
2e

p
(2r)3

�
A

g(v) dv} ,

eD0 and rD0 being chosen in such a way that this quantity is positive.

When NjNG1, we put d4
e

NjN
in (183), and set

C 8g 42d 2 inf
NjNG1N

sin2 (dNjN)

d 2 NjN2 N

3{VgVL 1 (R3 ) 2
VgVL 1

1 (R3 )

r
2 sup

NANG4d(2r)2 (11
r

p
)

�
A

g(v) dv} ,

dD0 and rD0 being chosen in such a way that this quantity is positi-
ve. r

L e m m a 6. There exists a constant K(n), such that if

sin ub( cos u) A
K

u 11n
as uK0, nD0

then for all j�R3 , NjNF1,

�
S 2

b g j

NjN
Qsh (Nj2N2 R1) dsFK(n)NjNn .
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P r o o f o f L e m m a 6. We first note that

Nj2N2 4
NjN2

2
g12

j

NjN
Qsh .

Passing to spherical coordinates, we find for some u 0 D0,

�
S 2

b g j

NjN
Qsh (Nj2N2 R1) ds42p�

0

p

2

sin ub( cos u)

3k NjN2

2
(12cos u)R1l du

FpK�
0

u 0g NjN2 u 2

2
R1h du

u 11n
.

By the change of variables uKNjNu , this integral is also

NjNn�
0

u 0g u 2

2
R1h du

u 11n
,

so that when NjNF1, Lemma 6 holds with

K(n) 4Kp�
0

u 0g u 2

2
21h du

u 11n
. r

6.3.3 - R e g u l a r i t y f o r t h e s p a t i a l l y h o m o g e n e o u s B o l t z m a n n e q u a t i o n w i -

t h o u t c u t o f f

Let B be a cross section satisfying assumption (171), and f a solution of (25),
(26) given by Theorem 1.

A straightforward application of Theorem 18 shows that such a solution sati-
sfies the smoothness estimate

kf�L 2 ( [0 , T]; H n/2
loc (RN

v ) ).(184)

If we suppose moreover that B is smooth (and corresponds to hard potential) with
respect to the first variable, then it is possible (at least in dimension two) to prove
that f lies in Schwartz’s space S.



84 LAURENT DESVILLETTES [84]

7 - Inhomogeneous dissipative equations

7.1 - Introduction

We now wish to investigate the interaction of the free transport operator and
of the non cutoff Boltzmann operator. Unfortunately, there is at the present time
no good setting to study the smoothness of the solution of this equation (the re-
normalized solutions with a defect measure of Alexandre and Villani (Cf. [5]) do
not seem to be regular enough). As a consequence, we turn to simplified models
keeping the same features.

We begin with the classical linear model of Vlasov-Fokker-Planck with a confi-
ning potential, which models particles interacting with a thermal bath. This is a li-
near second order PDE, for which it is possible to use the theory of Hörmander
of hypoellipticity (Cf. [44], [49], [50], [24]). We propose here a direct computation
by Fourier transform when the potential is quadratic (this enables to find a classi-
cal explicit solution in this case), or close to quadratic (then, this computation ena-
bles to directly find the smoothness in all variables even when the time tends to
infinity).

Then, we introduce a model which is quadratic, but close to linear (in the
sense that the collision operator is a product of a function depending only on t and
x by a linear operator). We prove that some smoothness in all variables occurs as
soon as tD0.

7.2 - Vlasov-Fokker-Planck equation with quadratic potential

We consider in this subsection the Vlasov-Fokker-Planck equation with a qua-
dratic confining potential, that is, equation

¯t f1v Q˜x f2x Q˜v f2˜v Q (˜v f1vf ) 40.(185)

We perform here a classical computation which enables to obtain the explicit
(Fourier transform of the) solution to this equation, once an initial datum is
given.

We first write down the Fourier transform in x and v of eq. (185). We denote
by j and h the corresponding Fourier variables, and by f× the Fourier transform
of f . This equation writes

¯t f×1h Q˜j f×1(h2j) Q˜h f×1NhN2 f× 40.(186)
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We introduce the characteristic differential system associated to eq. (186):

j
.
4h , j(0) 4j 0 ,(187)

h
.

4h2j , h(0) 4h 0 ,(188)

the solution of which is given by

(j(t), h(t))4
2

k3
e

t

2 yg k3

2
cos g k3

2
th2 1

2
sin g k3

2
thh j 01sin g k3

2
th h 0 ,

2sin g k3

2
th j 01g k3

2
cos g k3

2
th1 1

2
sin g k3

2
thh h 0z .

(189)

Then, the solution of equation (186) satisfies

d

dt
f×(t , j(t), h(t) ) 42Nh(t)N2 f×(t , j(t), h(t) ),(190)

so that

f×(t , j(t), h(t) ) 4 f×(0 , j 0 , h 0 ) exp g 1

6
(Nh 0N

2 1Nj 0N
2 24j 0 Qh 0 ) e t cos (k3 t)

1
k3

6
(Nj 0N

2 2Nh 0N
2 ) e t sin (k3t)

1
2

3
(2Nj 0N

2 2Nh 0N
2 1j 0 Qh 0 ) e t 1

1

2
(Nj 0N

2 1Nh 0N
2 )h .

(191)

Noticing now that equations (189) can be solved in the form

j 0 4e
2

t

2 gycos g k3

2
th1

k3

3
sin g k3

2
thz j22

k3

3
sin g k3

2
th hh ,

h 0 4e
2

t

2 g2
k3

3
sin g k3

2
th j1 ycos g k3

2
th2

k3

3
sin g k3

2
thz hh .

We obtain in this way the final explicit form of the Fourier transform of
eq. (185):

f×(t , j , h) 4 f× y0, e
2

t

2 ggcos g k3

2
th1

k3

3
sin g k3

2
thh j22

k3

3
sin g k3

2
th hh ,

e
2

t

2 g2
k3

3
sin g k3

2
th j1 gcos g k3

2
th2

k3

3
sin g k3

2
thh hhz e A(t , j , h) ,
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where

A(t , j , h) 4 g2 1

2
1

2

3
e 2t 2

1

6
e 2t cos (k3t)1

k3

6
e 2t sin (k3t)hNjN2

1g2 1

2
1

2

3
e 2t 2

1

6
e 2t cos (k3t)2

k3

6
e 2t sin (k3t)hNhN2

2
4

3
e 2t sin g k3

2
th2

j Qh .

Then, it is possible (by studying the quadratic form appearing in the previous
formula: this is done in Lemma 7 below) to prove that f is smooth as soon as
tD0.

The idea of the previous computation can be summarized in the following re-
mark : the Fourier transform changes a linear partial differential equation with
constant coefficients into an ordinary differential equation (the Fourier transform
is not taken here with respect to the time variable). It also changes a linear par-
tial differential equation with affine coefficients into a first order partial differen-
tial equation. Such an equation can then be solved with the methods of characteri-
stics.

7.3 - Vlasov-Fokker-Planck equation with a potential close to quadratic

We now introduce a confining potential

V(x) 4
NxN2

2
1F(x) ,(192)

where F�H Q (RN ).
It is not possible to find an explicit solution to the corresponding Vlasov-

Fokker-Planck equation

¯t f1v Q˜x f2˜x V(x) Q˜v f2˜v Q (˜v f1vf ) 40 ,(193)

as in the previous subsection, but we still can obtain an hypoellipticity property
which is uniform when tKQ , using a computation close to what we did in the
previous subsection.

More precisely, we prove the following proposition:

P r o p o s i t i o n 4. Let f�C(R1
t , L 1 (RN

x 3RN
v ) ) be a solution of eq. (193), with

V(x) given by (192). Then, for any t0 D0, the function f lies in the space L Q ( [t0 ,
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1Q); C Q
b (RN 3RN ) ), i.e. has all its derivatives in x and v bounded, uniformly

for tF t0 D0.

P r o o f . We first establish a convenient representation formula. We rewrite
equation (193) as

¯t f1v Q˜x f2x Q˜v f2˜v Q (˜v f1vf ) 4˜F(x) Q˜v f ,(194)

and denote by

f×(t , j , h) 4 �
RN3RN

e 2i(x Qj1v Qh) f (t , x , v) dv dx(195)

the Fourier transform of f .
Eq. (194) becomes

¯t f×1h Q˜j f×1(h2j) Q˜h f×1NhN2 f× 4 ih Q˜Ff× .(196)

We introduce (as in the previous section) the characteristic differential system as-
sociated to the first-order differential part of the left-hand side of (196):

j
.
4h ,(197)

h
.

4h2j ,(198)

the solution of which is given by the flow

Tt (j , h) 4
2

k3
e

t

2 yg k3

2
cos g k3

2
th2

1

2
sin g k3

2
thh j1sin g k3

2
th h ,

2sin g k3

2
th j1 g k3

2
cos g k3

2
th1

1

2
sin g k3

2
thh hz

f [Tt
1 (j , h), Tt

2 (j , h) ] .

The solution of equation (196) can be written under the (semi-explicit) Duha-
mel form

f×(t , j , h) 4 f×0 (T2t (j , h) ) e
2s0

t
NTs2t

2 (j , h)N2 ds

1i�
0

t

Ts2 t
2 (j , h) ˜Ff× (s , Ts2 t (j , h) ) e

2ss
t
NTs2t

2 (j , h)N2 ds
ds .

(199)
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After the change of variables sK t2s , sK t2s , we end up with the so-cal-
led Duhamel representation of f×:

f×(t , j , h) 4 f×0 (T2t (j , h) ) e
2s0

t
NT2s

2 (j , h)N2 ds

1i�
0

t

T2s
2 (j , h) ˜Ff× (t2s , T2s (j , h) ) e

2s0
s
NT2s

2 (j , h)N2 ds
ds .

(200)

We now give two lemmas.

L e m m a 7. There exists KD0, such that for any sF0, j , h�RN , one
has

�
0

s

NT2s
2 (j , h)N2 dsFK(inf (s , 1 )3 NjN2 1 inf (s , 1 ) NhN2) .(201)

P r o o f o f L e m m a 7. It is obviously enough to prove the lemma for
s� [0 , s0 ] for some s0 E1.

But for s� [0 , s0 ], we have

�
0

s

NT2s
2 (j , h)N2 dsF

4

3
e 21�

0

s

Nsing k3

2
sh j

1g k3

2
cos g k3

2
sh2

1

2
sin g k3

2
shh hN

2
ds

F
2

3
e 21uus2

sin (k3s)

k3
v NjN2 1 u12cos (k3s)1

sin (k3s)

k3
2sv j Qh

1u 1

2

sin (k3s)

k3
1s1

1

2
cos (k3s)2

1

2
vNhN2v

4
2

3
e 21 (a 1 (s) (s 3 NjN2 )12a 2 (s) (s 2 j Qh)1a 3 (s) (sNhN2)) ,

(202)

where

a 1 (s) 4

s2
sin (k3s)

k3

s 3
, a 2 (s) 4

12cos (k3s)1
sin (k3s)

k3
2s

2s 2
,(203)
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a 3 (s) 4

1

2

sin (k3s)

k3
1s1

1

2
cos (k3s)2

1

2

s
.(204)

Then, a 1 (0) 41, a 2 (0) 43/4 , a 3 (0) 43/2 .
The eigenvalues of the matrix

M(s) 4 ga 1 (s)
a 2 (s)

a 2 (s)
a 3 (s)

h
are strictly positive for s40, and by continuity, are bounded below by KD0 for
s� [0 , s0 ] if s0 is small enough.

For such parameters s , we get

�
0

s

NT2s
2 (j , h)N2 dsF

2

3
e 21 K(s 3 NjN2 1sNhN2 ) ,(205)

and the lemma is proved. r

L e m m a 8. Let s0 � [0 , 1 ] and

Ls0
(j , h) 4�

0

s0

(sNjN1NhN) e 2K(s 3 NjN21sNhN2 ) ds .(206)

Then there exists CD0 (depending only on K) such that

NLs0
(j , h)NG

C

11NjN1/3 1NhN
.(207)

P r o o f . Thanks to the change of variables u4sNjN2/3 and v4sNhN2 , we
get

�
0

1Q

sNjNe 2K(s 3 NjN21sNhN2 ) dsG �
0

1Q

sNjNe 2Ks 3 NjN2
ds

GNjN21/3 �
0

1Q

ue 2Ku 3
du ,

(208)
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and

�
0

1Q

NhNe 2K(s 3 NjN21sNhN2 ) dsG �
0

1Q

NhNe 2KsNhN2
ds

GNhN21 �
0

1Q

e 2Kv dv .

(209)

On the other hand, if we denote

C1 4 sup
u� [0 , 1Q)

u 3/2 e 2Ku 3
, C2 4 sup

v� [0 , 1Q)
v 1/2 e 2Kv ,(210)

we find

�
0

1Q

sNjNe 2K(s 3 NjN21sNhN2 ) dsGC1 �
0

1Q

s 21/2 e 2KsNhN2
ds

GC1 NhN21 �
0

1Q

v 21/2 e 2Kv dv ,

(211)

and

�
0

1Q

NhNe 2K(s 3 NjN21sNhN2 ) dsGC2 �
0

1Q

s 21/2 e 2Ks 3 NjN2
ds

GC2 NjN21/3 �
0

1Q

u 21/2 e 2Ku 3
du .

(212)

Grouping estimates (208), (209), (211) and (212), we conclude the proof of
Lemma 8. r

E n d o f t h e p r o o f o f P r o p o s i t i o n 4. By mass conservation,

sup
tF0

sup
j , h�RN

N f×(t , j , h)NGV f0 VL 1 (RN3RN ) .(213)

We shall show that if

sup
tF0

N f×(t , j , h)NG
Ck

(11NjN2 1NhN2 )k
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(k�R1), then for any t0 D0,

sup
tF t0

N f×(t , j , h)NG
C 8k

(11NjN2 1NhN2 )k1
1

6

.(214)

The conclusion will follow by induction.
We first note that in view of (213) and Lemma 7, estimate (214) holds with f×

replaced by

A(t , j , h) 4 f×0 (T2t (j , h) ) e
2s0

t
NT2s

2 (j , h)N2 ds
.

Thus, according to the Duhamel representation, we only need to estimate

B(t , j , h) 4�
0

t

T2s
2 (j , h) ˜Ff×(t2s , T2s (j , h) ) e

2s0
s
NT2s

2 (j , h)N2 ds
ds .(215)

With Ck denoting various constants depending on one another, we have

N˜Ff×(t , j , h)N4 N�˜F×(j *) f×(t , j2j *, h) dj *N

G �
Nj *NG

1

2
NjN

dj * N˜F×(j *)N
Ck

(11NjN2 1NhN2 )k

1 �
Nj *NF

1

2
NjN

dj * N˜F×(j *)N
Ck

(11NhN2 )k

G
Ck

(11NjN2 1NhN2 )k
V˜F× VL 1

1
Ck

(11NjN2 )k (11NhN2 )k
�

RN

(11Nj *N2 )k N˜F×(j *)Ndj *.
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Since

�
RN

N˜F×(j *)N(11Nj *N2 )k dj *

G y �
RN

N˜F×(j *)N2 (11Nj * N2 )2k1N11 dj *z
1/2y �

RN

dj *
(11Nj *N2 )N11 z

1/2

GCk VFVH 2k1N12 ,

we find

sup
tF0

N˜Ff×(t , j , h)NG
Ck

(11NjN2 1NhN2 )k
.

Let s0 G inf (1 , t0 ) be an intermediate time that will be chosen later on.
We write for tF t0 ,

NB(t , j , h)NG�
0

t

NT2s
2 (j , h)NN˜Ff×(t2s , T2s (j , h) )Ne

2s0
s
NT2s

2 (j , h)N2 ds
ds

G�
s0

t

2e 2s/2 (sNjN1NhN) dsCk e 2K(s0
3 NjN31s0 NhN2 )

1�
0

s0

(sNjN1NhN)
Ck

(11NT2s (j , h)N2 )k
e 2K(s 3 NjN21sNhN2 ) ds .

By continuity of the flow tOTt (j , h), and its linearity with respect to j , h , we
can choose s0 � (0 , inf (t0 , 1 ) ) in such a way that for all s� [0 , s0 ],

NT2s (j , h)N2 F
1

2
(NjN2 1NhN2 ) .

Then, for tF t0 ,

NB(t , j , h)NGCk (NjN1NhN) e 2K(s0
3 NjN31s0 NhN2 )

1
Ck

(11NhN2 1NjN2 )k
�

0

s0

(sNjN1NhN) e 2K(s 3 NjN31sNhN2 ) ds .
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The last integral is bounded by

�
0

1Q

(sNjN1NhN) e 2K(s 3 NjN31sNhN2 ) ,

and we conclude by Lemma 8. r

We recall that the hypoellipticity of linear operators of the form ¯t 1v Q˜x 2D v

is a standard topic [77], which has been systematically studied by Hörmander [44]
for instance. In particular, his celebrated theorem of hypoellipticity applies here
to show that solutions become immediately C Q (and would apply also for much
more general linear operators). But we are aware of no study of the uniformity in
time of these bounds, whereas the previous computation easily yields this
uniformity.

7.4 - A space inhomogeneous model without cutoff assumption

We now consider a space inhomogeneous Boltzmann equation of the form (16).
We suppose that the collision operator is singular.

We suggest the following strategy to obtain a priori regularity estimates on f
(steps 2 and 3 below consisting of regularity lemmas analogous to the compac-
tness results in [5], [54], [55]):

1] use the entropy production (estimated by the H theorem) to control fractio-
nal derivatives of the number density in the velocity variable;

2] apply the Velocity Averaging method (see [38], [34]) to obtain smoothness
in (t , x , v) on quantities of the form

� f (t , x , w) x(v , w) dw(216)

for any smooth test function x; moreover, estimate the norm (in some Sobolev or
Besov space) of such velocity average in terms of x;

3] replace x by a suitable approximation of the Dirac mass at v4w and use
the results of steps 1 and 2 above to finally obtain some regularity on f itself in
the variables (t , x , v).

Step 1 above is the result of the study of the previous section. At the present
stage, it is however very unclear how to apply steps 2 and 3 of the strategy above
to the Boltzmann equation itself. This requires more ideas and probably tremen-
dous technicalities.
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However, the method above successfully applies to the caricature of the Bol-
tzmann equation described by equations (32) and (34). which we supplement with
the initial data

f (0 , x , v) 4 f0 (x , v) , (x , v) �T1 3T1 .(217)

We introduce the assumption on the cross section b that for some b 1 , b 2 D0,
g�]1 , 3[,

b 1 NuN2gGb(NuN) Gb 2 NuN2g , u�]2p , p[ .(218)

D e f i n i t i o n . Let b satisfy (218) and f0 F0 �L Q (T1 3T1 ). An entropic sol-
ution of (34), (217) is a function fF0 �L Q (R*13T1 3T1 )OC(R1 ; D8 (T1 3T1 ) )
satisfying (34), (217) in the sense of distributions as well as the following entropy
relation: for all TD0,

1

2
�

0

T

�
T1

r f (t , x) g ��
T13T1

Nf (t , x , v1u)2 f (t , x , v)N2 b(u) du dvh dx dt

G
1

2
��

T13T1

Nf0 (x , v)N2 dx dv2
1

2
� �
T13T1

Nf (T , x , v)N2 dx dv .

(219)

Our main result is the

T h e o r e m 19. Let b satisfy (218) and f0 F0 �L Q (T1 3T1 ). The Cauchy
problem (84), (217) admits an entropic solution f�H s(g)2e

loc (R*13T1 3T1 ) for all
eD0 with

s(g) 4
g21

2(g11) (g13)
.(220)

If f0 FR0 a.e. for some R0 D0, the value in the right hand side of (220) can be re-
placed by the better regularity index

s(g) 4
g21

2(g11)2
.(221)

The proof of Theorem 19 proceeds through steps 1-3 above.
We finally say a few words about the most interesting model, namely the true

inhomogeneous Boltzmann equation without cutoff. Then, the only existing setting
is that of renormalized solutions with a defect measure.
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As explained in Lions [57], a smoothness estimate in the v variable like the one
in Theorem 18, combined with a so-called renormalized formulation of the spatial-
ly inhomogeneous equation (16), is enough to prove that solutions (or approxima-
te solutions) ( fn ) of (16) enjoy a property of immediate strong compactification, in
the following sense. If the sequence of initial data ( f0

n )n�N satisfies only the physi-
cally natural bounds

sup
n�N

� f 0
n (x , v)(11NxN2 1NvN2 1 log f 0

n (x , v) ) dx dvE1Q ,

(and is therefore weakly compact in L 1 (RN 3RN )), then for all time tD0 the se-
quence ( f n (t , Q , Q) ) is strongly compact in L 1 (RN 3RN ) (i.e., converges a.e., up to
extraction).

This property is what remains of the gain of smoothness in all variables when
renormalized solutions are concerned.

The strategy runs as follows: first, by the use of a renormalized formula-
tion [5] and [33], and velocity-averaging lemmas [38] and [34], one proves that sui-
table quantities of the form b( f n ) *v f d , where f d (dD0) is a mollifier in the vel-
ocity space only, are strongly compact. Then, by truncation arguments, the smoo-
thness estimate in v applies out of a set of small measure in (t , x), (where
V f n (t , x , Q)VL 1

2
may be infinite, etc.). Out of these particular sets, the velocity

smoothness entails that b( f n ) *v f d is very close to b( f n ), uniformly in n , as d

goes to 0, and this is enough to prove strong compactness of b( f n ), which in turn
implies pointwise convergence of f n if b is chosen to be one-to-one.
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[36] P. GÉRARD, Moyennes de solutions d’équations aux dérivées partielles, Séminai-

re de l’Ecole Polytechnique, exposé 11 (1986-1987).
[37] F. GOLSE, Quelques résultats de moyennisation pour les équations aux dérivées

partielles, Rend. Sem. Mat. Univ. Politec. Torino, Fascicolo Speciale 1988
«Hyperbolic equations» (1987), 101-123.

[38] F. GOLSE, P.-L. LIONS, B. PERTHAME and R. SENTIS, Regularity of the moments of
the solution of a transport equation, J. Funct. Anal. 76 (1988), 110-125.

[39] F. GOLSE, B. PERTHAME and R. SENTIS, Un résultat de compacité pour les équa-
tions de transport et application au calcul de la limite de la valeur propre
principale d’un opérateur de transport, C. R. Acad. Sci., Série I Math. 301
(1985), 341-344.

[40] T. GOUDON, On Boltzmann equations and Fokker-Planck asymptotics: influence
of grazing collisions, J. Statist. Phys. 89 (1997), 751-776.

[41] T. GOUDON, Generalized invariant sets for the Boltzmann equation, Math. Mo-
dels Methods Appl. Sci. 7 (1997), 457-476.

[42] H. GRAD, Principles of the kinetic theory of gases, Flügge’s Handbuch der Physik
12 (1958), 205-294.

[43] K. HAMDACHE, Existence in the large and asymptotic behaviour for the Bol-
tzmann equation, Japan J. Appl. Math. 2 (1985), 1-15.

[44] L. HÖRMANDER, Hypoelliptic second order differential equations, Acta Math. 119
(1967), 147-171.



98 LAURENT DESVILLETTES [98]

[45] R. ILLNER and M. SHINBROT, Global existence for a rare gas in an infinite vac-
uum, Comm. Math. Phys. 95 (1984), 117-126.

[46] K. IMAI and T. NISHIDA, Global solutions to the initial value problem for the no-
nlinear Boltzmann equation, Publ. Res. Inst. Math. Sci. Kyoto Univ. 12 (1976),
229-239.

[47] M. KAC, Probability and related topics in the Physical sciences, Interscience Pu-
bl., New-York 1959.

[48] S. KANIEL and M. SHINBROT, The Boltzmann equation I: uniqueness and global
existence, Comm. Math. Phys. 58 (1978), 65-84.

[49] J. KOHN, Pseudo-differential operators and hypoellipticity, Proc. Symp. Pure
Math. 23, AMS Providence, RI 1969, 61-69.

[50] J. J. KOHN, Pseudo-differential operators and hypoellipticity, Partial differential
equations (Proc. Sympos. Pure Math. XXIII, Univ. California, Berkeley, Cali-
fornia 1971), Amer. Math. Soc., Providence, R.I. 1973, 61-69.

[51] M. KROOK and T. T. WU, Formation of Maxwellian tails, Phys. Rev. Letters 36
(1976), 1107.

[52] P.-E. JABIN and B. PERTHAME, Regularity in kinetic formulations via averaging
lemmas, Preprint.

[53] O. LANFORD III, Time evolution of large classical systems, Lecture Notes in
Phys. 38 Springer Verlag, Berlin 1975, 1-111.

[54] P. L. LIONS, Compactness in Boltzmann’s equation via Fourier integral opera-
tors and applications, I, J. Math. Kyoto Univ. 34 (1994), 391-427.

[55] P. L. LIONS, Compactness in Boltzmann’s equation via Fourier integral opera-
tors and applications, II. J. Math. Kyoto Univ. 34 (1994), 429-461.

[56] P. L. LIONS, On Boltzmann and Landau equations, Philos. Trans. Roy. Soc. Lon-
don A 346 (1994), 191-204.

[57] P. L. LIONS, Regularity and compactness for Boltzmann collision operators wi-
thout angular cut-off, C.R. Acad. Sci. Paris, Série I Math. 326 (1998),
37-41.

[58] P.-L. LIONS, Régularité optimale des moyennes en vitesses, C. R. Acad. Sci., Série
I Math. 320 (1995), 911-915.

[59] P.-L. LIONS and B. PERTHAME, Lemmes de moments, de moyenne et de disper-
sion, C. R. Acad. Sci., Série I Math. 314 (1992), 801-806.

[60] X. LU, A direct method for the regularity of the gain term in the Boltzmann
equation, J. Math. Anal. Appl. 228 (1998), 409-435.

[61] S. MISCHLER and B. PERTHAME, Boltzmann equation with infinite energy: renor-
malized solutions and distributional solutions for small initial data and in-
itial data close to a Maxwellian, SIAM J. Math. Anal. 28 (1997), 1015-
1027.

[62] D. MORGENSTERN, General existence and uniqueness proof for spatially homoge-
neous solutions of the Maxwell-Boltzmann equation in the case of Maxwel-
lian molecules, Proc. Nat. Acad. Sci. U.S.A. 40 (1954), 719-721.

[63] B. PERTHAME, Higher moments for kinetic equations: the Vlasov-Poisson and
Fokker-Planck cases, Math. Methods Appl. Sci. 13 (1990), 441-452.

[64] B. PERTHAME and P. E. SOUGANIDIS, A limiting case for velocity averaging, Ann.
Sci. Ecole Normale Sup. (4) 31 (1998), 591-598.



99ABOUT THE USE OF THE FOURIER TRANSFORM...[99]

[65] J. POLEWCZAK, Classical solutions of the Boltzmann equation in all R3 : asym-
ptotic behavior of solutions, J. Statist. Phys. 50 (1988), 611-632.
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A b s t r a c t

We propose here a survey of the results for the Boltzmann equation which use the
Fourier transform. In particular, we introduce various versions of the averaging lem-
mas, of the properties of smoothness of Boltzmann’s kernel, and various other computa-
tions.

* * *


