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Anisotropic equations with measure data (**)

Introduction

Variational equations with anisotropic operators have been studied by several
Authors. In [4] the following problem is considered

L0 ou |ri-2 3
—Z—( eded —“)=ﬂ inQ, w=0 on 9Q

i=1 axi 679@ (9901'

where u is a bounded Radon measure. In such case it is proved the existence of at
np—1

least a distributional sollution u, such that 0;u e L%(Q), with ¢; < _((p—l))pn

1 4 1\ p(n —
where p = (— > = ) , p; > 1. When u is a regular datum, in [7] and in [8], are

ni=1p;
also considered opellﬂators like

- 3 80, Du)
i=1

where a = (ay, ..., a,) is a Carathéodory function satisfying conditions of strict

monotonicity, coerciveness and growth.
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In particular in [8] (see also [9]) the following growth condition is assu-
med:

n 1-1/p;
0.1) |ai(x,§)|s1w(1+2|.§j|ﬁf)  Yi=1,..,n.
=1

In [9] is proved that in the case where a;(x, §) = J; f(x, &), with f Carathéodory
function, convex with respect to &;,,7=1, ..., n and such that

e ) <C(1+ 3 1817)

for some constant C, then o satisfies condition (0.1).
In this paper we study the problem

0.2) -2 8,(b;du+a;(-,Du))=u in 2, wu=0 on 3R
=1

when u e L'(Q) + X* and X is the Banach space obtained as the closure of Cy ()
with respect to the norm:

1/2
|u|x=ru||p+1gggn[|raiuupiv( [ biwiuﬁ) ]
Q

where p=min{py, ..., p, }.

We assume the coefficients b; to belong to L * (£) and to be a.e. positive in Q,
while we assume a; to satisfy the growth condition (0.1) and to be coercive and
strict monotonous.

The definition adopted for the solutions of (0.2) is the one of renormalized
kind, widely used to study existence and uniqueness for problems with measure
data (see [10], [6]). Such definition is also strictly related to the one of «entropic
solution» (see [5], [2]).

Moreover the idea of renormalized solutions has been introduced in [3] in the
isotropic case for nonlinear elliptic equations involving lower order terms of the
form —div(¥Y(u)), with ¥ : R—R" continuous.

In our paper the existence is obtained by means of the approximation method
by equations with regular data, however without obtaining the strong convergen-
ce of the gradients of truncations, rather taking suitably advantage of their weak
convergence in the introduced space.
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The uniqueness is got thanks to the following asymptotic condition:
"
im [ B0 ]awm]* (8] =0.
k<qu|<k+1} 0

Moreover we point out that the hypothesis on the datum u € L'(2) + X * has been
assumed with analogy to the isotropic case, in which the assumption that a measu-
re u is absolutely continuous with respect to the p-capacity is equivalent to the
fact that u =u,+ @, with u,e L'(Q), ®eX* (see [5]).

Besides we prove that if ®eX™*, then there exist Fe ">_<1L2(bi),
Ge '>7<le1"(9) with F = (Fy, ..., F,), G=(Gy, ..., G,) for which

@Z - Z @Z[bZFZ-i—Gl]
i=1

1 - General hypotheses and formulation of the problem

Let Q be a bounded open set in R", n =2. We assume
beL”(R2), b;(x) >0 for ae. xeQ, i=1,...,n.

Moreover we assume
o1
Piy -y poell, @[, X —>1
i=1p;

and p = min {py, ..., p, }. We define the space X as the closure of C{ (2) with re-
spect to the norm:

1/2
|u|X=||u||p+lrgiagn[||am||piv( [ bi|aiu|2) ]
Q

We shall denote by p; the conjugate exponent of p; and by LZ?(b;) the Banach
space

v: Q—R: v measurable such that fbi |v]? < oo] /5{
Q

12
endowed with the norm [[v2) = ( [ b; |v]|?) , where & is the usual almost every-
where equivalence relation. @
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Now we introduce a Caratheodory vector function a: 2 X R"—R" for

which
(i) there exists ce R, such that

(e, &), = 3 &P

for a.e. xe Q and every £eR";

(ii) there exists ¢;e R, such that for every i=1, ..., n
n (1-1/p;)
(3i0) |a;(e, £)| < 01(1 +3 |§j|w)
=
(iil) (a(, &) —alx, n), E—n)>0

for a.e. xeQ, for every &, neR", £=1.
If £: Q—R" we introduce the notation (%) = (b, ¢4, ..., b,,), so that it is
well defined the operator A : X—X* such that

1.1) (Au, @) = j(b(Du)Jra(-,Du), Dg) VgeX.
Q

Our aim is to prove existence and uniqueness of a renormalized solution for the
problem

Au=u in Q
(I
u=0 on 09,

where ueL'(Q)+ X*. Such a solution is understood in the sense of the next
definition.

Definition 1.1. Let 7,(s) = (sAk)V (—k), o,()=((—|s| +k+1)VOAL,
seR,keR,. We say that u : 2 —R is a renormalized solution of problem (I),
where u=f+ ¢, fe LY (Q), peX* if 7,(u)eX for all ke R, and moreover

12 (Au, o, (w) @) = jfak(u)¢+(¢, o.(w) @) VYoeXNL*(Q), keR,
Q

(13) lm ((b(Du), Du) + ; Bul”) =0.

k— o
{k<|u|<k+1}

We remark that in (1.2), thanks to the presence of o, (u), the operator Au is mea-
ningful, because we can read it as At ,(u).
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2 - Operator and spaces properties.

Theorem 2.1 ([13], theorem 1.2). Let ¢;=1,i=1, ..., n and ue CH(Q). If

n

1
> = >1, it results

i=14q;

@1) ol < € TT fl8,2ly”
1 1 U

where — = — -1+ 2 — | and C depends only on q; and n.
7 n i=14¢

Theorem 2.2 ([1], theorem [8.III]). Let V, W be Banach spaces such
that

1) VNW is dense in both V and W;
(i) if (uy)pen 8 a sequence in VNW such that |u, —v|ly—0,
ey, — wlly—0 = v=weVNW.

Then the map from V*+W?* to (VN W)* defined by
Z, V¥ +wW*)yawy = (2, V) + (2, wF )y YzeVNW
18 an isometric isomorphism.
For the reader’s convenience we give an outline of the proof.

Proof. By condition (ii) VN W and V x W are Banach spaces if endowed
with the norms [[zllyqw = [lellv V [lellw, 2 € VO W, (v, )y cw = ol V [lellw, v eV,
weW.

Let ¢ : VN W—V X W defined by ¢(z) =(z,z2) and ¢po: VN W—p(VNW)
given by ¢ ((z) = ¢(2). Clearly ¢, is an isometrical isomorphism and so the same
happens for the adjoint map ¢§: (VN W)*— (VN W)* defined by

PEM=) =((z,2), A) VAep(VAW)*, zeVAW.

We now introduce the annihilator ¢p(VN W) := {(v*, w*) e V¥ x W*: (2, v*)
=(—z,w*)Vze VN W} and for each v*eV*, w*e W* we define

<Z, v* +w\:’><VnW)4< = </U*, Z>V* + <w*, Z>W*'

Next we consider the space V* + W* := {v* + w*: v* e V*, w* e W*} endowed
with the norm [v*+w* |y« s = inf {o* +u* |y + o * —w* |y u* e VAW,
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It is easy to verify that the linear map

P:V*+W*=>V*XW*/p(VNW), Pow*+w*)=* w*)+p(VNW)°

is an isometric isomorphism (recall that [(v*, w*)+ p(VNW)"|:=

inf {||(v*,w*) + Al : A€p(VNAWY and || *, w0 *)|[y= = [ *|y+ [0 *| o).
Another isometric isomorphism (see [12], theorem 3.3) is given by the map

P (VEXWH)/p(VN W) — (VN W)*,

P(*, w*)+ p(VNW)°) = (v*, W*) v aw)-
Finally the following composition

P oo P: V¥4+W*—=(VNW)* such that VzeVNW
(2, 9§ o o PO* +W*))vnwy
=((z, 2), W*, W) pwamhvexws = (2, V5 )y + (2, w* )y
gives the desired isometric isomorphism. ™

Proposition 2.3. The space X introduced in section 1 is a reflexive Banach

space. Moveover for any ¢ € X* there exist F e ‘><1L2(bi), Ge ‘Xlei'(.Q) such
i= i=
that

22) (¢, %)= [(bDg), F)+ (G, Dg)), VgeX.
Q

Proof. Clearly X is isometrically isomorphic to a closed subspace of

LPx ('Xl(L”fﬂLz(bi))). Let us prove, for e {1, ..., n} the reflexivity of the
iz

space L?' N L%(b;), endowed with the norm |-[|,, \/ |||,z Let (u;,) be a bounded

sequence in L” N L2(b;) and ¢ € C,(2), the space of continuous functions with

compact support in 2. Then there exist we L?, ve L?(b;) such that, by going

to a subsequence if necessary, uh; u, u, — v. Since @b;eL” it results

L2(b;)
Juy, b;— [ueb;, [, @b;— [veb;, so that u =v by arbitrariness of ¢ and as-
Q Q Q Q

sumptions on b;.
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Now by Theorem 2.2, thanks to the density of L” N L?%(b;) in both L” and
L2(b;), it results (L* N L2(b;))* isomorphic to L? + L?(b;) according to the
definition

<Z, v+ w*>(LPiﬁL2(bi))* = <Z, v*>(L/’f)* + <Z, w*>L2<bi)* VzeL? N L2(bl) .

On the other hand, by density of C.(2) in both (L?)* and (Lz(bi))* it results
<'I/Lh, fl)*)(ij)*ﬁ <u, 'U*>(LP1')* and <uh, w*>L2(b7_)*—) <u, w*>L2(b1_)=k Yo*e (Lpi)*,
w*e (L%(b;))*. Hence u,—u in X and reflexivity is proved.

Let P: X— .>7<1(L2(bi) N L?(R)) such that P(w) = Du. If ¢ e X * is given, we
define ¢ *: P(X) =R, ¢ *(P(u)) = ¢(u). Clearly ¢ * e P(X)*, so, by Hahn-Banach
theorem there exists a norm preserving extension g7> € (_3<1L2(bi) N Lpi(Q))* of

¢*. Therefore, by the isomorphism between (LZ(b;) N L7 (R))* and LZ(b;)
+ LP(R), there exist F = (Fy, ..., F,) and G= (G4, ..., G,) such that F; + G;

eL2(b) + LP(Q),i=1,...,n and p(w) = 2 (w;, F;)2p, + (w;, Gi)m for each
n i=1 n

we ,Xle(bi) N Lpi(.Q). Now lfQD e X we have (p((;D) = (P*(D@) = E <ai¢, Fi>L2(b7;)
i= =1

+(Gig, Gi)i. ®

Remark 24. In the case where inf(b;) >0 and p;<2 for every 1
=1, ..., n, it is not difficult to verify that

X*=H Q).

About the inclusion H ~1(Q) c X *, it is sufficient to remind that, whenever we ta-

ke @= 2 3,¢,e H 1(Q), with ¢, e L2(Q), it is possible to decompose ¢ ;= ¢
i=1

+ ¢, with ¢ieL*(RQ), ¢"eL?*(Q). Therefore (¢, — ¢!)/b;e L2(b;).

Proposition 2.5. Under the assumptions in section 1, the operator A defined

m (1.1) is coercive, strictly monotone, hemicontinue and bounded. Precisely
. . (Au, u)
(i) lim =
luly—o ||y
(i) (Au —Av, u—v)>0 if u=v, u, vekX.
(ili) The map e R—{A(u + Av), w) is continuous for each uw, v, weX.

@iv) If Yc X is bounded, then A(Y) is bounded.

Proof. (i) Let i be such that [|8;ul|,; = max {[|8;ull,: =1, ..., n}. If p and
p* are like in section 1 and in Theorem 2.1 respectively, we observe that p < p*
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so, if Ce R, is a suitable constant, by Theorem 2.1 we have
llull, < Cllg;ull,,.-

Hence, thanks to assumption (i) on a(x, &) we get:

n ' ' 9 n ‘ »;
(Au, u) >Qf(i21bl|31u| +C1:§1|alu| )

ule julx
[ S blgult+ 2 3 olli+ < leval S by 8yl -+ Ioral +
i& il Gl 5 2 9l + < ol J 2 b S+ 1ol + el

n 1/2 - n 1/2
o, + Wozele+ J 2 :1,u1?) o+ Gzadl + (f 2 b 1802 ?)

where K is a suitable positive constant. Such inequality implies thze coeqrcivesness of
A Dby observing that the following assertion holds: a+bl£r£14w % = o,
when a, b,ceR, and ¢q,s=1.

(i) The strict monotonicity follows easily from hypothesys (iil) and definition
of A, because, thanks to (2.1), if u # v, then Du #= Dv.

(iii) The continuity of the map 1 e R—({A(u + Av), w) is an easy consequence
of the Carathéodory assumption on a and growth condition (ii0).

(iv) For the boundedness we observe that:

[(Au, v) |

n 1/2 1/2 . ot n
< 8[{frrmmr (Joaser]sa(flre Srowr) (o)

n 1/2 n 1/pi
sC|v|X‘le(Jbi|aiu|z) +(j(1+ 21|aju|m)) p]sC|v|X(1+ )
= j=

Q

where 0 is a suitable positive exponent. So the boundedness of A fol-
lows. m

Thanks to Proposition 2.5 it is possible to apply Theorem 2.1, Chap. 2 of [7] in
order to prove the following:
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Theorem 2.6. For every fe X*, under the hypotheses in section 1, there
exists ueX solution of

Au) =f

3 - Approximating solutions and estimates

We now give some estimates which extend to the anisotropic case those pro-
ved in the literature for the isotropic case.

Theorem 3.1. Let (f;,) be a sequence in Cy () bounded in the L' norm,
Fe A>_<1L2(b1-), Ge A>_<1Lpi'(9) and ¢ € X* defined by (2.2). Moreover let u;, € X be

a solution of

GRY) <Auh,¢>=ffh§0+<¢,¢> VpeX.
Q

Then there exist positive constants C, M such that for each heZ,., keR, the
Sfollowing estimates hold.:

(3.2) j > (b |* + |9y ") < Ck + M

i=
{lwn| sk}

©3) J 2 (b; [Giw [+ |8 ") < C J (|fh,|+_:21(bi|Fi|2+|Gi|”"')).

{k<|uy| <k +1} {k<|uy|}
Proof. By (3.1) with ¢ =7, (u;,) we get:

Aq_il(bi |91 |2+ ¢S |7) < [(b(Dw,), Dr () + {al-, D), Dr ()

{Jup| <k} Q

1 n n ,
<k sup |fill + 3 f ,21 bi | 0w | + CZI(”FL ”1242(171-) + G [170)
- <

1
{lwn| sk}

C n
- BN ETA L
(g <y

Then (3.2) clearly follows.
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Now from (3.1) with v, (u;,) =74, 1(w,) — 7,(u;,) as test function:

n 1 n
PIOIETARTETADE [ 1+ | pRAETAL
(k< || <k+1} {un| =k} (k<|w|<k+1}

n , C n
+C bi |Fi |+ |Gi|") + = 3y | P
IO (TR IR T

k<ju]) (k< || '<k+1)
Such inequality gives (3.3).

Proposition 3.2. Let (f,),(u,), F, G be like in the previous theorem. Then
there exist g;: Q—R,u: Q—R,i1=1, ..., n, measurable and a subsequence of
(uy), still denoted by (uy), such that t,(u)eX for every ke R, and moreo-
ver:

) 74(uy) —14(u) in X for every keR
(i) u,—u a.e m Q;
(iil) a;(-, Duy) Ly <y —9iLgju) <iy 0 LP(Q),i=1,...,m,keR,.

Proof. Thanks to estimate (3.2), for each keZ, there exists u*eX such
that, by going to a subsequence if necessary, 7 k(uh);\ u”*. Then we have

37 (uy) —3;u* in L¥ and in L2(b),i=1,...,n.

Moreover 7 (u;,) —u"* in Hi*?(2) (p = min{py, ..., p,}), so, like in Theorem 2.2
of [11], there exists u : 2 —R measurable such that 7,(u) = u” for each ke Z
and u;, —u a.e. in . This proves (i) and (ii).

By growth condition (ii0) and (3.2) it follows that for any ke R,,i=1, ..., n
the sequence (a;(-, Duy,) 174, | <k} ) is bounded in L*. Hence, by going to a sub-
sequence if necessary, there exist g/e L? such that a;(-, Duy) 1{),,| <xy—9F in
LP. Clearly there exist g;: 2 — R measurables such that (see also the proof of
Theorem 2.2 iii) of [11])

gi=g9F ae. on {|u| <k}, keR,,i=1,...,n. ®

We don’t study the problem of the strong convergence for the sequence
(Duy,), <N, but we prove the following proposition which gives a sort of almost
everywhere convergence result for the gradients of u,.

Proposition 33. Ifg= (g, ..., 9,) and u are given as in Proposition 3.2,
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then it results

g=a(-, Du).

Proof. Let 9eCy(R),9=0, EcR"™. Moreover let (f,),(u,), F, G be like in
theorem 3.1. By monotonicity it results:

0< f(b(Duh) +al, Duy) = 0(8) — al-, &), Duy, = &) T,.(uy, — u) 0, (wy) 0, () 9
Q

=1, (h) + Iy(h) — I3(h) — I,(h),

where

Ii(h) = [(o(Dw,) +a(, Duy), Duy — Du) 7y, = w) 04(y) 0;0) 9,
Q

I,(h) = f(b(Duh) + a(-, Duy,), Du) t.(u), —u) 0, (uy) o,(u) ¢,
Q

I;(h) = f{b(Duh) +al-, Dwy), &) vi(wy, —u) 0, (wy) 0,(w) F,
Q

Li(h) = [(B(&) + (-, &), Duy, — &) 11w, —w) 0, (w,) 0,(u) 9.
Q
We denote w;, . =7 .(u, —u) 0;(w,) o,(u) ¥. By (3.1) and growth conditions we
have:
Ii(h) = (Auy, wy, )= [(B(Dw) +al, Duy), D(o () 0;(w) 9)) 7w, =) = [ fyw,
Q Q
+ [(0Dw, 0, F)+(G, Dy, ) = [(BDuy) +at, Duy), Do s13) 0,00) D) 7 oy =)
Q o

< el sup il + [ 2% 0B, = w) Fiors ) 0,0 9
Q

4 30805 0,0 9) Frt oy =) + (G, De.ay =) 0,u1) 0,0) 9
o' o
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+ (G, Do) o1w) D) 7., —w)
Q

+8||19||00 J (‘Zlbi(aiuhy"‘c(l‘f‘ 21|3_;'uh|p"‘)+C|aiuh|pi)
{un) <a+1y 7 7

n n 1-1/p;
ve | ( bildn] +e(1+ X () )|D(oi(u)ﬁ)|.
i= j=

(Jup] S2+1}
By Proposition 3.2 it results 8,7,,(u;) —3;7,.1(u) in L? and in LZ2(b,),

1=1, ..., n» which implies that

h— o

lim f ibi(aire(uh_u))Fiol(ulz)Oi(u)19:0
i=1
Q

lim j(G, Dt (uy — ) 03 (w,) 0,(u) 9 =0.
Q

Then, by estimate (3.2), by using Young or Hélder inequalities we get the existen-
ce of M, eR, such that:

lim sup I, (k) < eM,;.
I

Now we consider the following strong convergences in LP? and in LZ(b;),
i=1,...,mn

A ut L (wy, —u) 0, (uy) 0;(u) 9—d;uo,(u)y*d,
Siti(uy, —u) o,(uy,) o, (u) 0—)&01(%)219

which together the convergence given by Proposition 3.2 give:

lim (1,0~ L,00) = | 5 b8+ 906w~ £ 0,09

Q

Moreover it is clear that:

lim L,() = [(b(&) + (-, &), Du— &) 0, (P
Q
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Therefore we conclude that:

0<eM; + [(b(Du) +g = b(&) — al-, &), Du—&) 0, (wPd.
Q

By arbitrariness of ¢ and of ¥ it follows:
0 < (b(Du)+g—b&)—al, &), Du—E) ae. on {|u|<Ai}.

By continuity of the map £e R"— b(&) + a(-, &) e R" it is easy to obtain, choosing
&= Du(x) +tn, with ne R" and letting ¢ tend to zero, that:

b(Du) + g = b(Du) + a(-, Du) a.e. on Q

which is the assertion of the proposition. =

4 - Existence and uniqueness

Theorem 4.1. Let ue L'(Q)+ X*. Then there exists a unique renormali-
zed solution of problem ().

Proof. Existence

Let u =f+ ¢ and (f,) be a sequence in C{ () such that f, —fin L (). Mo-
reover let us consider, for every heZ, , a solution u;, € X of (3.1). Then, as given
by Proposition 3.2, there exist u: 2 —R, g : 2 —R" for which convergences in
(1), (i), (iii) of the same proposition hold.

Let pe XN L~ (Q), it is clear that we can choose o (1) o,(u;,) as test fun-
ction in (3.1). Since o,(u) 0,(uy) @ ?ot(u) 0,(u) ¢, we obtain:

Jfot(u)ax(@ﬂ)(P+<¢,Ut(u)01(u) ¢)=li}£n jﬁaot(u)oi(uh)¢+<¢7at(u) 0, () @)
o o

= liin(Auh, ou) o, (uy) @) < lim}sup f 21 [b; 0;uy, 0;(0(u) @) 0,(uy)
v g i

+a;(-, Duy,) 9;(o(w) @) 0, (uy)]

+ lim sup j > (0:(8;u ) + a; (-, Duy) diuy) o 4(u) .
h i=1
{A< || <A+1}
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Now, by growth assumption (ii0) and (3.3), we get:

2 (B8 + i, Duy) i) o)

1
(A< |y SA+1}

n

n 1/p{
<bl. [ (bewra(ts Zigul) " aml)

i=
A< || <A+1}

<cgl. [ (142 i@+ |87

{A< || <A+1}

<Clgl. [ (1+1h1+ S@iIFIE+1607).

{A < |ﬂh|)

Then, by taking Proposition 3.3 into account, it follows that:

ffat(%)01(%)‘P+<¢a0t(“|01(“)§0>$c||(/7||w J (1+|f|+i§1(bi|Fi|2+|Gi|p;))

Q {As]ul}

+ J‘ ﬁ:l(bi d;ud;(o(u) @) o;(u) + a;(-, Du) 9;(c,(u) @) o,(u)).
g =

By letting A— oo, we get

[foiw) @+ (9, 0w @) < (4u, 5,w) ),
Q

so that (1.2) follows by arbitrariness of ¢. Finally (1.3) follows from (3.3) by lower
weak semicontinuity of the norm.
Uniqueness

The following uniqueness proof is closely related to that of [2] and to that
of [5].

Let u, ve X be solutions of problem (I). We choose o,(v) 7,(u —v) as test
function in the equation related to v and —o (%) 7, (% —v) in the one related to v.
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By adding such equations we obtain

f(b(D(u —)), D(o,(u) 0,(v))) 7 (u —v)
Q

+{(b(Dt ;,(w — v)), Dt ),(u —v)) 0,(u) 7,(v)

(4.1)
+ [(aC, Dw) — at:, Do), 7w —v) D(0,(w) 0,(v))
Q

+o0,(u) o,() Dt (u—v))=0.

We prove that

lim sup[ J(b(Drk(u —v)), Dt (w—v))o,(u) o,(v)

4.2) tole

+ j(a(-, Du) — a(-, Dv), Dt (u —v)) o,(u) o,(v)| <0.
Q

In fact the other terms in (4.1) go to zero as t— o . To show this, let us consider
for instance:

- f[(b(Du), Do (v)y+ {a(-, Du), Dat(v))] 7.(uw—v) o, (u)
Q

=(Au,(1 - 0,(v)) 04(w) T4(u —v)) — f(b(Du), D(o(u) tip(u —v))1 —0,(v))

Q

~ [(at, Du), D(@ (@) 7 (=)L ~0 (@) = [ fL=0,@) o @) T4 (u—0)
Q Q

+ f ODA - 0,) 0w T (u—0)), F)+(G,D(1 —0,v) 0 {u) T (u—0)))—I(t) — I5(t)
Q

where 1,(t) =Qf<b(Du), D(o,(u) Tp(u —v)X1—04(v)) and (1) =Qf(a(‘, Du),
D(o(u) 71(u =0)))1 = 0,(v)).
The first two integrals in the last member of the above decomposition go to
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zero as t— oo . We see for instance the behaviour of:

f(G, D((1—0,(v) o,(w) T,(u—12))) = — j<G, Do, (v)) () T4 (u — v)
Q

Q

+ j(G, Do (w)X1 = 0,(v) T4 (u — ) + j(G, Dty (u—)) o,(u)(1 — 0,(v))
Q Q

" 1p{ 1/pi n Upi
<k Q |Gi|m’) ( | |8iv|”f) +k21||Gi||p,( |aiu|m)
- <ol "

<t+1} {t<|u| <t+1}

+i( | |G:| |8:u] + | |Gi||aﬂ)|).

i=1
{t—k<|u|<t+1} {t<|v|<t+1+k}

Then the limit as t— o« is zero thanks to (1.3).

Moreover
n n
Il(t)sk f E bi|8iu|2+ J’ E b7¢|8iu|2

(t<|ul<t+1y (t—k<ju|<t+1} '

n

+ | > b |0:ul |0
(t-k<pul<t+1, !
t<|v|<t+1+k}

and by (1.3) again it follows that tli)n; I,(t) =0.

Analogously thanks to growth assumption (ii0), tlirrgo I,(t) =0.

In the same way it is straightforward to obtain the convergence to zero of the
other integrals of (4.1) except for the ones in (4.2).

On the other hand the integrand in (4.2) is nonnegative and increasing with re-

spect to t. Hence (4.2) gives D7, (u) = Dt ,,(v) for any t e R, , so that by (2.1),
which holds in X, we conclude that u=v. =
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Abstract

We give a result about existence and uniqueness of the renormalized solution for an

equation with measure data, in the case where the left side is given by the sum of a linear
second order operator plus a monlinear second order operator with amisotropic gro-

wth.



