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EpoArDO BALLICO (%)

On two theorems of Bertini

for infinite-dimensional projective spaces (**)

1 - Introduction

Let V be an infinite-dimensional complex Banach space and let P(V) denote
the projective space of all one-dimensional linear subspaces of V. Hence P (V) is
an infinite-dimensional complex manifold. For every integer d there is a holomor-
phic line bundle Op ,(d) on P(V) such that the vector space V(d) of all holomor-
phic sections of Opy,(d) is the set of all degree d continuous homogeneous po-
lynomials f : V—C. Hence V(d) = {0} if d <0, V(0) = C (the constant functions)
and V(1) is the dual of V. Every fe V(d)\{0} induces a degree d hypersurface
{f=0} of P(V). After [L.] and [Ko] it is a natural problem the existence of smoo-
th closed subvarieties X of P (V) which are complete intersections of finitely many
hypersurfaces. By the vanishing theorems proved in [Ko] the case in which V'is a
separable Hilbert space seems to be important. In [Ko] the smoothness of the
complete intersection was essential to use complex analytic techniques (the o-bar
operator). The existence of smooth complete intersections is a subtle problem sin-
ce by [K] or [B1] Sard’s theorem fails when the domain is infinite-dimensional and
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the target finite-dimensional. Even worst: by [B2] on each 17 space, 1<p< + o,
there are continuous real and complex polynomials whose set of critical values has
a non-empty interior. There are very interesting results concerning differential
Fredholm maps ([S], [QS], [PR]) but they cannot be applied in our set-up because
we consider maps from an infinite-dimensional domain to a finite-dimensional tar-
get. In section two we prove the following result.

Theorem 1.1. Fix positive integers s, d, ...d, and a separable Hilbert spa-
ce V. Then there exists a smooth codimension s complete intersection X c P(V) of
s hypersurfaces of degree di, ..., d,.

One could hope that adding an algebricity condition, still some weak form of
Bertini theorem may hold. In general this is not true: there are projective spaces
P (V) with V Fréchet nuclear space such that every homogeneous hypersurface of
degree at least two of P (V) is singular (see Example 3.3). In section three we con-
sider the case V=C®™ and prove the following result.

Theorem 1.2. Fix an integer d =2 and a subset S of CP' with at most
countable elements. Then there exist linearly independent homogeneous degree d
polynomials F and G on C™ such that a hypersurface {AF +uG =0} of
P=C™ with (A; u)eCP! is singular if and only if (A; u)eS.

The set-up of Theorem 1.2 (varieties over a complex vector space with counta-
ble algebraic dimension) is essentially the set-up for infinite-dimensional algebraic
geometry introduced in [S] and [T]. Theorem 1.2 just describes the singular mem-
bers of the pencil of degree d hypersurfaces of P = C™ generated by the hyper-
surfaces {F'=0} and {G=0}.

Remark 1.3. We stress that in the statement of Theorem 1.2 we allow the
case S = @, i.e. for every integer d = 2 we prove the existence of a pencil of degree
d hypersurfaces of P = C™) without any singular member. This is in striking con-
trast with the case of pencils on CP": in that case if d # 1 every pencil has a sin-
gular member because the set of degree d singular hypersurfaces is a hypersurfa-
ce in the big projective space parametrizing all degree d hypersurfaces of CP".

2 - Proof of Theorem 1.1
Lemma 2.1. Fix positive integers n, s, dy, ..., d, such that n =s. Fix ho-

mogeneous coordinates 2, ..., z, on P". Let A(s, n, dy, ..., d;) be the subset of
C*"* Y formed by all ;e C, <i<s,0<j<n,suchthat {F,=...=F,=0}isa
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smooth codimension s complete intersection of P", where F;= > ;. Then
0<j<n ’
A(s,m, dy, ..., dy) is a non-empty Zariski open subset of C*"* 1,

Proof. Since smoothness is an open condition in the Zariski topology and
the same is true for the codimension s (i.e. the maximal possible codimension) con-

dition, it is sufficient to show that A(s, n, d;, ..., d,) = 6. We will use induction on
s. If s=1,set B(s—1)=P". If s=2 take a;;eC,1<sis<s—1, 0<j<mn, such
that B(s—1):={F,=...=F, =0} is a smooth codimension s —1 complete

intersection of P" (inductive assumption). Let V(d,) be the linear system on
B(s — 1) spanned by the restriction to B(s — 1) of the degree d, monomials oc]-dS,
0 <j <mn. Since V(d,) has no base points and B(s — 1) is smooth, the general
member of the linear system V(d,) is a smooth hypersurface of B(s — 1) by Berti-
ni theorem ([H], Cor. III. 10.9, or [K]), i.e. for general asieC"”, 0<j<n,
B(s—1)NF, is a smooth codimension s complete intersection of P™. Thus
A(s, n, dy, ..., ds) #= 0.

Proof of Theorem 1.1. Fix an orthonormal basis {x,},>; of V. For any
2= 2 z,x,€V set a,(z):=z, Thus z= 2 a,(z)x, for every zeV and «,
1

n= n=1

€ V(1). Fix complex numbers u; ;, =1, 1 <j<s, which are algebraically inde-
pendent over the field @ of rational numbers and such that 0 < |u; ;| <1 for all
1, 7. This is possible because C has infinite (and even uncountable) trascendence
degree over Q. For every z = X a,(z2)x, eV set F;(z) := .zlﬂi,jan(z)dj' Hence

n=

F; is a continuous homogeneous degree d; polynomial on V. Set A; := {F; =0}
and X =A,N ... NA,. Obviously X has codimension exactly s in P(V). It is suffi-
cient to prove that X is smooth. Fix P € X and take z = Z a;(z) ;e VA\{0} repre-

=1
senting P. Let M be the matrix with s rows and countable columns, say M(P)

=(by), 121, 1<j<s, with by = 8/00;(F))(P) =d;u; jo;(z)%~ 1. It is sufficient
to prove that for every P e X the matrix M(P) has rank s. First assume the exi-
stence of indices iy, ..., ¢, such that a(z);, =0 for every k with 1 <k <s. Call
M(P)(iy, ..., t;) the minor of M(P) formed by the columns i, ..., ;. We have
det (M(P)(2y, ..., %)) =d; ... dsozil(z)d1 ais(z)d*‘det(B) where B is the s X s ma-
trix (u;, ;), 1<k<s,1<j<s. Since a,(z) =0 for every k and det(B) =0 by
the algebraic independence over @ of the complex numbers u; ;, we obtain
det (M(P)) #0. Now assume that no such indices 1%, ..., 7, do exists. Hence at
most the first s homogeneous coordinates of P are non-zero. We apply Lemma 2.1
to the case n = s, in which we see P° as P(W), where Wc V is the linear span of
the vectors xy, ..., @,, ;. By Lemma 2.1 the submatrix of M(P) formed by the first
s+1 columns has rank s at P and hence rank (M(P)) =s, proving the theorem.
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3 - Proof of Theorem 1.2

Proof of Theorem 1.2. First we will prove the case S infinite (and counta-
ble). Then in a completely different way we will prove the case S = ¢#. Then we
will adapt the proof of the case S =0 to the case S= ¢ and S finite.

Step 1. Here we assume S infinite and countable. Up to a projective trans-
formation we may assume that (1;0)¢S, (—1;1)¢S and (0; 1) ¢S. Hence
S={-a;eN} with a;,eC, a; sE{O 1}. Choose homogeneous coordinates z;,
i=0, on P(C™). Set F:= E z8 and G := 2 a;2{. Hence {F'=0} is a Fermat

hypersurface and G is in dlagonal form. Smce every point of P(C™) has only fini-
tely many non-zero entries, it is very easy to check as in the finite-dimensional ca-
se that the hypersurface {AF + uG} has a singular point if and only if 2 + ua; =0
for some 1, i.e. if and only if \(1; u)eS.

Step 2. Here we assume S =¢. Let N(d) be the set of all multi-indices a;,
1= 0, of non-negative integers with 2 a;=d. Every homogeneous degree d

>0
hypersurface of P(C™) has an equatlon of the form >, a,z“ for some complex
aeN(d)

numbers a,. Set F= > a,z*and G= 2 b,z% where we assume that all
aeN(d) aeN(d)

ag s and b, s are trascendentally free over the field @ of rational numbers. This
may be done because N(d) is countable, while C' has even uncountable trascenden-
ce degree over Q. For all (1; u) e CP!, set X(4, u) := {AF + uG} and call L this
pencil of hypersurfaces. We need to check that every X(4, u) is smooth. For any
integer =0, set CP":={2eP(C™):2z;=0 for i>n}, XA,u;n):
=X(A, u)|CP" and L(n) the associated pencil of CP". Since every point of
P(C™) has only finitely many non-zero coordinates, every singular point, P, of
X(A, u) must be contained in some X(4, u; n) for some large n. It is easy to
check that P must be a singular point of X(4, u; n). However, the converse is not
true. Take a hypersurface Y of CP" "1, a hyperplane H of CP"*! and @ € H such
that @ is an ordinary double point of Y N H. A priori two cases may occur: either
@ is an ordinary double point of Y and H is as transversal as possible to Y at @ or
Y is smooth at @ and H is tangent to Y at @. By the genericity of the coefficients
a, and b, for every finite integer n = 2 the pencil L(n) has only finitely many sin-
gular members, each singular hypersurface of Y(n) has a unique singular point
and this point is an ordinary double point. Now we compare the singular members
of L(n) and of L(n + 1). No singular member of L(n) is the restriction of a singu-
lar member of L(n + 1), i.e. if X(4, u; n) is singular at @, then (4, u; n+1) is
smooth at @ and CP" is tangent to (4, u; » + 1) at Q. Hence letting n going to
+ o0 we obtain that no X(4, u) may be singular.
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Step 3. Here we assume S finite and S # 0. Set s := card (S). We may assume,
up to a projective transformation that S is given by the complex numbers —a,,
1 <j<s:=card(S), with a;¢ {0, 1} for every j. For any positive integer n set
N(d, n) :={(a;)eN(d): a;=0 for i>n}. Set F(s):= X z{ and G(s)

0<is<s

= 2 a;2% and call L(s) the pencil of hypersurfaces generated by F(s) and

0<i<s

G(s). The singular members of L(s) are exactly the hypersurfaces { a; F(s) + G(s)
=0} of CP* with @;(0;...5;1;0,...; 0) as unique singular points. Let V(s + 1)
be the set of all extensions of L(s) to a pencil of CP**! with singular members for
the parameters a;, 1 <j <s, and respectively with @, as singular point. V(s + 1)
is a finite-dimensional linear space. V(s+1) # ¢ (e.g. just take a,=0,=0 if
aeN(d, n+1)\N(d, n)). Call L(s+1) any general member of V(s +1). The
hypersurface of L(s + 1) corresponding to the parameter (a;; 1) have Q; as only
singular point. There will be also finitely many singular hypersurfaces in L(s + 1)
but all of them with an ordinary double point as unique singular point. Call
L(s +2) a general extension of L(s + 1) to a pencil of hypersurfaces of CP*"2
with a singular member for each parameter (a;; 1) and at the point ;. The other
singular members of the pencil L(s + 1) will not be singular in CP**! except on
the points Q;, 1 <j <s, i.e. passing from L(s + 1) to L(s + 2) we have swallowed
the singularities of the pencil L(s + 1) which were not assign in advance. And so
on as in Step 2.

Remark 3.1. In the case S infinite and countable we obtained a pencil in which
all singular members have only one singular point and with a rather bad singularity
(at least if d = 3). Just allowing repetitions among the complex numbers a;, ¢ = 0, we
obtain in the same way examples in which S is the set of all singular hypersurface,
but each singular hypersurface is a cone over a smooth hypersurface and the vertex
of the cone may have arbitrary dimension (finite or countable). If S is finite and S # ¢
the construction of Step 3 of the proof of Theorem 1.2 gives hypersurfaces with a uni-
que singular point and an ordinary one, because for every m = 2s + 1 the hypersur-
face of the pencil L(m) corresponding to the parameter (a;; 1) have an ordinary
double point at @;. However, we may even at each step of the induction to impose a
bad singularity and find examples satisfying, the thesis of Theorem 1.2 but with pre-
scribed multiplicity at the singular points.

Remark 3.2. Let L be any pencil of degree d hypersurfaces of P(C*) and
call L(n) its restriction to CP" := {ze P(C™): ;=0 for i > n}. Assume that for
every n = 2L(n) has no base points. Hence L(n) has only finitely many singular
members. Since every point of P(C™) has only finitely many non-zero coordina-
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tes and the restriction to CP" of a hypersurface singular at P e CP" is singular at
P, we see that L has at most countably many singular members.

Example 3.3. Let I be any infinite set. Since every germ of holomorphic
function on C! depends only from finitely many variables, every homogeneous po-
lynomial on C’ depends only from finitely many variables. Hence every zero-locus

of a homogeneous polynomial of C' is a cone with infinite-dimensional vertex over
a hypersurface of a finite-dimensional projective space. Hence every hypersurface
of degree at least two of C! is singular. The space C is a Fréchet nuclear space
and hence it should be considered as a rather good locally convex space.
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Summary

Here we prove the following two results. Fix positive integers s, dy, ..., d, and a sepa-
rable Hilbert space V; then there exists a smooth codimension s complete intersection X
c P (V) of s hypersurfaces of degree d, ..., d,. Fix an integer d =2 and a subset S of CP!
with at most countable elements; then there exist linearly independent homogeneous de-
gree d polynomials F and G on C™V) such that a hypersurface {AF + uG =0} of P(C™)
with (A; u) e CPY is singular if and only if (A; u) € S; we allow the case S = @, which is in
striking contrast with the corresponding problem in CP™
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