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GIOVANNI CIMATTI (¥)

Forced oscillations in piezoelectric crystals (**)

1 - Introduction

In this paper we prove existence and uniqueness of a unique periodic solution
for the hyperbolic-elliptic system of partial differential equations, which models
the forced oscillations in a piezoelectric viscoelastic body. We refer to [4] for a de-
tailed desciption of the basic equations.

Let Q, the region occupied by the body, be an open and bounded subset of R?
with a boundary I of class C% We denote by #,, the unit vector normal to I and by
| 2| the volume of Q. The forcing term f(x, t) is a function defined in £ x R',
periodic in ¢ with period 7. To write the relevant equations we define the
operators:

1.1) (Aw); = = (@i W, m),

(1.2) Cp=—(dud ),

(1.3) Di(¢,u) = —dyp 1+ e, m

(1.4) Eu=—(eypu )i (Bpli=—(eup), i=1,2,3.

(*) Department of Mathematics, University of Pisa, Via Buonarroti 2, 56100 Pisa,
Ttaly.
(**) Received May 9%, 2002, and in revised form September 11" 2002. AMS classifica-
tion 35 B 10, 35 M 10.
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. . . ; .
The index summation convention has been used and a_L =v; ;. The vector D; is
Lj

the electric induction and a;,, the fourth order elastic tensor which is assumed to
satisfy

(1.5) ijim = Uiy = Gjitm = Wil
1 _
(16) Qijim Xinlm = aXinij’ o> 0, Xij eR y le = AXvﬂ

The third order piezoelectric tensor e;; and the dielectric tensor dj; obey the
conditions:

1.7 €41 = €ji1 = €5y
(1.8) dy=dg, du&r&=0|E|*, EeR’.

The elastic displacement and the electric potential are denoted by u(x, t) and
¢(x, t), respectively. We study the following problem: to find u(x, £) and ¢(x, t)
such that

(1.9) W' +Au+Bo+pu’) =f
(1.10) u=0 on I
(1.11) w(x, t) =u(x, t+T)
(1.12) Co—Eu=0
(1.13) Diny=0 on T
(1.14) oz, 1) = pla, t+ T)
(1.15) j oz, t) de = 0.

o

The body is supposed to be electrically insulated on the boundary and condition
(1.13) reflects this fact. The electric potential ¢ is defined apart an arbitrary con-
stant, which is normalized with condition (1.15). The viscosity of the medium is
modelled by a continuous strictly monotonic map B(&) from R? to R?, on which we
assume: (i) there exists 6 > 0 and & > 0 such that §,(§) &, = h|§|9+1 if |§| =9, (i)
there exists k>0 and K>0 such that |B(§) | < K +k|&|¢ for all EeR?, o=1.

We use a method proposed by G. Prodi in [6] to find the apriori estimates on
u(t) needed to prove existence of a periodic solution. The trick lies in definig new
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unknown functions v(f) and (t) with zero means with respect to ¢:

(1.16) v(t) =ut)—u, Yi)=¢l) —¢.

Here and hereafter an overbar denotes the mean over one period. Averaging the
equations (1.9)-(1.15) over one period we find

(1.17) A@) +B@) +Bw') =F
(118) #=0 on I
(1.19) C(p) — E@) =0
(1.20) D@, W n;=0 on I
1.21) j B(x) dx =0.

g

It follows that v and v satisfy the problem

(1.22) v'+Av+ By +Bw')-pBw') =g
(1.23) v=0 on I
(1.24) Cy—Ev=0
(1.25) Dy(y,v)n;=0 on T
(1.26) [, vy de=0,

o
where g =f—f.

2 - Weak formulation and existence of periodic solution

The scalar product in L2(£2) and in (L2())? is denoted by (,) and the corre-
sponding norm by || ||. Spaces of vector-valued functions are denoted by boldface.
If B is a Banach space and 1 < p < o, the set of functions «(t) with values in B,
periodic with period 7', such that

T
[l dt < oo
0
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is denoted by LP(T; B). We define the space
V= [¢ cHY(Q), qu(x, t) da = 0]
Q

and the bilinear forms: a(u,v), b(¢,u) and c(¢p, ) on H(Q)x HY(Q),
Vx H{(Q), and V x V respectively, by

2.1) a(u, v) = J’aijhnul,mvi,jdx
9
(2.2) b(¢, u) = Jeijlﬁb,lui,jdx
2
(2.3) oo, p) = Jdii‘f’,iw,.idx'
2

They are all bounded and a(u, v), c¢(¢, ¥) are also symmetric and coercive by
(1.5)-(1.8). The operators

2.4) A HNQ)NHYQ)—IX(Q)

2.5) C: VNHXQ)—>L*Q)

defined in (1.1) and (1.2) correspond to a(u, v) and c(¢, v). The operators
2.6) B:VNHYQ)—I*(Q), E:HYQ)NH(Q)—LYQ),

defined in (1.4), correspond to b(¢, u) via

2.7) (Bo, u) =b(¢p, u) = (Eu, ¢).

We assume:

2.8) () e LT (T; LT (@)

2.9) Gimel*(Q), eyel(Q), djel™(Q)

and intend (1.6) and (1.8) to hold a.e. in £2. The weak formulation of problem
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(1.17)-(1.26) is the following: to find v, v and u, ¢ such that

(2.10) v(t)e L=(T; H{(RQ))
(2.11) v'(t) e LN (T; LY () NL*(T; L*(2))
(2.12) v=0

213) "), v) +a(v(t), v) + b(yp(@), v) + (BK') — B"), v) = (g(D), v)

for all veLet1(Q)NHI(Q)

(2.14) w(t)eL>(T;V)
(2.15) c(y(t), n) = b(r, v(t))
for all eV
(2.16) weHY T (@)
@.17) PeH T (Q) [Bdz=0
:
(2.18) @, w) + b(@, w) + P@'), w) =, w)

for all we L 1 (Q)NHL(Q)

(2.19) c(p, n) = b(n, w)

for all ne H“°*1(Q) such that [#ndx=0.
Q

Instead of (2.13) and (2.15) we can take, as an equivalent weak formulation,

T
f {—@'®, Yy ®)+a@®), v) + by @), v) + (B — "), t)} dt

2.20) °

T
= [(g(0), vt dt
0
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for all p(t)eL*(T; Hy(2)NLe " (T; Le*1(Q)), y (t)eLe"(T; L*+1(Q))
NL*(T; L*(2))

T
(2.21) [{ew), &) — b, v} di =0
0

for all {(t) e LX(T, V).

Theorem. There exists one and only one solution to problem (2.10)-
(2.21).

Proof. We apply the Faedo-Galerkin method. Let {w;} be a sequence of
functions of class Cy° (R2) free and total in H}(2) N Le *1(Q). For each m we defi-
ne an approximate solution

m
U’m(t) = 1;—:1 Cone (t) Wy,

and determine v ,,(t) eV as the unique solution to the following problem
(2.22) V@) eV oy, (), n) =0b, v,())

for all € V. The coefficients c,,;, () are computed with the system of ordinary dif-
ferential equations

223)  (v),(®), wy) +a,,®), w) + by, (1), w) + (B,,) - B©,), w,) =(gt), wy).

To prove that there exists one and only one solution to the system (2.22), (2.23) we
apply the Leray-Schauder method, considering the following auxiliary problem P,
containing the parameter 1e[0, 1]:

(U, (), wi) + a(v,, (1), wy) + (Y, (), wy) + (v,,(8), wy)
(2-24) = l(v;n(t)r wk) - l(ﬁ(v;n) - B(v;n)’ wk) + (g(t)’ wk)7 k = 17 29 (R m.

Yut)eV oy, (D), n) = by, v, ().

If A =0 the linear system P, has one and only one solution periodic of period 7.
Resonance phenomena are in fact excluded by the presence of the dissipative
term (v,,(t), w;). Since all possible periodic solutions of period T of problems P,
are «a priori» bounded indipendently of A, we conclude that problem P, i.e.
(2.22), (2.23), admits one and only one periodie solution of period T. Moreover, in-
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tegrating (2.23) over one period and taking into account that g =0, we ob-
tain

a(ﬁma wk) + b(ama wk) =0.
By (2.22) this implies
a/(E"ﬂ/’ l_;ﬁ’l/) + C(EWM E”’b) = O’

hence v,, = 0. We proceed to find an apriori estimate for {v,,(¢)}. Taking the time
derivative in (2.22) and choosing n =y ,,(f) in the resulting equation, we have

1 d
: - — t £)) = by, (1), v}, ().
(2.25) 5 gz SV n D ¥ (®) =00 (8), 0, (D)

Let us multiply (2.23) by c,(t), add for k=1, ...m and recall (2.25). Defi-
ning

1 1 1
226) £, = Ellv;n(t>||2+ Ea(vmoﬁ), v,, (1)) + Ec(wm(w, Y ()

we obtain

2.27) ., + (Bv,,(®) = B(w;), v, (1) = (9(D), v, (1))

and, integrating over one period,
T T
(2.28) [Bwi, @), v, dt = [(g), v),®) dt.
0 0
By assumption (i) we find easily that there exists a constant C; such that
T
(2.29) j o2, (&) 854 0 dt < C.
0

Since v,, =0 we have also

(2.30) tg%]llvm(t)llmwm <C,.

The easy proof of estimate (2.30) is the main reason for adopting the present
method. Let us multiply (2.23) by ¢, (), sum over k and integrate over one
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period. We obtain

T
J{ — v, DIF + a(v,, @), v,, @) + ¢, (D), ¥,,@) + (B, (D), v, )} dt
@31 °

T
= [(g(®), v,.(0) d.
0

Use has been made of (2.22) with » = v ,,(¢). Then (1.7), (1.9) and assumption (ii)
yield, by the Hoelder inequality,

1 1
232) Aol zrmyen + Al w O 2w <ol 2rnzen + K112 T2 oulLzm 20

0+1 0+1

L ¢ (T;L ¢ (Q) |Um,||L0+1(T;L@+1(9)> .

+ k”vw’z”%QH(T;LQ“(Q)) [0, Letirretiy t gl

Recalling (2.29) and (2.30) we find

T
(2.33) [l @ e < Cs
0
and
T
2.34) [l @ dt<c,.
0

Let us integrate (2.27) over an arbitrary interval [z, t] and then integrate again
the resulting equation, with respect to 7, over an interval of periodicity. We
obtain

T t
78,0 + | [(B@, ), v, (2) dAde
(2.35) .

T t t
= | ‘smm + [B@), v, di+ [(g), v),(2) dz] dr.
0 T T

The left hand side in (2.35) is estimated from below using (ii), whereas the right
hand side can be majorized using (2.29), (2.30) and (2.33). Therefore, there exists
a constant Cj such that

(2.36) Jax (o), DI + [lo, O lfrye) + lwu O} < Cs.

All constants C; depends only on the data. It follows that from {v,,} and {vy,,} it



[9] FORCED OSCILLATIONS IN PIEZOELECTRIC CRYSTALS 99
is possible to extract two subsequences, not relabelled, such that

(2.37) v,,—v weak* in L*(T; H}(Q))

(2.38) v,,—v' weak#* in L*(T; L*(Q)) and weakly in L¢* (T; L°*1(Q))

(2.39) Y,,—y in L*(T; V) weakly.

In addition, by (i), there exists kA such that:

(2.40) Bv!) —h weakly in L' (T; L' (2))
and

o+1
2.41) B(v,) —Fk weakly in L'z (Q).

By the assumed properties of {w,} we have, recalling (2.23):

.
[{=@ @), ¥ )+ atot), #0) +bw(®), ¥0) + (h(t) ~ K, A1)} dt

(2.42) 0

T
= [(g(®), ) dt
0
for all p(t)eL™(T; HY)(RQ)) and 7 (t)eL 1 (T; L1 (Q))NL~(T; L*(Q)).
From (2.23) we obtain, by (2.39),
(243) c(p(@), 17) = b1, v(?))
for all ne V. It remains to prove that
h(t) = B’ (1)).
Taking formally the time derivative in (2.43), setting # = ¢(f) in the resulting
equation and ¥(t) =v'(t) in (2.42), we obtain, by periodicity,

T T
(2.44) J’(h(t) —h, v () dt = J(y(t), v’ (1)) di.
0 0

To prove rigorously (2.44) we note that we have, in the distributional sense,

(2.45) vV'+Av+By+h-h=g
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and
(2.46) Cy=FEv.

If 0,(t) is a regularizing sequence of even periodic functions of period 7 and *
denotes the corresponding convolution on the circle, we find

v %0, %0,eC*(T; L°T1(Q)).

Hence

T T

f(v", v *0, %0, d=0, f(Av, v’ %0, %0, d=0.

0 0
From (2.46) we obtain
7 T 7
[By, v w0, 500 dt= B x0, 50, w)di=[(Cy' * 0, %0, ) dt=0.
0 0 0
Consequently, by (2.45)
T 7

@41 () ~R v xe, *0,)dt= [(g(t) v x 0, * 0, db.

0 0
Letting n— o« we arrive at (2.44) and, since

T
[@, v @y di =0,
0
we get also
7 T
248) [y, v @) dt = [(gt), v @) dt.
0 0

From (2.28) we obtain

T T
(2.49) Jim (B, (D), v, (D) di = [(h0), v’ (1)) dt.
0 0
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Let w(t) e L°*Y(T; L°1(R)). By monotonicity we have

T
f (B(v,,(£)) = Bw®)), v,,(t) —w(t)) dt =0
0

and, by (2.49),

T

f (h(t) — Bw(®)), v’ (t) — w(t)) dt = 0.

0

Setting w(t) = v’ (£) — Aw, (), with 1> 0, and letting A—>0 +, we obtain
jT(h(t) — B’ (®)), wy(t) dt =0
g
for all w,(t) e L+ (T; Le+'(Q)). Hence
jT(h(t) — B' (®)), w, () dt =0
g

and we conclude that h(t) = (v’ (t)) as required.
We prove uniqueness. Let vy, ¥; and v,, ¥, be two solutions and define

W =01 — Uy, C=v1— Y.

By difference we have
T
[{=@' @), v @) + atw(®), ©)
0

+0(E(®), Y1) + (B1 (1) — Bi (D)) — Bv]) + B(vy), ¥E)} dt=0

for all y(t)eL™(T; H)(R)), and 7 (t)eLe " (T; LeTY(Q)NL~(T; L*(Q))
and, again by difference from (2.43),

(2.50) c(&(t), n) = b(y, w(t))
for all n e V. Reasoning as in the proof of (2.44) we obtain

T
(2.51) [Bwi @)~ Bws @), vi(h) —vy() dt = 0.
0

By the strict monotonicity of 3 it follows v{(f) = v5(t). On the other hand, v, = v,
=0, hence v;(t) =v,(t). From (2.50) we have

(2.52) c(&(t), &) = 0.



102 GIOVANNI CIMATTI [12]

Thus v (t) = ¥ o(t). It remains to prove that problem (2.16)-(2.19) has one and
only one solution. We use the L?-theory for elliptic system with p e (1, 2), refer-
ring for more details to [1] and [8] page 201. This theory can be applied to (2.16)-
(2.19) if we recall that I' is of class C? and that

- ofl

F-Bw)el « (Q).
The need to solve an elliptic problem with the left hand side in L? with p e (1, 2)
is inherent to the present method and has relevant consequences. If, for example,
I is not of class C? but only lipschitzian, uniqueness fails (see the example given
in [6]); this in turn implies cases of nonuniqueness for the problem as a whole.
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Abstract

A theorem of existence and uniqueness of forced periodic solutions in a piezoelectric
viscoelastic body is proved.



