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ELISABETTA BARLETTA (¥)

Subelliptic F-harmonic maps (**)

1 - Introduction and statement of results

Let (M, T, o(M))) be a strictly pseudoconvex CR manifold, of CR dimension
n, and 6 a contact form on M such that the Levi form

Gy(X, Y) 1= (dO)(X, JY)

is positive-definite, X, Ye H(M) := Re{T, ((M)D Ty (M)}, where J: H(M)
—SHWM), J(Z+Z)=i(Z-2Z), ZeT, (M), i=\—1, and T, (M) :=Ty ((M)
(an overbar indicates complex conjugation). Let F :[0, ©)—[0, ») a C? fun-
ction, such that #''(t) > 0. For a smooth map ¢ : (M, ) — (N, k) and a compact
domain DcM we consider the energy function

1) Ep(¢; D) = jF( % traceg, (7w yp* )| O A (dO)".
D

Here (N, k) is a Riemannian manifold. Then ¢ is F-pseudoharmonic if, for any
compact domain D ¢ M, it is an extremal of the energy Er(-; D) with respect to all
variations of ¢ supported in D.

For F(t) =t, (1) is the energy function in [3] (and extremals were referred to
as pseudoharmonic maps). If ¢ :(M, 0) — (N, h) is pseudoharmonic then for
any point x € M there is a coordinate system (U, ¢ = (x!, ..., 2*"*!)) on M at x
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such that ¢pog 1: Q— (N, h) is a subelliptic harmonic map on Q:= @(U)
cR? "' in the sense of J. Jost & C.-J. Xu, [12], or Z.-R. Zhou, [20].

The cases F(t) = (2t)"? (p=4) and F(t) = exp(¢t) (familiar in the theory of
harmonic maps of Riemannian manifolds, cf. e.g. P. Baird & S. Gudmundson, [2],
L.F. Cheung & P.F. Leung, [4], and M.C. Hong, [10], S.E. Koh, [13]) have not
been studied from the point of view of CR and pseudohermitian geometry. How-
ever, if F(t) = (2t)”? and ¢ : (M, 0) — (S™, hy) is F-pseudoharmonic [where S™
is the unit sphere in R™*! and &, the standard Riemannian metric on S™] then at
any point xe M there is a local coordinate system (U, @) such that ¢oq 1:
Q2—S8™ is subelliptic p-harmonic in the sense of P. Hajlasz & P. Strzelecki, [9].

We obtain the following first variation formula [stated for simplicity in the
case M is compact (and then one writes Ep(¢) := Ep(¢; M))]

Theorem 1. Let M be a compact strictly pseudoconvex CR manifold, of CR
dimension n, and 6 a contact form on M such that the Levi form G, is positive
definite. Let (N, h) be a Riemannian manifold. Let F :[0, ©)—[0, ») be a C*
map such that F'(s) >0 and set o(s) :=F'(s/2). Let {¢t}|t| <. be a 1-parameter
variation of a smooth map ¢ =¢o: M—N. Then

d ~
—AEp(9)}i-o= — [ MV, Tp(9; 0, 1) O A (0)",
dt F

where

2n
Tr(¢; 0, h) = ;[(q5 TV, (0(@) ¢« X,) — 0(@) ¢ 4V, X, ]

and Q := traceg,(w g ¢ * h). Here {X,} is a local Gy-orthonormal frame of H(M).
Also we set M :=(—¢, ) x M and

O:M—>N, o, x):=¢,x), xeM, |t|<e,

d
Vx = (d((),x) @) 5 0.2 € T(p(x)(N), rxeM.

Then ¢ is F-pseudoharmonic if
2) Tp(¢p; 0,h)=0.

Moreover, for each smooth map ¢ : M—N the tension field tp(¢p; 0, h)
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el'* (¢ 'TN) is also given by

1

2n
@) trlg;0,h)= [div(Q(Q) VT + ;Q(Q)( od))Xa(W) Xa(qb’“)] Y;.

jk

on U:=¢ V), where (V, y') is a local coordinate system on N, ¢/ :=y’c¢,
and Y;(x) := (8/9y’)(x), xeU, 1 <j<m.

Here are the Christoffel symbols of (N, k). As a consequence of (3) the

Jk
Euler-Lagrange equations (2) (the F-pseudoharmonic map equation) for
¢:(M, 0)—(R™, hy) may be written

) div(e(@Q) Vg =0, 1<j<m.

Compare to (0.1) in [16]. Here £, is the natural flat metric on R™. J. Jost & C-J.
Xu study (cf. op. cit.) the existence of weak solutions to the pseudoharmonic map
equation [i.e. (2) with F(t) =t] on QcR*""!. Precisely, they solve the Dirichlet
problem on a domain w cc 2 whose boundary dw is smooth and noncharacteristic
for the system of vector fields {X,}, when the given boundary values have values
in regular balls of (N, k). Moreover, they prove continuity up to the boundary of
bounded weak solutions ¢ : w — (N, &), a result which, together with a result of
C.-J. Xu & C. Zuily, [19] (showing that continuous solutions to a class of quasili-
nar subelliptic systems covering the pseudoharmonic map system on 2 are actual-
ly smooth) proves the local existence of pseudoharmonic maps (whose boundary
values have values in regular balls of (N, &)). We emphasize that the hypothesis
adopted in [12] are that {X,} is a Hormander system on 2 (and this is always sa-
tisfied, as a consequence of the fact that (M, T, ((M)) is nondegenerate) and that
the boundary dw is noncharacteristic for {X,} (this holds if and only if 7,(dw)
# H(M),, for any x € dw). The local result of J. Jost & C.-J. Xu is slightly more
general than needed here (it holds for 2 cRY with N not necessarily odd, and a
Hormander system {X,} on Q with {X,} not necessarily linearly independent at
the points of ).

The apparently more general concept of a subelliptic harmonic map conside-
red by Z.-R. Zhou, [20] (involving a positive-definite matrix of smooth functions
y (@) on 2, which is the unit matrix in [12]) is but another local manifestation of
our pseudoharmonic maps (corresponding to the case where the local frame {X,}
on Uc M is not necessarily Gg-orthonormal). Z-R. Zhou proves (cf. op. cit.) a local
uniqueness result for pseudoharmonic maps on Q [two pseudoharmonic maps
$1, $2: @ —> N, having the same boundary values ¢ |, = @32 |5, (lying in regu-
lar balls of N), coincide (¢; = ¢, in w)].
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The relationship among F-pseudoharmonicity and pseudoharmonicity is clari-
fied in the following

Theorem 2. Let (M, 0) be a CR manifold, (N, h) a Riemannian manifold,
and F :[0, ©)—[0, ©) a C? function, be as in Theorem 1. Then

1+1/n 1/n
‘L'F(gb;@,h):F'(%) r((p;F’(%) H,h).

Thus ¢ :(M,0)— (N, h) is a F-pseudoharmonic map if and only if
¢ (M, F'(Q2)""0)— (N, h) is a pseudoharmonic (with respect to the data
(F'(Q/2)"0, h)) map.

The tension field ©(¢; 6, ) in Theorem 2 is obtained from tz(¢; 0, h) for
F(t) =t.

Pseudohermitian maps, that is CR maps ¢ : M — N of two strictly pseudo-
convex CR manifolds M and N, preserving — up to a multiplicative constant — the
given contact forms 6 and 6, on M and N respectively, are examples of pseu-
doharmonic maps ¢ :(M, 6) = (N, gy,), where g, is the Webster metric of
(N, 0y) (and these are also the only CR maps which are pseudoharmonic, cf.
Theor. 1.1, p. 724, in [3]). New examples, as obtained in this paper, are the pseu-
doharmonic morphisms. Let M be a nondegenerate CR manifold and 6 a contact
form on M. The sublaplacian A ,: C* (M) — C* (M) is the second order differen-
tial operator

Ayu:=—dw(Vlu), wueC*M).

Let ¢ : M — N be a smooth map into a Riemannian manifold (N, k). We say ¢ is
a pseudoharmonic morphism if for each local harmonic function v: V—R (VC N
open, A yv =0, where A y is the Laplace-Beltrami operator of (N, &)) one has
Ay(wop) =0 in U:=¢ (V). We shall prove the following

Theorem 3. Let M be a nondegenerate CR manifold, of CR dimension n,
and 0 a contact form on M. Let (N, h) be a m-dimensional Riemannion mani-
fold. If m >n there is no pseudoharmonic morphism of (M, 0) into (N, h),
except for the constant maps. If m <n then any pseudoharmonic morphism
¢ :(M, 8)— (N, h) is a pseudoharmonic map and a C* submersion and there
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18 a unique C~ function A : M—[0, + ) such that
(5) 9 (dy@t, dy ¢, =2Mx) 0¥, 1<i,j<m,
for any xeM and any normal coordinate system (V,y') at ¢(x)eN.

The Riemannian counterpart of Theorem 3 is a result of T. Ishihara, [11]
(thought of as foundational for the theory of harmonic morphisms, cf. e.g. J.C.
Wood, [18]). The notion of a F-pseudoharmonic map admits the following geome-
tric interpretation

Theorem 4. Let (M, 0) be a compact strictly pseudoconvex CR manifold,
with a contact form 6, (N, h) a Riemannian manifold, and F :[0, + ) —[0,
+ ) a C? function, as in Theorem 1. Let S*— C(M) 5 M be the canonical cir-
cle bundle and F, the Fefferman metric of (M, 6). Let ¢ : M— N be a smooth
map. Then ¢ :(M, 0)— (N, h) is a F-pseudoharmonic map if and only if its
vertical lift ¢ oo : (C(M), Fp) — (N, h) is a F-harmonic map in the sense of M.
Ara, [1], i.e. a critical point of the energy

1
E(®) = j F(— trace%¢*h) dvol (Fp),
cuin

on the class of all smooth functions @ : C(M)— N. Here dvol (F) is the natural
volume form on the Loventzian manifold (C(M), F,).

2 - Basic objects and formulae

Let M be a (2n + 1)-dimensional C* differentiable manifold. An almost CR
structure on M, of CR dimension n, is a complex subbundle 7, (M) cT(M)&C,
of complex rank %, of the complexified tangent bundle over M, such that

Ty, 0(M)NTy (M) =(0).
An almost CR structure is (formally) integrable if
Z,Wel*(T, (M) = [Z, W]el*(T, (M)).

A CR structure is a formally integrable almost CR structure and a pair
(M, Ty o(M)), consisting of a manifold M and a CR structure of CR dimension ,
is a CR manifold (of hypersurface type).

Let (M, T, ¢o(M)) be a CR manifold. The Levi distribution is H(M)
:=Re{T; (M)®T,(M)}. It carries the complex structure J: H(M)—H(M)



38 ELISABETTA BARLETTA [6]

given by J(Z +2) =i(Z —7Z), Ze T, (M). Set HM); = {weT#(M): Ker(w)
2H(M),}, xe M. When M is orientable the conormal bundle H(M )t is trivial
hence admits everywhere nonzero globally defined sections 8 € I’ (H(M)*), each
of which is called a pseudohermitian structure on M. Given a pseudohermitian
structure 6, the Levi form is

Go(X,Y)=(d0)X,JY), X,YeH(M).

Any other pseudohermitian structure is of the form 6 = 16, for some C * function
A:M—R\{0} and G,y = AGy. An orientable CR manifold is nondegenerate (re-
spectively strictly pseudoconvex) if G4 is nondegenerate (respectively positive de-
finite), for some 6. The property of nondegeneracy is a CR invariant, i.e. inva-
riant under a transformation 6 = A0, while strict pseudoconvexity is not (if G, is
positive definite, G_, is negative definite). When (M, T, ((M)) is nondegenerate
any pseudohermitian structure 6 is a contact form, i.e. 6 A (d6)" is a volume form
on M. Nondegeneracy also implies the existence and uniqueness of a globally de-
fined vector field T on M such that 6(T) =1 and T | d@ = 0 (the characteristic di-
rection of do).

The Levi form of a CR manifold may be recast as the complex bilinear
form

Ly(Z, W) = —i(dO)Z, W), Z,WeT (M),

(and then Ly and (the C-linear extension to H(M)® C of) G4 coincide). On any
nongenerate CR manifold on which a contact form 6 has been fixed, there is a uni-
que linear connection V satisfying the following axioms 1) H(M) is V-parallel, 2)
Vgo=0, VJ =0, 3) the torsion Ty of V is pure, ie. Tv(Z, W) =0, Tv(Z, W)
=2iLy(Z, W)T, for any Z,We T 0oM), and toJ +Jor=0, where X
=Tv(T, X), Xe T(M) (the pseudohermitian torsion of V). This is the Tanaka-
Webster connection of (M, 0) (cf. N. Tanaka, [15] and S. Webster, [17]). Here g,
is the Webster metric i.e.

Go=pGy+ 0RO,
where, in general for a bilinear form B on T(M), we set
(wpB)X,Y):=B(ryX,ngY), X, YeT(M),

and x5: T(M)— H(M) is the natural projection associated with the direct sum
decomposition T(M) = H(M) @ RT. Also, in the axioms 2)-3) above, J is the endo-
morphism of T(M) obtained by requesting that J7 = 0.



[7] SUBELLIPTIC F-HARMONIC MAPS 39

Let (M, T, ¢(M)) be a nondegenerate CR manifold, of CR dimension », and 6
a contact form. The divergence of a smooth vector field X is given by

Lx(ON (dO)") = div(X) O A\ (dO)",
where £ is the Lie derivative. We set
Viy:=ayVu, ueC>M),

where V is the gradient with respect to the Webster metric, i.e. go(X, Vu) = X(u).
The sublaplacian is the (second order) differential operator

Ayu:=—div(Viu), wueC”M).
It is formally self adjoint
(Apu, vz = (u, Ayv)Le2,

(with one of the functions u, v of compact support), where the L? inner product is

(u, v)2= fuv@/\ (do)".
M
A, is actually subelliptic of order ¢ =1/2 (cf. e.g. [7]).

3 - The first variation formula

Let {Z,, ..., Z,} be a local frame of T, ((M), defined on an open set Uc M,
such that L,(Z,, Z3) =0, (with Zz= Zﬂ). Then, for any bilinear form B on
T(M)

traceg,(nyB) = 2 {B(X,, X,) + B(JX,, JX,)},
1

o=

where

1

V2

(hence Go(X,, Xg) =0 .. If X is a tangent vector field on M, ¢ . X denotes the
section in ¢ "'TN —M given by (¢ . X)(x) := (d,¢) X, € Ty (N) = (¢ "' TN),,

Xa (Za+ZH)7
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xeM. Note that

2n

traceg,(wyp*h) = 2 "¢ Xy ¢ X,) =0,
a=1
(hence the definition of Er(¢; D) makes sense (F(t) is defined only for ¢ = 0))

where {X,:1<a<2n}:={X,,JX,:1<a<n}.
Let ¢ : M— N be a smooth map. Then ¢ is F-pseudoharmonic if

d
E{EF(QZ)t)}t:O =0,

for any compactly supported 1-parameter variation {¢,}; <. of ¢ = ¢. To write
the first variation formula we set M := (—¢, €) x M and

&:M—N, @t x):=¢,), xeM, |t|<e.

Also
V., :=(d D) 9 Ty (N) xeM
x = x ~, € x ’ € .
. 00 P) = | e
Then VelI” (¢ 'TN). Moreover, let
0 w1
Vi=d, — el (& "TN),
ot
(hence Vo . =V,). Let V := @ "1V¥ be the connection in @ TN — M induced

by V¥ (the Levi-Civita connection of (N, k)). We have

d d 1 .
E{Ep(gbt)} = aMIF( 5 traceg,(my ¢} h)) '4

d 1 2n
= | —=F[= X, X)| ¥,
= ( S 2 @1 ))

M
where ¥:= 0 A (dO)". Let a,: M — M be given by a;(x) :=(t, x), xe M. If X is
a tangent vector field on M we set X(t,x) := (d, ;) X,. The symbol % denotes the
bundle metric @ "'/ (induced by h) in & TN — M, as well. Then

(X, V) = (D, X, 0,7 ca,.
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Set
Q; :=traceg,(myp i) e C™ (M),  [t|<e.
Then
d 1 2n d . ~ ~
a{EF(%)} =3 JF(%) 2 a{h(‘p*Xa, D, X))o} W

2n
_ jp(&) (o @ X,, @, X,) W

2 1
M
Qt) n~(~ a -
=|F (=] 2hVs, —,d.X,|V,
f (2 = X *at x4

as Vh =0, VN is torsion-free, and [X, 9/0t] = 0. Next
d ~ o~ ~ ~ ~ ~
B0} = jp(%) SV, X0 -V, T, X} .
M

For |t| <e fixed, let X;e I'* (H(M)) be defined by
G X, V)=V, ®.V)oa, Yel”HM)).
Also, iffeC“’(M) and || <e we set f; :=foa,eC* (M), so that
X(f)) =X(f)oay,

for any X e T(M). Therefore

d s ~
S AEr 90} = [ 0(@) DK G X, X))~ IV, T3, @, )} v
M

_ JQ(Qt)Ea: (Go(Vx, X;, X,) + Gy(X,, Vi X,) — IV, V5. @, X)} ¥,
M

where o(s) := F'(s/2) and V is the Tanaka-Webster connection of (M, ) (so that
VG, =0), cf. e.g. [15], p. 29-30. As ¥ is parallel with respect to V

div(X) = trace {Y — VyX}.
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Then

d L - _
B9 0} = [0@){din(X) = SRV, 5, 0,8, - @ T X} v
M

= j {div (0(Q) X;) — X,(0(Q,)) — Q(Qt)%: WV, Vs, @, X, - @, V5, X)} ¥,

M

because of div (fX) =f div(X) + X(f). As ¢, is compactly supported, so does X;.
Therefore (by Green’s lemma)

d
%{EF(d)t)}

= = [{6oX,, 0@ + IV, 0@ Z (5, @K, ~ 6,V X))} ¥
M

- _ f RV, 2 V5, 0@Q) . ~ 0@) .5, X)) V.

M

The last equality holds because of
2n - - - - -
2_:1 %, (0(@) @ X,) = Ea: (Xo(0(@)) D 4 X, +0(Q) Vx, P 1 X,)

= 2. V70(Q) +0(@) 2 V5,0 1 X,.
Note that
(D'V)x D V)00 = (¢ 'V )x0 . Y),.
We are left with the proof of (3). We have

div (0(Q) V¥ ¢7) = trace { Y Vy(o(Q) V¥ ¢p7)}

2n

= gng(VXu(Q(Q) VH i), X,)+ 0V, (0(Q) VH §))

2n

= 2 [X,(Gy(0(Q) V7 7, X,)) = Go(o(Q) V" ¢/, Vi, X1+ T(6(a(Q) V¥ ¢)),

a=1
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because of Vgy=0 and VI'=0. Also (as H(M) is V-parallel)
Go(V' 97, Vy, X,) Y; = g,(V7, Vi, X,) Y; = (V¢ X, )(9") Y; = ¢, Vi, X,

hence

2n

div (o V"9)) Vi = 2 {X,(o(Q Xu(9)) V; = 0(Q) ¢+ Vi, X, }
Consequently (by the very definition of 7 (¢; 0, h))
7r(; 0, h) = div(e(Q) V¥ ¢) ¥ + o(@) 2 {Vx, ¢ « X, — (Xi¢)) Y}
and the following calculation leads to (3)
Vy, ¢+ X — (X299 Y= Vi, (X, (97 ) — (XZ 97 Y,

1

A 3 ,
=X.(9") Xa(¢k)(V3§ayk B ) 0 = ( O¢) X, (97) X, (") Y.

Jk

Theorem 1 is proved.
To prove Theorem 2 we need to derive the transformation law for ©(¢; 0, k)
under a change of contact form 6 =e?“0, ueC*(M). Set

ByX,Y):=(¢p 'VV)x0 .Y -, VxY,
for any X, Ye T(M), so that
©(¢p; 0, h) = traceg,(wyfB,).
Consequently

(6) TF(¢;0,]7/)=F’(§) (¢;0,h)+¢*vHF;(g).

If {Z,} is a local orthonormal frame of T ((M) we set Z,:=e¢ "Z,. Note
that

w93 0,1 = S 1By Fuy Ze) + By Fa 2}

a =
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Therefore
wps 0,0 = 2 {V2,03%0=9:V2.2a+ Vi, 0 52— 0+ V2, 2},

where V = ¢ "1VY and V is the Tanaka-Webster connection of (M, ). Set V. Zp
=I%7Z¢, where A, B, ...e{1,...,n,1,...,7,0} and Z, :=T. Then

VW =V,W-2Ly(Z, WMV u, Z,WeT; (M),

(where V"' u:=m( Vu and 7y : T(M)®C— T, (M) is the projection (associa-
ted to TM)RC =T, ((M)DT,, ,(M)DCT)) leads to

e 1w(¢p; 0, h) =1(¢p; 0, h) +2n¢ . VP u .
Set 1:=e". Then
(M w5 220, h) =272 V{2 1(gp; 0, h) + ¢ . VI (A7)} .
This is the transformation law we looked for. Setting A := o(Q)*", the formulae
(6)-(7) lead to the identity in Theorem 2. Q.e.d.
4 - Pseudoharmonic morphisms
To prove Theorem 3 we shall need the following

Lemma 1 (T. Ishihara, [11]). Let (N, h) be a m-dimensional Riemannian
manifold and peN. Let C;, C;eR be constants such that C;=C; and >.C; =0.
i=1

Let (V, y") be a normal coordinate system on N at p such that y'(p) =0, 1<1i
sm. There is a harmonic function v:V—R such that

v
— =0, v ;(p)=Cy.
oy’

Here v; ; are second order covariant derivatives with respect to the Levi-Civita
connection VY of (N, h), ie.

9%w k

v = ——
M oylay!

v
oyt

y
Let ¢ : (M, 0) — (N, h) be a pseudoharmonic morphism. Let x € M be an arbi-
trary point and set p:=¢(x) e N. Let ipe {1, ..., m} be a fixed index and set
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C; =94, and C; :=0, 1 <1, j<m. By Ishihara’s lemma (cf. Lemma 1 above),
given normal coordinates (V, ') at p, there is a harmonic function v: V—R.
Then A,(vo¢) =0 in U:=¢ 1(V), by the very definition of pseudoharmonic
morphisms. Let {Z,} be an orthonormal frame of 7 ((M) on U. Note that

‘ o k
(/Uogb)u,])’ = (/U] O¢) ¢{z,7)’ + ¢lu¢%(vi,j + ‘ ZJ

”k)0¢, (2K )

Ao ) = = 2{wo Pl u+ 0Pl

yield

®) Ab(voqs)=(Ab¢-")(v,~o¢)—22¢-é¢%(j,k+ |
“ J

: )
v; O¢.
k

i .
) ‘(p) =1(¢; 0, h)Y,
Ik

Let us apply (8) at the preferred point x

0=(4,9"@) ~23 ¢4, pl()

ie. ¢ is a pseudoharmonic map. m
Let us consider now Cj; e R such that C; = C;; and > C;; = 0. By Ishihara’s
i=1

lemma there is v : V—R such that 4 yv =0, v;(p) =0 and v; ;(p) =C;. As ¢ isa
pseudoharmonic morphism (by (8))

0=4,wep)@) = =3 pi(x) pL() C.

Set

X*:=3 ¢l
so that
Thus

9) 'E'Cinij(%) + E (X () — X1 (x)) Ci=0.
i#] i
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Let us choose for a moment Cj; =0 for any ¢#j and

1, Z: (0
Cii = - 1a 1=1 }
0, otherwise

for iye {2,..., m} fixed. Then (9) yields

Xioh(x)— X"(x) =0,
ie.

XM(x)=...=X""(x)
and (9) becomes

E Cinij(OC) =0.

i#]
Again we may fix 4y, joe {1, ..., m} with i, #j, and choose

[lv i:io,j:jo

Cy= i
0, otherwise

so that to get
X'oho(x) =0.
We proved that XV(x) =0 for any i =j. If we set
A=X"= §1¢11¢1-LEC°°(U),
then

(10) il (@) pL(x) = Ax) 6V

a =

The contraction of 7,5 now leads to

mi=2 9,20,

hence 1 : M —[0, + =) is a C* function. To complete the proof of Theorem 3 as-
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sume that there is xe M such that A(x) #0 and set
wi = (¢Zl(x)7 ceey (1)2,1(90)) eC".

Clearly w'#0 and (by (10)) i#j = w'-w’ =0, that is the rows of [¢® (x)]
=(w!,...,w™)" are mutually orthogonal nonzero vectors in C". Hence
rank [¢®,(x)] = m and then m < n. Therefore m >n implies A =0 hence ¢!, = 0.
Thus ¢% =0 (by complex conjugation) or 3,¢' =0, i.e. ¢ is a R-valued CR fun-
ction on a nondegenerate CR manifold, hence ¢ = const., 1 <i<m, i.e. ¢ is a
constant map. Q.e.d.

5 - The Fefferman metric and F-pseudoharmonicity

Let (M, Ty, o(M)) be a strictly pseudoconvex CR manifold, of CR dimension %, and 6
a contact form on M with G, positive definite. Let T be the characteristic direction of d6.
A complex valued p-form w on M is a (p, 0)-form if T (M) ] w=0.Let A7 °(M)
— M be the bundle of all (p, 0)-forms. The multiplicative group of positive real numbers
GL*(1,R) = (0, + ) acts on Ky(M) := A" °(M)\{zero section} and the quo-
tient space C(M) := K,(M)/GL * (1, R) is (the total space of) a principle circle bundle
S1—CM) 5 M. Let us extend G to the whole of T(M) by requesting that G, (X, T) =0,
for all X e T(M). Consider the 1-form o e Q1(C(M))

1 A R
11 o= dy + 7+ iwe — LgPag . — — gl
an n+2{y (w 29 WP Yt 1) )]
and set
(12) Fo=a*Gy+2(n*0) O o,

(the Fefferman metric of (M, 6)). Here y is a local fibre coordinate on C(M), w %
are the connection 1-forms of the Tanaka-Webster connection (VIs=w3®T,),
and R = g“ﬁRaﬁ is the pseudohermitian scalar curvature (cf. [5], p. 103). Fy is a
Lorentz metric on C(M) and F,.,=e"°"*F,, for any weC* (M) (in particular
[Fol :={e"° T Fp: ueC*(M)} is a CR invariant).

Let F(t) =0 be a C% map defined for ¢ =0, such that F'(¢) > 0. For simplic-
ity, assume for the rest of this section that M is compact (hence C(M) is compact,
as well). A smooth map @ : (C(M), Fp) — (N, h) is F-harmonic if it is a critical
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point of

1
Ep(®) = j F(Etmce%(@*h)) dvol (Fp),
cun

ie. if tp(®; Ty, h) =0, where (cf. [1])

1
15(D; Ty, h) :=F' ( > tmce(ﬂ@*h)) o(D; Ty, h)
(13)
+¢*{VF’(% tmce%(tﬁ*h))}.

Here 7(®; J,, h) is the ordinary tension field of @ : (C(M), ;) — (N, h) (cf. e.g.
[6], p. 107) and V : C*(C(M)) — A(C(M)) the gradient operator with respect to
the Fefferman metric J,. At this point we may prove Theorem 4. Let (U, x*) be
a local coordinate system on M (the convention as to the range of indices is
A,B,...€{0,1,...,n,1,...,m}) and set u :==x? o : 7" Y(U)—>R. If c = [w]
ex Y(U) then we Ky(M) may be written v = A(O0 AO* A ... \O"),, for some
AeC*=C\{0} and x=n(c)eU. Then y:ax '(U)—R is given by y(c)
=arg (A/|A|) (with arg : S*— [0, 27)) and (7 *(U), u?, y) is a local coordinate
system on C(M). Set g, = F(8/0u®, 5/6u’) and [g®]=[gu,] ', where
a,b,...{0,1,...,n,1,...,7, 2n+2} and u*"*?*=y. Let ¢: M—N be a
smooth map and set @ := ¢ omx. Then

oPp’ Ik 3¢ dp*
traces (P*h) = ab —(h o) = AB(— 0.7'[)( oﬂ)(l’b o®
7 V=9 u® oub " V=9 dxt ox® o ®)

(because 8nA/<9y =0) and then, by the identity (9) in H. Urakawa & alt., [3],
p. 730

e

et

a k - . )
”) ( aig n) =W T, (¢7) T3(p") + T5(p") To(pM)} o

we have

traces,(P*h) = 2h P T,(p%) T;;(gbk) o = {traceg,(myp*h)} o =Qom.
Therefore (by (13))

Tp(D; Ty, h) =F’(%Qon) o(DP; Ty, h)—i—@*V{F’(%Qon)}
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ie. @ =¢om is F-harmonic if and only if

(14) (0(Q) o) U(P; Ty, h) + D, V(0(Q) ot) =0

where o(s) := F'(s/2). It is well known that, under a conformal change of metric,
the tension tensor field transforms as

(15) (D; ,12%’ h) :l—(2n+2){;{2nr(@; %, h) + q)*v(iZn)}’

for any AeC*(C(M)). By Theorem 2 ¢ is F-pseudoharmonic if and only if
(¢; Q(Q)“”H, h) =0, that is [by Theorem 2.1 in H. Urakawa & alt., [3], p. 729] if
and only if ¢ o is harmonic with respect to the Fefferman metric JFyqyng, ie.

W o5 Tomg, 1) =0

Finally [by (15) with A := (0(Q) - )"?"] ¢ is F-pseudoharmonic if and only if (14)
holds. Q.e.d.
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Summary

Owing to the ideas of M. Ara (cf. [1]) and K. Uhlenbeck (cf. [16]) we consider F-pseu-
1
doharmonic maps, i.e. critical points of the energy Ep(¢) = IF ( 3 traceg,(myp*h)| 0
M

N (dO)", on the class of smooth maps ¢ : M— N from a (compact) strictly pseudoconvex
CR manifold (M, 6) to a Riemannian manifold (N, h), where 0 is a contact form and
F:[0, ©)—[0, ©)is a C% function such that F'(t) > 0. F-pseudoharmonic maps gener-
alize both J. Jost & C-J. Xu’s subelliptic harmonic maps (the case F(t) =t, cf. [12]) and P.
Hajlasz & P. Strzelecki’s subelliptic p-harmonic maps (the case F(t) = (2t)"2, cf. [9]). We
obtain the first variation formula for Er(¢). We investigate the velationship between F-
pseudoharmonicity and pseudoharmonicity, by exploiting the analogy between CR and
conformal geometry (cf. [1] for the Riemannian counterpart). We consider pseudohar-
monic morphisms from a strictly pseudoconvex CR manifold and show that any pseudo-
harmonic morphism is a pseudoharmonic map (the CR analogue of T. Ishihara’s theo-
rem, cf. [11]). We give a geometric interpretation of F-pseudoharmonicity in terms of the
Fefferman metrics of (M, 0).



