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Bitopological a-compact spaces (**)

1 - Introduction

In 1965, O.Njåstad [9] introduced the notion of a-sets. Since then, a large
number of topologists studied various properties of point set topology with the
help of a-sets. In 1985, utilizing a-sets, Maheswari et al. [8] defined the notion of
a-compactness in spaces with single topology. In 1988, Noiri et al. [11] obtained
further properties of this kind of spaces. The purpose of the present paper is to
generalize the concept of a-compactness in bitopological setting and examine how
far the properties of a-compact space remain valid in this new setting.

The notion «pairwise compactness» is current in the existing literature. «Pair-
wise open cover» defined by Fletcher et al. [3] is instrumental for the introduction
of this concept. In like manner, defining «pairwise a-cover», we have introduced
pairwise a-compact (briefly pac) spaces. In Section 2 of this paper some known
definitions and results necessary for presentation of the subject in bitopological
setting are reproduced. Section 3 gives the definition and examples of pac space,
which is a stronger notion - substantiated by an example - than pairwise compact
spaces. Fletcher et al. [3], the leading exponents of pairwise compact spaces, did
not examine the cases whether bi-compact [13] spaces can generate a pairwise
compact space or two non-compact spaces with single topologies can produce a
pairwise compact space. In this section queries parallel to these have been answe-
red for a pac space. Section 4 deals with some bitopological separation axioms
which are interesting in their own right, but are necessary in this paper to unveil
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the richness of pac space and demonstrate its properties. Section 5 is concerned with
the interrelationship among the new separation axioms on one hand, while the que-
ries that crop up as a natural consequence of our study have been met, with appro-
priate examples, on the other hand. Last section is concerned with the properties of
pac space developed in the light of the axioms introduced in Section 4.

Throughout the paper, the triple (X , t 1 , t 2 ), where X is a set and t 1 , t 2 are
topologies on X , will always denote a bitopological space [6], while (X , t) or sim-
ply X denotes a single topological space. In (X , t), the family of all t-closed sets
are denoted by F (t). The t i-closure (resp. t i-interior) of a set A is denoted by t i-
Cl(A) or Clt i

(A) (resp. t i-Int(A) or Int t i
(A)). The abbreviation b.t.s. for bitopolo-

gical space is used in this paper. Notations not explained here, but used in this pa-
per are obtained from Dugundji [2] and Pervin [12].

2 - Known definitions and results

We shall require the following known definitions and results.

D e f i n i t i o n 2.1 [9]. In (X , t), A%X is called an a-set iff A
% Int (Cl (Int (A) ) ).

Njåstad [9] used the symbol ta to denote the family of all a-set in X and sho-
wed that ta is a topology on X.

D e f i n i t i o n 2.2 [10]. The complement of an a-set is called a-closed. The fa-
mily of all a-closed sets in X is denoted by F (ta ).

D e f i n i t i o n 2.3 [13]. In (X , t 1 , t 2 ), A%X is termed bi-compact iff A is both
t 1-compact and t 2-compact.

D e f i n i t i o n 2.4 [3]. A cover U of (X , t 1 , t 2 ) is called pairwise open if
U%t 1Nt 2 , UOt i&]Acf(, i41, 2 . If every pairwise open cover of (X , t 1 , t 2 )
has a finite subcover, then the space is called pairwise compact.

D e f i n i t i o n 2.5 [6]. (X , t 1 , t 2 ) is pairwise Hausdorff iff for each pair of di-
stinct points x and y of X there are a t 1-open set U and a t 2-open set V such that
x�U , y�V and UOV4f .

This definition was first given by Weston [15] who used the term consistent.
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D e f i n i t i o n 2.6 [6]. In (X , t 1 , t 2 ), t i is said to be regular with respect to t j

iff for each point x in X and each F� F (t i ) such that x�F , there exist U�t i

and V�t j with x�U , F%V and UOV4f , i , j41, 2 ; ic j .
(X , t 1 , t 2 ) is called pairwise regular iff t 1 is regular with respect to t 2 and
vice-versa.

D e f i n i t i o n 2.7 [6]. (X , t 1 , t 2 ) is termed pairwise normal iff for each
F1 � F (t 1 ) and F2 � F (t 2 ) with F1 OF2 4f , there exist U�t 2 and V�t 1 such
that F1 %U , F2 %V and UOV4f .

D e f i n i t i o n 2.8 [4]. (X , t 1 , t 2 ) is said to bi-Hausdorff if both (X , t 1 ) and
(X , t 2 ) are Hausdorff.

D e f i n i t i o n 2.9 [8]. X is called a-compact iff every cover of X by a-set has a
finite subcover.

T h e o r e m 2.1.. (Theorem 12 [3]). If (X , t 1 , t 2 ) is pairwise Hausdorff and
pairwise compact, then it is pairwise regular.

T h e o r e m 2.2. (Theorem 13 [3]). If (X , t 1 , t 2 ) is pairwise compact and ei-
ther t 1 is regular with respect to t 2 or t 2 is regular with respect to t 1 , then it is
pairwise normal.

T h e o r e m 2.3. (Theorem 10 [3]). If (X , t 1 , t 2 ) is pairwise Hausdorff and
bi-compact, then t 1 4t 2 .

T h e o r e m 2.4. (Theorem 11 [3]). If (X , t 1 , t 2 ) is bi-Hausdorff and pairwise
compact, then t 1 4t 2 .

3 - Pairwise a-compact spaces

Following Flectcher et al. [3], we introduce the definitions given below.

D e f i n i t i o n 3.1. A cover U of (X , t 1 , t 2 ) is termed pairwise a-cover if
U %t 1

aNt 2
a and U Ot i

a& ]Acf(, i41, 2 .

D e f i n i t i o n 3.2. A b.t.s (X , t 1 , t 2 ) is called pairwise a-compact (briefly
pac) if every pairwise a-cover of (X , t 1 , t 2 ) has a finite subcover.

A reformulation of this definition is:

(X , t 1 , t 2 ) is pac iff (X , t 1
a , t 2

a ) is pairwise compact .
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R e m a r k 3.1. Since t%ta for every topology t , it follows that every pac spa-
ce is pairwise compact. But the converse is not, in general, true. This is seen from
the following example.

E x a m p l e 3.1. Let R be the real line and A4 (0 , Q) %R . Consider the b.t.s.
(R , t 1 , t 2 ), where t 1 4 ]R(N ]G : G%R and GOA4f(, t 2 4 ]f , R , ]1(,
R0]1((. Let U 4 ]Vb : b�D( be any pairwise open cover for (R , t 1 , t 2 ). Since
U is a cover for R , it is so for A . t 1 is the set exclusion topology with the exclu-
ding set A . So, two cases arise.

Either R� U or R0]1( and ]1( � U. Since in each case we obtain a finite sub-
cover of U, (X , t 1 , t 2 ) is pairwise compact. If we consider the family of sets V,
defined by V 4 ]Vn : n�N (4the set of positive integers)(, where Vn4 (2Q , n),
then it is easy to check that Vn�t i

a . Also, ]1( �t 2 and hence ]1( �t 2
a . Let

U 4 V N]]1((. Then U %t 1
aNt 2

a . Also, U Ot i
a& ]Acf(, i41, 2 . Hence U is a

pairwise a-cover of (R , t 1 , t 2 ). But no finite subfamily of U can cover R . Hence
U has no finite subcover. Consequently, (R , t 1 , t 2 ) is not pairwise a-com-
pact.

The immediate problem that occurs to our mind is: Is a-compactness for the
individual topologies equivalent to pac of the b.t.s. (X , t 1 , t 2 )? Or, can two non a-
compact spaces with single topology generate a pac b.t.s.? Examples 3.2 and 3.3
offer answer to these two queries.

E x a m p l e 3.2. Let R be the real line with t 1 4 ]R(N ]G%R : 1 �G( and
t 2 4 ]R(N ]G%R : 2 �G(. We assert that only a-set containing 1 in (R , t 1 ) is
R . For, if possible, let G be an a-set in (R , t 1 ) such that 1 �G but GcR . Then
Intt 1

(G) cf and coincides with G0]1(, so that Clt 1
(Intt 1

(G) ) 4G and
Intt 1

(Clt 1
(Intt 1

(G) ) ) 4G0]1(, that is, G�t 1
a . Thus the only a-set containing 1 is

the set R . Hence, any a-cover C of (R , t 1 ) surely contains R . So, ]R( is a finite
subcover of C so that (R , t 1 ) is a-compact. Pursuing similar reasoning, we see
that (R , t 2 ) is a-compact. But the b.t.s. (R , t 1 , t 2 ) is not pac . For, if we consider
the family

U 4 ]]x( : x�R0]1((N ]]1((

then U %t 1
aNt 2

a . Clearly, U Ot i
a& ]Acf(, i41, 2 . Hence U is a pairwise a-co-

ver for (R , t 1 , t 2 ). But it has no finite subcover. So, (R , t 1 , t 2 ) is not pac .

E x a m p l e 3.3. Let R be the real line with t 14]f(N]G%R : G&(2Q,0](
a n d t 2 4 ]f(N ]G%R : G& [ 0 , Q)(. Le t U1 4 ]Un : n�N( = t h e s e t o f
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positive integers)(, U2 4 ]Vn : n�N(, where Un 4 (2Q , n) and Vn 4 (2n , Q),
(n�N . For each n�N , Un & (2Q , 0 ] and Vn & [0 , Q). So, Un �t 1 , Vn �t 2 for
each n�N . Thus U1 is an open cover for (R , t 1 ). Since each open set is an a-set,
U1 is a a-cover of (R , t 1 ). But no finite subfamily of U1 covers R , so that (R , t 1 )
is not a-compact. In like manner (R , t 2 ) is not a-compact. But the b.t.s.
(R , t 1 , t 2 ) is pac . Let U be a pairwise a-cover for (R , t 1 , t 2 ). Then U %t 1

aNt 2
a

and U Ot i
a& ]Acf(, for i41, 2 . Take fcU1 � U Ot 1

a , fcU2 � U Ot 2
a

and set W 4 ]U1 , U2 (. It is easy to check that the finite family W covers R . Now
U1 �t 1

a¨Intt 1
(U1 ) cf and this, by definition of t 1 , implies Intt 1

(U1 )
& (2Q , 0 ], because Intt 1

(U1 ) �t 1 . Thus U1 &Intt 1
(U1 ) & (2Q , 0 ]. Similar argu-

ment yields U2&[0,Q). So U1NU2&(2Q, 0]N[0,Q)4R whence U1NU24R.
Consequently, W covers R and it is a finite subcover of U. So the b.t.s.
(R , t 1 , t 2 ) is pac .

4 - Some new bitopological separation axioms

We now introduce three bitopological separation axioms, namely pairwise a-
Hausdorffness, pairwise a-regularity and pairwise a-normality.

Pairwise a-Hausdorffness

In 1980, Maheswari and Thakur [7] introduced the notion of a-Hausdorff spa-
ce by replacing in the definition of Hausdorff space the words «open sets» by «a-
sets». Noiri [10] has given a lucid and simple proof of the fact that (X , t) is Hau-
sdorff iff (X , ta ) is so. Thus the concept of a-Hausdorffness coincides with the
usual notion of Hausdorffness as pointed out by Janković and Reilly [5]. As a re-
sult of this fact, in the sequel, we shall freely interchange the terms «Hausdorff
space» and «a-Hausdorff space».

D e f i n i t i o n 4.1. A b.t.s. (X , t 1 , t 2 ) is called pairwise a-Hausdorff if the
b.t.s. (X , t 1

a , t 2
a ) is pairwise Hausdorff, that is if, for x , y�X , xcy , there exist a

t i
a-set U and t j

a-set V such that x�U, y�V and UOV4f, i , j41, 2 ; icj.

R e m a r k 4.1. Since t i %t i
a (i41, 2 ), for a b.t.s. pairwise Hausdorffness im-

plies pairwise a-Hausdorffness. On the other hand, the reverse implication does
not, in general, hold for a b.t.s.. This remarkable departure from a single topologi-
cal space has been demonstrated by the example below.

E x a m p l e 4.1. Let (R , t 1 , t 2 ) be a b.t.s. where R= the real line, t 1 = the
usual topology and t 2 4 ]f , R(N ](a , Q) : a�R(, called the right hand topolo-
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gy by Pervin [12]. For the points 2 and 1 of R , let 2 �U�t 1 and 1 �V�t 2 . Then
(22r , 21r) %U and (t , Q) %V , for some rD0 and some tE1 respectively. Con-
sequently, (t , Q)O (22r , 21r) cf , as tE1 E2. This implies that UOVcf

and so (R , t 1 , t 2 ) is not pairwise Hausdorff. Again, for any two distinct points

xEy in R , U1 4 (x2r , x1r) �t 1
a , V1 4 (x1r , Q) �t 2

a , where r4
y2x

2
, are

two disjoint t 1
a-set and t 2

a-set containing x and y respectively. Recall that the inte-
rior of a set A is the largest open set contained in A . Then, for the same r as ta-
ken above, U2 4 (y2r , y1r) �t 1

a and V2 4 ]x(N (y1r , Q) �t 2
a , where U2 , V2

are disjoint but contain y and x respectively. Thus (R , t 1 , t 2 ) is pairwise
a-Hausdorff.

Before the introduction of bitopological separation axiom of pairwise a-regula-
rity, we define a-regularity in a single topological space as follows:

D e f i n i t i o n 4.2. A space (X , t) is said to be a-regular iff the space (X , ta )
is regular, that is, for every F� F (ta ) and every x�F , there exist U , V�ta such
that x�U , F%V and UOV4f .

T h e o r e m 4.1. Every a-regular space is regular.

P r o o f . Let (X , t) be an a-regular space, F any t-closed set and x�F . Since
every closed set is a-closed, F� F (ta ). The a-regularity of X gives the existence
of U , V�ta such that x�U , F%V and UOV4f .

Now

UOV4f ¨ Int (U)OInt (V) 4f

¨ Cl ( Int (U) )OInt (V) 4f

¨ Int ( Cl ( Int (U) ) )OInt (V) 4f

¨ Int ( Cl ( Int (U) ) )OCl ( Int (V) ) 4f

¨ Int ( Cl ( Int (U) ) )OInt ( Cl ( Int (V) ) ) 4f .

Since U and V are a-sets, U% Int (Cl ( Int (U) ) ), V%Int ( Cl ( Int (V) ) ). Hence we
obtain the disjoint sets Int ( Cl ( Int (U) ) ), Int ( Cl ( Int (V) ) ) �t , which contain x
and F respectively. Thus (X , t) is a regular space.

R e m a r k 4.2. The following example shows that the converse of the above
theorem is not true.

E x a m p l e 4.2. Let (R , U) be a topological space where R= the real line,
U= the usual topology. Let F be any U-closed set and x�F . Obviously x�R0F� U.
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Consequently, the open interval Ir (x) 4 (x2r , x1r), for some rD0, is
contained in R0F , which, in its turn, implies that F%R0Ir (x). If we take
U4I r

2

(x) and V4R0Cl (I r

2

(x) ), then U , V� U, with x�U . Also, we observe

that

Cl (I r

2

(x) ) 4 kx2
r

2
, x1

r

2
l% (x2r , x1r)

¨ R0Cl (I r

2

(x) ) &R0Ir (x) &F¨V&F .

Moreover, VOCl (I r

2

(x) ) 4f¨VOI r

2

(x) 4f¨UOV4f .

Hence (R , U) is a regular space.
To show that (R , U) is not a-regular, take F4 m 1

n
: n�N(4 the set of

positive integers)n. Then Cl (F) 4FN ]0( ¨ Int ( Cl (F) ) 4Int (FN ]0() 4f

¨Cl (Int ( Cl (F) ) ) 4f%F¨F� F (Ua ). Also, 0 �F . We take any two sets U , V
� Ua such that 0 �U and F%V . We assert that UOVcf . Suppose, if possible,
UOV4f . Then, in like manner as in above theorem, Int ( Cl ( Int (U) ) )
OInt ( Cl ( Int (V) ) ) 4f . Now 0 �U% Int ( Cl (Int (U) ) ). This implies that
0 �U% Int ( Cl (Int (U) ) ) � U. Since 0 �D(F) (=the derived set of F),
Int ( Cl (Int (U) ) )OFcf¨Int ( Cl (Int (U) ) )OInt ( Cl ( Int (V) ) ) cf , a contradic-
tion. Therefore UOVcf. Thus (R , U) is not a-regular, though it is regular.

Pairwise a-regularity

Following the technique of J. C. Kelly [6], we introduce the definitions given
below.

D e f i n i t i o n 4.3. Let (X , t 1 , t 2 ) be a b.t.s.. Then t i is said to be a-regular
with respect to t j if the b.t.s. (X , t 1

a , t 2
a ) is such that t i

a is regular with respect
to t j

a , that is, for each point x in X and each F� F (t i
a ) with x�F , there exist

U�t i
a , V�t j

a such that x�U , F%V and UOV4f , i , j41, 2 ; ic j .

D e f i n i t i o n 4.4. A b.t.s. (X , t 1 , t 2 ) is said to be pairwise a-regular if
(X , t 1

a , t 2
a ) is pairwise regular.

In view of Theorem 4.1 and Example 4.2 we observe that in a space with single
topology, a-regularity implies regularity, though the reverse implication may not
hold. Thus, in a single topological space, some sort of interconnection exists bet-
ween regularity and a-regularity. The natural query is: Is there any relation bet-
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ween pairwise regularity and a-regularity in bitopological spaces? The answer is
in the negative. Examples 4.3 and 4.4 reveal that the notions of pairwise regulari-
ty and pairwise a-regularity, in bitopological setting, are independent.

E x a m p l e 4.3. Let (R , t 1 , t 2 ) be a b.t.s. where R= real line, t 1 = the point
exclusion topology with the excluding point 0 and t 2 4 ]f , R , ]0((. If
A4 ]1, 2(, then F4R0A is t 1-closed and 1 �F . But R is the only t 2-open set
with F%R and R intersects every t 1-open set containing 1 . So, by Definition 2.6,
t 1 is not regular with respect to t 2 . Therefore (R , t 1 , t 2 ) is not pairwise regular
according to Definition 2.6.

On the other hand, take any F� F (t 1
a ), Fcf , R . Then, by definition of t 1 ,

0 �F and, if x�R is such that x�F , then xc0. It is not difficult to check that
U4 ]x( �t 1

a and V4F�t 2
a . From the disjointness of U and V we deduce that t 1

is a-regular with respect to t 2 . The definition of t 2 shows that, if F� F (t 2
a ),

Fcf , R , then 0 �F and so the definition of t 1 guarantees that F�t 1 %t 1
a . If

x�F , then x and F can be separated by U4 ]0(N ]x( �t 2
a and V4F�t 1

a , as
the disjointness of U and V is obvious from their construction. Hence t 2 is a-regu-
lar with respect to t 1 . Therefore, (R , t 1 , t 2 ) is pairwise a-regular.

E x a m p l e 4.4. In the b.t.s. of the previous example take t 1 = the topology t 2

of that example and t 2 4 ]f , R , R0]0((. Clearly, (R , t 1 , t 2 ) is pairwise regular.
Take A4 ]0, 1(. Then A�t 1

a , so that F4R0A� F (t 1
a ) and 1 �F . Now if V�t 1

a

such that F%V, then V4R or R0]0(. In both cases, V intersects any t 1-set U
containing 1. Consequently, t 1 is not a-regular with respect to t 2 . So (R , t 1 , t 2 )
is not pairwise a-regular.

Pairwise a-normality

D e f i n i t i o n 4.5. A b.t.s. (X , t 1 , t 2 ) is termed pairwise a-normal if the b.t.s.
(X , t 1

a , t 2
a ) is pairwise normal, that is if, for each F1 � F (t 1

a ) and F2 � F (t 2
a ), di-

sjoint from F1 , there exist U�t 2
a and V�t 1

a , such that F1 %U , F2 %V and
UOV4f.

For a space with single topology Mršević and Reilly [9] posed the question:
Does normality of (X , ta ) imply ta4t? J. Dontchev [1] nicely answered this que-
stion in affirmative showing that, if (X , ta ) is normal, then ta4t . Thus «a-nor-
mality» always implies «normality» in a single topological space. But it is highly
surprising that the concepts pairwise normality and pairwise a-normality are in-
dependent of each other. This assertion has been substantiated by Examples 4.5
and 4.6 below.
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E x a m p l e 4.5. In the b.t.s. of Example 4.1, take t 1 = the right hand topology
t 2 of that example and t 2 4 sup ]s 1 , s 2 (, (called the countable complement
extension topology by Steen and Seebach [14]), where s 1 = the usual topology and
s 2 = the cocountable topology. We first note that any set G is t 2-open iff G4U0A

where U�s 1 and A is countable. Take F1 4 (2Q , 0 ] and F2 4 m 1

n
: n�N (= the

set of positive integers)n. Then F1 � F (t 1 ), F2 � F (s 2 ) % F (t 2 ) and F1 OF2 4f .

Suppose U�t 2 , V�t 1 such that F1%U and F2%V. We claim that UOVcf .

Since
1

n
�F2 %V , ( n�N , and V�t 1 , it follows that (0 , Q) %V . The fact that

U�t 2 assures that U must be of the form U4G0A , where G�s 1 and A is coun-
table. Since (2Q , 0 ] 4F1 %U4G0A , it follows that 0 �G0A%G . This gives the
existence of some rD0 such that 0 � (2r , r) %G¨0 � (2r , r)0A%G0A4U .
Since A is countable, fc (0 , r)0A% (2r , r)0A%U . But [(0 , r)0A]O (0 , Q)
cf , which indicates that [(0 , r)0A]OVcf and this gives UOVcf . Hence
(R , t 1 , t 2 ) is not pairwise normal. Suppose F1 � F (t 1

a ), F1 cf , R and F2 � F (t 2
a ),

with F1 OF2 4f . Then Intt 1
(R0F1 ) 4 (a , Q) for some a�R . If b�R such that

bDa then

(2Q , b) & (2Q , a] 4R0Intt 1
(R0F1 ) 4Clt 1

(F1 ) .

Hence F1 %Clt 1
(F1 ) % (2Q , b). Also F1 %R0F2 and so,

F1 % (2Q , b)O (R0F2 ) 4U , say .

Since (2Q , b) �s 1 %t 2 %t 2
a and t 2

a is a topology, we observe that U�t 2
a .

If we write V4F2 N [b , Q), then (b , Q) % Intt 1
(V) ¨R%Clt 1

( Intt 1
(V) ) ¨R

4 Intt 1
( Clt 1

( Intt 1
(V) ) ). So V�t 1

a . Also F2 %V . Now UOV4 [ (2Q , b)
O (R0F2 ) ]O [F2 N [b , Q) ] 4 [ (2Q , b)O (R0F2 )OF2 ]N [ (2Q , b)O (R0F2 )
O [b , Q) ] 4f . Hence (X , t 1 , t 2 ) is pairwise a-normal.

E x a m p l e 4.6. L e t (R , t 1 , t 2 ) be a b. t . s . w h e r e R = th e r e a l l i n e ,
t 1 4 ]f , R , ]0(( and t 2 4 ]f , R , ]0, 1((. From the definitions of t 1 and t 2 , it is
clear that every non-empty t 1-closed set intersects every non-empty t 2-closed set
and hence the b.t.s. (R , t 1 , t 2 ) is trivially pairwise normal. Now take
F1 4 ]2, 3(, F2 4 ]4, 5(. We observe:

(1) Clt 1
(F1 ) 4R0]0(

¨Clt 1
(Intt 1

( Clt 1
(F1 ) ) ) 4Clt 1

(Intt 1
(R0]0() ) 4f¨F1 � F(t 1

a ).
(2) In like manner, F2 � F (t 2

a ) and (3) F1 OF2 4f .
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Suppose F1 %U�t 2
a and F2 %V�t 1

a . Since U�t 2
a , Intt 2

(U) cf . This implies,
by definition of t 2 , that ]0, 1( % Intt 2

(U) %U . Similar reasoning produces that
]0( % Intt 1

(V) %V . This gives that UOVcf . Hence (R , t 1 , t 2 ) is not pairwise
a-normal.

5 - Interrelationships

So far we have devoted ourselves to the introduction of three bitopological se-
paration axioms, viz pairwise a-Hausdorffness, pairwise a-regularity and pairwise
a-normality. We have also investigated the interconnection between these notions
and the corresponding notions via open sets, which already exist in literature. The
outcome of our investigation can be summarized as follows:

(a) Pairwise Hausdorffness ¨ Pairwise a-Hausdorffness but the reverse im-
plication does not hold.

(b) Pairwise regularity and Pairwise a-regularity are independent of each
other.

(c) Pairwise normality and Pairwise a-normality are independent of each
other.

Now we like to pay our attention to study the interrelationships between these
new bitopological separation axioms. Examples 5.1 and 5.2 have been constructed
below to reveal some relations existing among these axioms.

E x a m p l e 5.1. There is a pairwise a-Hausdorff b.t.s. which is not pairwise
a-regular. Let (R , t 1 , t 2 ) be a b.t.s. where R= the real line, t 1 = the usual topo-
logy and t 2 = the lower limit topology. We first note that t 1 %t 2 . Since t 1 is Hau-
sdorff and t 1 %t 2 , t 2 is Hausdorff. Hence the b.t.s. (R , t 1 , t 2 ) is pairwise Hau-
sdorff and so, by (a), it is pairwise a-Hausdorff.

That (R , t 1 , t 2 ) is not pairwise a-regular will be clear from the following ar-

gument. Consider the set F4 m 1

n
: n�N (= the set of positive integers)n of

Example 4.2. Then F� F (t 1
a ) as shown in that example. Also 0 �F . Take any two

sets U , V such that 0 �U�t 1
a and F%V�t 2

a . We assert that UOVcf . This can
be checked as follows.

The a-ness of U with respect to t 1 indicates that 0 is an interior point of the
t 1-open set Int ( Cl(Int (U) ) ). Hence r1 (D0) can be found such that

0 � (2r1 , r1 ) % Intt 1
( Clt 1

( Intt 1
(U) ) ) %Clt 1

(Intt 1
(U) ) .

Also we can find a positive integer n0 such that the element
1

n0

�F lies in
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(2r1 , r1 ). But
1

n0

is an interior point of the t 2-open set Intt 2
( Clt 2

(Intt 2
(V) ) ) and

t 2 is the lower limit topology. So there exists r2 (D0) such that

k 1

n0

,
1

n0

1r2l% Intt 2
( Clt 2

(Intt 2
(V) ) ) %Clt 2

( Intt 2
(V) ) .

If r4 min mr1 2
1

n0

, r2n , then k 1

n0

,
1

n0

1rh% k 1

n0

,
1

n0

1r2h%Clt 2
(Intt 2

(V) )

¨ k 1

n0

,
1

n0

1rhOIntt 2
(V) cf . Suppose x� k 1

n0

,
1

n0

1rhOIntt 2
(V). Since

Intt 2
(V) is a t 2-open set containing x , there exists r3 D0 such that [x , x1r3 )

% Intt 2
(V). This implies that the set G defined by G4 k 1

n0

,
1

n0

1rh is such that

GO [x , x1r3 ) cf4 [x , k), where k4 min m 1

n0

1r , x1r3n. Obviously, the defi-

nitions of n0 , r and k give (x , k) % [x , x1r3 ) % Intt 2
(V) and k 1

n0

,
1

n0

1rh
%(2r1 , r1 )%Clt 1

( Intt 1
(U) ), whence we obtain (x , k) %G% k 1

n0

,
1

n0

1rh
% Clt 1

( Intt 1
(U) ) ¨ (x , k)OIntt 1

(U) c f ¨ Intt 2
(V) O Intt 1

(U) c f ¨ U O V c f .
Hence t 1 is not a-regular with repect to t 2 . So (R , t 1 , t 2 ) is not pairwise
a-regular.

E x a m p l e 5.2. There is a pairwise a-regular b.t.s. which is not pairwise a-
normal. In this case, the ground set of the space we consider is taken from

Example 94 in [14]. Let X4 0
n40

Q

Ln be the union of the horizontal lines in the Eu-
clidean plane where

(i) L0 4 ](x , 0 ) : 0 ExE1(

and

(ii) Ln 4 mgx ,
1

n
h : 0 GxE1n, where n�N , the set of positive integers.

A family t of subsets of X is defined as follows:

(a) f , X�t

(b) G%X0kmg0,
1

n
h : n�NnNL0l ¨ G�t .

(c) For nF1, G(%X) contains points of the form g0,
1

n
h¨G�t iff X0G con-

tains only a finite number of points of Ln .
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(d) For 0 ExE1, (x , 0 ) �G¨G�t iff for each (x , 0 ) �G there exists nx �N
with

Unx
(x , 0 ) 4 ](x , 0 )(Nmgx ,

1

n
h : nFnxn%G .

It is not hard to check that t is a topology with the following proper-
ties:

[P1] Every singleton on the horizontal line Ln (nF1) with the point g0,
1

n
h

deleted is open and hence any subset of Ln 0mg0,
1

n
hn is so. (This follows from (b)

of the definition of t). Also each Ln (nF1) is open, by (c) of the definition of t .
[P2] No point of the line Ln (nF1), not to speak of other points of X , can be

an accumulation point of a singleton of Ln and hence singletons on Ln (nF1) are
closed.

[P3] The sets Unx
(x , 0 ) defined in (d) are open sets. On the other hand, no

point of X0Unx
(x , 0 ) is an accumulation point of Unx

(x , 0 ) and therefore
Unx

(x , 0 ) is closed as well.
[P4] For the topological space (X , t), ta4t, which is proved below.

Suppose U�ta . Then the following cases are to be considered.

C a s e I. Let U%X0kmg0,
1

n
h : n�NnNL0l . Then by (b) of the definition of

t , U�t .

C a s e II. Let U contain points of the form g0,
1

n
h . The a-ness of

U ¨ Intt (U) cf . Define the set A by

A4 kLn 0mg0,
1

n
hnlO [X0Intt (U) ]

which is a subset of Ln 0mg0,
1

n
hn . Hence, by [P1 ], A is open. We assert that A is

finite. The very construction of A guarantees that A contains no point of Intt (U).
On the other hand, the openness of A indicates that no point of A is an accumula-



171BITOPOLOGICAL a-COMPACT SPACES[13]

tion point of Intt (U). These facts give

¨

¨

¨

AOIntt (U) 4f , AOD[ Intt (U) ] 4f

AOClt ( Intt (U) ) 4f

AOIntt ( Clt ( Intt (U) ) ) 4f

A%X0Intt ( Clt ( Intt (U) ) ).

Again, g0,
1

n
h�U%Intt ( Clt ( Intt (U) ) ). This, together with (c) of the definition of

t , implies that X0Intt ( Clt ( Intt (U) ) ) contains only a finite number of points of Ln

and contains A . Hence A is finite and this yields from the construction of A that
Intt (U) and, a fortiori, U contains all but finitely many points of Ln . So, by (c) of
the definition of t , U�t .

C a s e III. Let U contain points of L0 , i.e. points of the form (x , 0 ), where
0 ExE1. Clearly (Intt (U) ) cf and Intt ( Clt ( Intt (U) ) ) contains (x , 0 ) �L0 . Hen-
ce (d) of the definition of t gives the existence of a positive integer nx such
that

Unx
(x , 0 ) % Intt ( Clt ( Intt (U) ) ) %Clt (Intt (U) ) 4 [ Intt (U)ND[Intt (U) ] ] .(1)

By [P1 ], mgx ,
1

n
hn%Ln 0mg0,

1

n
hn is open, whence no point of mgx ,

1

n
h : nFnxn

is an accumulation point of Intt (U) which then implies that

mgx ,
1

n
h : nFnxnOD[Intt (U) ] 4f .

Consequently, from (1) and the definition of Unx
(x , 0 ), it follows that Unx

(x , 0 )
%U . So, by (d) of the definition of t , U�t. Thus in any case U�t and it indicates
that ta%t. This gives ta4t .

Now we consider the b.t.s. (X , t 1 , t 2 ), where t 1 4t 2 4t4 the topology con-
structed above.

Result 1) of Ex. 94 in [14], saying that (X , t) is completely regular, implies
that

(X , t 1 , t 2 ) 4 (X , t 1
a , t 2

a )

is pairwise a-regular. Result 2) of Ex. 94 in [14], saying that (X , t) is not normal,
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implies that

(X , t 1 , t 2 ) 4 (X , t 1
a , t 2

a )

is not pairwise normal.

R e m a r k 5.1. The purpose of the above two examples can now be summed
up as follows:

I. Pairwise a-Hausdorffness Ö Pairwise a-regularity
II. Pairwise a-regularity Ö Pairwise a-normality.

It is a natural question whether the reverse implications made in Remark 5.1
will hold or not. Since pac spaces have no role to play in that investigation, we did
not pay our attention in that direction for the time being.

6 - Properties of pac spaces

Remark 5.1 raises the pertinent question: Can there be any space where pair-
wise a-Hausdorffness implies pairwise a-regularity or pairwise a-regularity im-
plies pairwise a-normality? Next two theorems offer a positive answer to this
query.

T h e o r e m 6.1. If a b.t.s. (X , t 1 , t 2 ) is both pac and pairwise a-Hausdorff,
then it is pairwise a-regular.

P r o o f . It follows by Theorem 2.1 applied to the space (X , t 1
a , t 2

a ).

T h e o r e m 6.2. If a b.t.s. (X , t 1 , t 2 ) is pac and either t 1 is a-regular with
respect to t 2 or t 2 is a-regular with respect to t 1 , then (X , t 1 , t 2 ) is pairwise
a-normal.

P r o o f . It follows by Theorem 2.2 applied to the space (X , t 1
a , t 2

a ).

C o r o l l a r y 6.1. If a b.t.s. (X , t 1 , t 2 ) is both pac and pairwise a-regular,
then it is pairwise a-normal.

P r o o f . Obvious.

C o r o l l a r y 6.2. If a b.t.s. (X , t 1 , t 2 ) is both pac and pairwise a-Hausdorff,
then it is pairwise a-normal.

P r o o f . Follows from Theorem 6.1 and Corollary 6.1.
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Replacing «t i-compact» (i41, 2) by «t i-a-compact» (i41, 2) in the Defini-
tion 2.3 one obtains a b.t.s. (X , t 1 , t 2 ) which may be termed as bi-a-compact spa-
ce. This notion has been utilized in the theorem to follow.

From Example 3.2. it has been observed that a-compactness for individual to-
pologies does not necessarily imply the pac of a b.t.s.. But pairwise a-Hausdorf-
fness provides a condition for a bi-a-compact space (X , t 1 , t 2 ) to be pac , as seen
from the following theorem.

T h e o r e m 6.3. If a b.t.s. (X , t 1 , t 2 ) is both bi-a-compact and pairwise a-
Hausdorff, then it is pac .

P r o o f . Let (X , t 1 , t 2 ) be a bi-a-compact space which is also pairwise a-
Hausdorff. Consequently, (X , t 1

a , t 2
a ) is bi-compact and pairwise Hausdorff. So,

by Theorem 2.3, t 1
a4t 2

a . Now, the compactness of (X , t 1
a ) and the equality

t 1
a4t 2

a together lead to the pairwise compactness of (X , t 1
a , t 2

a ), that is the pac of
(X , t 1 , t 2 ).

C o r o l l a r y 6.3. If a b.t.s. (X , t 1 , t 2 ) is both bi-a-compact and pairwise a-
Hausdorff then

(i) (X , t 1 , t 2 ) is pac
(ii) (X , t 1 , t 2 ) is pairwise a-regular
(iii) (X , t 1 , t 2 ) pairwise a-normal.

P r o o f . Follows from Theorems 6.3, 6.1 and Corollary 6.1.
We draw an end to our present treatment of pac space after the following re-

sults (Theorem 6.4 and Corollary 6.4) which establish an interconnection among
bi-Hausdorffness, pairwise a-Hausdorffness and the pac .

Fukutake [4] introduced the notion of bi-Hausdorffness of a b.t.s. (X , t 1 , t 2 )
(see Definition 2.8). In view of the observation made at page 5, the notion bi-Hau-
sdorffness can be rephrased as bi-a-Hausdorffness.

The bi-a-Hausdorffness does not, in general, imply pairwise a-Hausdorffness
as seen in the following example.

E x a m p l e 6.1. In the b.t.s. of Example 4.1, take t 2 4 ]G%R : R0G is finite
or 0 �R0G(, which is a modification of Example 24 in [14]. Clearly (R , t 1 ) is
Hausdorff and hence a-Hausdorff. To show that (R , t 2 ) is also a-Hausdorff we
observe:

If x , y (cx) �R and xc0, yc0, then take U , V�t 2 , where U4 ]x( and
V4 ]y(, so that UOV4f . If x40, yc0, then we take V4 ]y( and U4R0V
so that U , V�t 2 , x�U , y�V and UOV4f . Thus, in any case two distinct poin-
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ts are strongly separated in (R , t 2 ). Hence (R , t 2 ) is Hausdorff and so it is
a-Hausdorff.

On the other hand, that (R , t 1 , t 2 ) is not pairwise a-Hausdorff can be chec-
ked as follows:

Take two points x , y�R with x40. Let U�t 2
a , V�t 1

a such that x�U and
y�V . Now Intt 2

(U) cf and Intt 1
(V) cf . The following cases are to be con-

sidered.

C a s e 1. Let 0 �Intt 2
(U). Then, by definition of t 2 , Intt 2

(U)N ]0( is a t 2-
closed set containing Intt 2

(U). Since Clt 2
(Intt 2

(U) ) is the smallest closed set con-
taining Intt 2

(U), we obtain

Clt 2
(Intt 2

(U) ) %Intt 2
(U)N ]0(

¨ Intt 2
( Clt 2

(Intt 2
(U) ) ) % Intt 2

( Intt 2
(U)N ]0() .

(2)

The following subcases now deserve consideration.

S u b c a s e (i). Suppose Intt 2
(U)N ]0( �t 2 . Then, by definition of t 2 ,

R0[Intt 2
(U)N ]0(] is finite, whence it follows that R0[Intt 2

(U) ] is finite. There-
fore Intt 2

(U) and, a fortiori, U contain all but a finite number of elements
of R .

S u b c a s e (ii). Suppose Intt 2
(U)N ]0( �t 2 . Then Intt 2

( Intt 2
(U)N ]0()

4Intt 2
(U). Hence (2) gives

¨

¨

¨

Intt 2
( Clt 2

( Intt 2
(U) ) ) %Intt 2

(U) %U ,

U4Intt 2
( Clt 2

( Intt 2
(U) ) ), by a-ness of U ,

U�t 2 , 0 �U ,

U contains , by definition of t 2 , all but a finite number of elements of R .

C a s e II. Suppose 0 �Intt 2
(U). Then the definition of t 2 gives that Intt 2

(U)
and hence U contains all but a finite number of elements of R . Thus, in any case
U contains all but a finite number of elements of R .

Again, Intt 1
(V) cf¨V contains an open interval. Hence V is infinite. From

this we infer that UOVcf . Hence (R , t 1 , t 2 ) is not pairwise a-Hausdorff.

T h e o r e m 6.4. If a b.t.s. (X , t 1 , t 2 ) is both pac and bi-a-Hausdorff, then it
is pairwise a-Hausdorff.
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P r o o f . Let (X , t 1 , t 2 ) be a pac space which is also bi-a-Hausdorff. Conse-
quently, (X , t 1

a , t 2
a ) is pairwise compact and bi-Hausdorff. So, by Theorem 2.4,

t 1
a4t 2

a . Now, the Hausdorffness of (X , t 1
a ) and the equality t 1

a4t 2
a together lead

to the pairwise Hausdorffness of (X , t 1
a , t 2

a ) which, in its turn, implies that
(X , t 1 , t 2 ) is pairwise a-Hausdorff.

C o r o l l a r y 6.4. If a b.t.s. (X , t 1 , t 2 ) is both pac bi-a-Hausdorff then

(i) (X , t 1 , t 2 ) is pairwise a-Hausdorff
(ii) (X , t 1 , t 2 ) is pairwise a-regular
(iii) (X , t 1 , t 2 ) is pairwise a-normal.

P r o o f . Follows from Theorem 6.4, 6.1 and Corollary 6.1.
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suggestions to improve the original form of this paper.
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A b s t r a c t

The concept of a-compactness [8] in single topological spaces has been generalized to
bitopological spaces introduced by Kelly [6]. Some new bitopological separation axioms
have been introduced to interpret the properties of a-compact spaces in the bitopological
setting. Apart from this parallel to, some pertinent questions of the existing literature in
respect to compactness have been solved. Profuse examples have been provided in support
of every statement made in the form of Definition, Lemma or Remark.
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