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Forced oscillations in piezoelectric crystals (**)

1 - Introduction

In this paper we prove existence and uniqueness of a unique periodic solution
for the hyperbolic-elliptic system of partial differential equations, which models
the forced oscillations in a piezoelectric viscoelastic body. We refer to [4] for a de-
tailed desciption of the basic equations.

Let V , the region occupied by the body, be an open and bounded subset of R 3

with a boundary G of class C 2. We denote by nk the unit vector normal to G and by
NVN the volume of V. The forcing term f(x , t) is a function defined in V3R 1 ,
periodic in t with period T. To write the relevant equations we define the
operators:

(Au)i 42(aijlm ul , m ), j(1.1)

Cf42(dkl f , l ), k(1.2)

Di (f , u) 42dil f , l 1eilm ul , m(1.3)

Eu42(eklm ul , m ), k (Bf)i 42(eijl f , l ), j i41, 2 , 3 .(1.4)

(*) Department of Mathematics, University of Pisa, Via Buonarroti 2, 56100 Pisa,
Italy.

(**) Received May 9th, 2002, and in revised form September 11th 2002. AMS classifica-
tion 35 B 10, 35 M 10.
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The index summation convention has been used and ¯vi

¯xj

4vi , j . The vector Di is

the electric induction and aijlm the fourth order elastic tensor which is assumed to
satisfy

aijlm 4almij 4ajilm 4aijml(1.5)

aijlm Xij Xlm FaXij Xij , aD0, Xij �R 1 , Xij 4Xji .(1.6)

The third order piezoelectric tensor eijl and the dielectric tensor dkl obey the
conditions:

eijl 4ejil 4eilj(1.7)

dkl 4dlk , dkl j k j l FdNjN2 , j�R 3 .(1.8)

The elastic displacement and the electric potential are denoted by u(x , t) and
f(x , t), respectively. We study the following problem: to find u(x , t) and f(x , t)
such that

u91Au1Bf1b(u8 ) 4 f(1.9)

u40 on G(1.10)

u(x , t) 4u(x , t1T)(1.11)

Cf2Eu40(1.12)

Dk nk 40 on G(1.13)

f(x , t) 4f(x , t1T)(1.14)

�
V

f(x , t) dx40.(1.15)

The body is supposed to be electrically insulated on the boundary and condition
(1.13) reflects this fact. The electric potential f is defined apart an arbitrary con-
stant, which is normalized with condition (1.15). The viscosity of the medium is
modelled by a continuous strictly monotonic map b(j) from R 3 to R 3 , on which we
assume: (i) there exists dD0 and hD0 such that b i (j)ji FhNjNr11 if NjNFd , (ii)
there exists kD0 and KD0 such that Nb(j)NGK1kNjNr for all j�R 3 , rF1.

We use a method proposed by G. Prodi in [6] to find the apriori estimates on
u(t) needed to prove existence of a periodic solution. The trick lies in definig new
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unknown functions v(t) and c(t) with zero means with respect to t:

v(t) 4u(t)2u, c(t) 4f(t)2f.(1.16)

Here and hereafter an overbar denotes the mean over one period. Averaging the
equations (1.9)-(1.15) over one period we find

A(u)1B(f)1b(v8 ) 4 f(1.17)

u 40 on G(1.18)

C(f)2E(u) 40(1.19)

Dk (f, u) nk 40 on G(1.20)

�
V

f(x) dx40.(1.21)

It follows that v and c satisfy the problem

v91Av1Bc1b(v8 )2b(v8 ) 4g(1.22)

v40 on G(1.23)

Cc2Ev40(1.24)

Dk (c , v) nk 40 on G(1.25)

�
V

c(x , t) dx40,(1.26)

where g4 f2 f .

2 - Weak formulation and existence of periodic solution

The scalar product in L 2 (V) and in (L 2 (V) )3 is denoted by (, ) and the corre-
sponding norm by V V. Spaces of vector-valued functions are denoted by boldface.
If B is a Banach space and 1 GpEQ , the set of functions u(t) with values in B ,
periodic with period T , such that

�
0

T

Vu(t)VB
p dtEQ
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is denoted by Lp (T ; B). We define the space

V4 {f�H 1 (V), �
V

f(x , t) dx40}

and the bilinear forms: a(u , v), b(f , u) and c(f , c) on H 1
0 (V)3H 1

0 (V),
V3H 1

0 (V), and V3V respectively, by

a(u , v) 4�
V

aijlm ul , m vi , j dx(2.1)

b(f , u) 4�
V

eijl f , l ui , j dx(2.2)

c(f , c) 4�
V

dij f , i c , j dx .(2.3)

They are all bounded and a(u , v), c(f , c) are also symmetric and coercive by
(1.5)-(1.8). The operators

A : H 1
0 (V)OH 2 (V) KL2 (V)(2.4)

C : VOH 2 (V) KL 2 (V)(2.5)

defined in (1.1) and (1.2) correspond to a(u , v) and c(f , c). The operators

B : VOH 2 (V) KL2 (V), E : H 1
0 (V)OH 2 (V) KL 2 (V),(2.6)

defined in (1.4), correspond to b(f , u) via

(Bf , u) 4b(f , u) 4 (Eu , f).(2.7)

We assume:

f (t) �L
r11

r (T ; L
r11

r (V) )(2.8)

aijlm �L Q (V), eijl �L Q (V), dij �L Q (V)(2.9)

and intend (1.6) and (1.8) to hold a.e. in V. The weak formulation of problem
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(1.17)-(1.26) is the following: to find v , c and u, f such that

v(t) �L Q (T ; H 1
0 (V) )(2.10)

v8 (t) �L r11 (T ; Lr11 (V) )OL Q (T ; L2 (V) )(2.11)

v 40(2.12)

(v9 (t), n)1a(v(t), n)1b(c(t), n)1 (b(v8 )2b(v8 ), n) 4 ( g(t), n)(2.13)

for all n�Lr11 (V)OH 1
0 (V)

c(t) �L Q (T ; V)(2.14)

c(c(t), h) 4b(h , v(t) )(2.15)

for all h�V

u �H 0
1, r11

r (V)(2.16)

f �H
1, r11

r (V), �
V

fdx40(2.17)

a(u, w)1b(f, w)1 (b(v8 ), w) 4 (f , w)(2.18)

for all w�Lr11 (V)OH 1
0 (V)

c(f, h) 4b(h , u)(2.19)

for all h�H 1, r11 (V) such that s
V

hdx40.

Instead of (2.13) and (2.15) we can take, as an equivalent weak formulation,

�
0

T

]2(v8(t), g8(t))1a(v(t), g(t))1b(c(t), g(t))1(b(v8)2b(v8), g(t))( dt

4�
0

T

(g(t), g(t)) dt

(2.20)
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for all g(t) �L Q (T ; H 1
0 (V) )OL r11 (T ; Lr11 (V) ), g8 (t) �L r11 (T ; Lr11 (V) )

OL Q (T ; L2 (V) )

�
0

T

]c(c(t), z(t) )2b(z(t), v(t) )( dt40(2.21)

for all z(t) �L 2 (T , V).

T h e o r e m . There exists one and only one solution to problem (2.10)-
(2.21).

P r o o f . We apply the Faedo-Galerkin method. Let ]wk ( be a sequence of
functions of class C Q

0 (V) free and total in H 1
0 (V)OLr11 (V). For each m we defi-

ne an approximate solution

vm (t) 4 !
k41

m

cmk (t) wk

and determine c m (t) �V as the unique solution to the following problem

c m (t) �V c(c m (t), h) 4b(h , vm (t) )(2.22)

for all h�V. The coefficients cmk (t) are computed with the system of ordinary dif-
ferential equations

(2.23) (vm9 (t), wk)1a(vm (t), wk)1b(c m (t), wk)1(b(vm8 )2b(vm8 ), wk)4(g(t), wk).

To prove that there exists one and only one solution to the system (2.22), (2.23) we
apply the Leray-Schauder method, considering the following auxiliary problem Pl

containing the parameter l� [0 , 1 ]:

(vm9 (t), wk )1a(vm (t), wk )1b(c m (t), wk )1 (vm8 (t), wk )

4l(vm8 (t), wk )2l(b(vm8 )2b(vm8 ), wk )1 ( g(t), wk ), k41, 2 , R , m .(2.24)

c m (t) �V c(c m (t), h) 4b(h , vm (t) ).

If l40 the linear system Po has one and only one solution periodic of period T.
Resonance phenomena are in fact excluded by the presence of the dissipative
term (vm8 (t), wk ). Since all possible periodic solutions of period T of problems Pl

are «a priori» bounded indipendently of l , we conclude that problem P1 , i.e.
(2.22), (2.23), admits one and only one periodic solution of period T. Moreover, in-
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tegrating (2.23) over one period and taking into account that g 40, we ob-
tain

a(vm , wk )1b(cm , wk ) 40.

By (2.22) this implies

a(vm , vm )1c(cm , cm ) 40,

hence vm 40. We proceed to find an apriori estimate for ]v8m (t)(. Taking the time
derivative in (2.22) and choosing h4c m (t) in the resulting equation, we have

1

2

d

dt
c(c m (t), c m (t) ) 4b(c m (t), vm8 (t) ).(2.25)

Let us multiply (2.23) by cmk8 (t), add for k41, R m and recall (2.25). Defi-
ning

j m (t) 4
1

2
Vv8m (t)V

2 1
1

2
a(vm (t), vm (t) )1

1

2
c(c m (t), c m (t) )(2.26)

we obtain

j 8m (t)1 (b(vm8 (t) )2b(vm8 ), vm8 (t) ) 4 ( g(t), vm8 (t) )(2.27)

and, integrating over one period,

�
0

T

(b(vm8 (t) ), vm8 (t) ) dt4�
0

T

( g(t), vm8 (t) ) dt .(2.28)

By assumption (i) we find easily that there exists a constant C1 such that

�
0

T

Vvm8 (t)VLr11 (V)
r11 dtGC1 .(2.29)

Since vm 40 we have also

max
t� [0 , T]

Vvm (t)VLr11 (V) GC2 .(2.30)

The easy proof of estimate (2.30) is the main reason for adopting the present
method. Let us multiply (2.23) by cmk (t), sum over k and integrate over one
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period. We obtain

�
0

T

]2Vvm8 (t)V

2 1a(vm (t), vm (t) )1c(c m (t), c m (t) )1 (b(vm8 (t), vm (t) )( dt

4�
0

T

( g(t), vm (t) ) dt .

(2.31)

Use has been made of (2.22) with h4c m (t). Then (1.7), (1.9) and assumption (ii)
yield, by the Hoelder inequality,

aVvmVL 2(T;H 1
0(V))

2 1dVc m (t)VL 2(T;V)
2 GVvm8 VL 2(T;L2(V))

2 1KNVN
1

2 T
1

2
VvmVL 2(T; L2(V))

1kVvm8V
r
L r11(T;Lr11(V))VvmVL r11(T;Lr11(V))1VgVL

r11

r (T; L
r11

r (V))VvmVL r11(T; Lr11(V)) .
(2.32)

Recalling (2.29) and (2.30) we find

�
0

T

Vvm (t)V

2
H 1

0 (V) GC3(2.33)

and

�
0

T

Vc m (t)VV
2 dtGC4 .(2.34)

Let us integrate (2.27) over an arbitrary interval [t , t] and then integrate again
the resulting equation, with respect to t , over an interval of periodicity. We
obtain

Tj m (t)1�
0

T

�
t

t

(b(vm8 (l) ), vm8 (l) ) dl dt

4�
0

T{j m (t)1�
t

t

(b(vm8 ), vm8 (l) ) dl1�
t

t

( g(l), vm8 (l) ) dl} dt .

(2.35)

The left hand side in (2.35) is estimated from below using (ii), whereas the right
hand side can be majorized using (2.29), (2.30) and (2.33). Therefore, there exists
a constant C5 such that

max
t� [0 , T]

]Vvm8 (t)V

2 1Vvm (t)V

2
H 1

0 (V) 1Vc m (t)V

2
V ( GC5 .(2.36)

All constants Ci depends only on the data. It follows that from ]vm ( and ]c m ( it
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is possible to extract two subsequences, not relabelled, such that

vm Kv weak˜ in L Q (T ; H 1
0 (V) )(2.37)

vm8 Kv8 weak˜ in L Q (T ; L2 (V) ) and weakly in L r11 (T ; Lr11 (V) )(2.38)

c m Kc in L 2 (T ; V) weakly .(2.39)

In addition, by (ii), there exists h such that:

b(vm8 ) Kh weakly in L
r11

r (T ; L
r11

r (V) )(2.40)

and

b(vm8 ) K h weakly in L
r11

r (V).(2.41)

By the assumed properties of ]wk ( we have, recalling (2.23):

�
0

T

]2(v8 (t), g8 (t) )1a(v(t), g(t) )1b(c(t), g(t) )1 (h(t)2h, g(t) )( dt

4�
0

T

( g(t), g(t) ) dt

(2.42)

for all g(t) �L Q (T ; H 1
0 (V) ) and g8 (t) �L r11 (T ; Lr11 (V) )OL Q (T ; L2 (V) ).

From (2.23) we obtain, by (2.39),

c(c(t), h) 4b(h , v(t) )(2.43)

for all h�V. It remains to prove that

h(t) 4b(v8 (t) ).

Taking formally the time derivative in (2.43), setting h4c(t) in the resulting
equation and g(t) 4v8 (t) in (2.42), we obtain, by periodicity,

�
0

T

(h(t)2h, v8 (t) ) dt4�
0

T

( g(t), v8 (t) ) dt .(2.44)

To prove rigorously (2.44) we note that we have, in the distributional sense,

v91Av1Bc1h2h 4g(2.45)
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and

Cc4Ev .(2.46)

If r n (t) is a regularizing sequence of even periodic functions of period T and ˜
denotes the corresponding convolution on the circle, we find

v8 ˜r n ˜r n �C Q (T ; L r11 (V) ) .

Hence

�
0

T

(v9 , v8 ˜r n ˜r n ) dt40, �
0

T

(Av , v8 ˜r n ˜r n ) dt40.

From (2.46) we obtain

�
0

T

(Bc , v8 ˜r n ˜r n ) dt4�
0

T

(Ev8 ˜r n ˜r n , c) dt4�
0

T

(Cc 8 ˜r n ˜r n , c) dt40.

Consequently, by (2.45)

�
0

T

(h(t)2h, v8 ˜r n ˜r n ) dt4�
0

T

( g(t), v8 ˜r n ˜r n ) dt .(2.47)

Letting nKQ we arrive at (2.44) and, since

�
0

T

(h, v8 (t) ) dt40,

we get also

�
0

T

(h(t), v8 (t) ) dt4�
0

T

( g(t), v8 (t) ) dt .(2.48)

From (2.28) we obtain

lim
mKQ

�
0

T

(b(vm8 (t) ), vm8 (t) ) dt4�
0

T

(h(t), v8 (t) ) dt .(2.49)
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Let w(t) �L r11 (T ; Lr11 (V) ). By monotonicity we have

�
0

T

(b(vm8 (t) )2b(w(t) ), vm8 (t)2w(t) ) dtF0

and, by (2.49),

�
0

T

(h(t)2b(w(t) ), v8 (t)2w(t) ) dtF0.

Setting w(t) 4v8 (t)2lw1 (t), with lF0, and letting lK01, we obtain

�
0

T

(h(t)2b(v8 (t) ), w1 (t) ) dtF0

for all w1 (t) �L r11 (T ; Lr11 (V) ). Hence

�
0

T

(h(t)2b(v8 (t) ), w1 (t) ) dt40

and we conclude that h(t) 4b(v8 (t) ) as required.
We prove uniqueness. Let v1 , c 1 and v2 , c 2 be two solutions and define

w4v1 2v2 , z4c 1 2c 2 .

By difference we have

�
0

T

]2(w8 (t), g8 (t) )1a(w(t), g(t) )

1b(z(t), g(t) )1 (b(v18 (t) )2b(v28 (t) )2b(v18 )1b(v28 ), g(t) )( dt40

for all g(t) �L Q (T ; H 1
0 (V) ), and g8 (t) �L r11 (T ; Lr11 (V) )OL Q (T ; L2 (V) )

and, again by difference from (2.43),

c(z(t), h) 4b(h , w(t) )(2.50)

for all h�V. Reasoning as in the proof of (2.44) we obtain

�
0

T

(b(v18 (t) )2b(v28 (t) ), v18 (t)2v28 (t) ) dt40.(2.51)

By the strict monotonicity of b it follows v18 (t) 4v28 (t). On the other hand, v1 4 v2

40, hence v1 (t) 4v2 (t). From (2.50) we have

c(z(t), z(t) ) 40.(2.52)
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Thus c 1 (t) 4c 2 (t). It remains to prove that problem (2.16)-(2.19) has one and
only one solution. We use the L p-theory for elliptic system with p� (1 , 2 ), refer-
ring for more details to [1] and [8] page 201. This theory can be applied to (2.16)-
(2.19) if we recall that G is of class C 2 and that

f 2b(v8 ) �L
r11

r (V).

The need to solve an elliptic problem with the left hand side in L p with p� (1 , 2 )
is inherent to the present method and has relevant consequences. If, for example,
G is not of class C 2 but only lipschitzian, uniqueness fails (see the example given
in [6]); this in turn implies cases of nonuniqueness for the problem as a whole.
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A b s t r a c t

A theorem of existence and uniqueness of forced periodic solutions in a piezoelectric
viscoelastic body is proved.
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