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Conservative solution methods

for extended Boltzmann equations (**)

1 - Introduction

1.1 - General remarks

In the field of kinetic theory of dilute gases [1], [2] much effort has already
been made to tackle the nonlinear Boltzmann equation (BE) which governs the
temporal evolution of the phase space distribution density of simple elastically in-
teracting particles. Current research expands upon the original BE in a way that
allows different kinds of interactions between various particles to be taken into
account. These extensions of the BE to particles in different quantum states as
well as to photon interactions and chemical reactions have become increasingly
important. The reason for this is that a macroscopic description fails if one has to
deal with non-equilibrium states. Fast exothermic gas phase reactions or dissocia-
tion and recombination processes in shock waves are typical situations in which
the equilibrium particle distribution is highly disturbed, and therefore, the usual
concept of evaluating the rate constants does not apply [3].

In general, the BE opposes a rigorous mathematical solution. Consequently,
one observes the trend to idealize the BE in order to gain mathematically rigorous
solutions - of course without violating fundamental physical laws [4], [5], [6], [7], [8],
[9], [10], [11], [12], [13]. This method provides important insight into the approach to
equilibrium for initially disturbed systems. Connections between anomalies in the
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temporal relaxation of the distribution function and the nonlinear structure of the BE
also become evident. These investigations have proven to be highly complex even for
spatially homogeneous gases with isotropic velocity distributions.

Due to its mathematical complexity, approximation methods for solving the
BE have been developed. Attempts in connection with a linearization of the BE
have led to various approximate solutions (e.g. the well-known Chapman-Enskog
perturbation method). However, today much effort is being made to solve the BE
in its nonlinear form. Stable and rigorously conserving multigroup procedures
[14] were applied to solve the BE for homogeneous isotropic gases and gas mixtu-
res. Interesting effects such as overshooting even at low energies were observed
[15]. The range of validity of the heat bath approximation which allows a lineari-
zation or the Rayleigh and Lorentz gas approximation were examined [16]. For
purely numerical solutions, Monte Carlo Methods [17] and Lattice gas automata
[18] are popular. Most activities in the field of analytical solutions focus either on
developing nonlinear perturbation methods or on solving equations by using Lie
groups.

Moreover, the discrete kinetic theory [19], [20], [21], [22], [23], [24] offers an
alternative way for treating such problems. The common feature of discrete velo-
city models is that particles may only receive values of a discrete and usually finite
set of velocities in one to three dimensions. Microscopic energy and momentum
conservation single out possible binary (or higher order) collisions. The ma-
thematical description of discrete velocity models results in a system of coupled
nonlinear partial differential equations, hence reducing the complexity of the ma-
thematical description in comparison to the continuous case, where one has to treat
an integro-differential equation. Although this approach seems to be very promi-
sing, current research activities exhibit that one is faced with some new difficul-
ties, e.g., a correct temperature definition [25], [26], scaling problems or dealing
with external force terms.

1.2 - Extension to inelastic scattering

The extended kinetic theory deals with the dynamics of a rarefied gas if ef-
fects of non-conservative interactions are considered together with the usual
elastic scattering mechanisms. It is the combination of nonlinearity and noncon-
servativity due to absorptions, creations, chemical and nuclear reactions that gi-
ves rise to the most interesting dynamical behaviors (cf. [12]). A successful step in
this direction was the generalization of the Krook-Wu-model in order to describe
these types of interactions [27] by means of scalar BEs. The thermalization of
«hot» postcollisional molecules in the «cold» gas led to an overpopulation of the



111CONSERVATIVE SOLUTION METHODS FOR EXTENDED BOLTZMANN EQUATIONS[3]

distribution function at high energies and to remarkable deviations of the transi-
tion rates from those obtained by the macroscopic approach [28]. Pioneering con-
siderations in the case of inelastic scattering of particles with internal energy
levels have been made by Garibotti and Spiga [29] who suggest treating
unequal quantum states as different species and provide the corresponding
Boltzmann-like equations. They study the transport of point particles A which can
scatter elastically and inelastically with particles B,

A1B4A1B *(1)

where B * denotes the excited particle B. For formal simplicity, the authors allow
only two discrete internal states separated by a fixed energy step and find exact
solutions of the BE for simple test cases related to the transport of electrons and
neutrons in gases. Normally, the density of electrons or neutrons propagating in
media is much smaller than the density of the medium so that nonlinear terms are
not required and the BE becomes linear. An H-theorem is derived and conserva-
tion of mass, momentum and total energy is proven.

By substituting in (1) the point particles A with monochromatic photons one is led
to the field of radiation gas dynamics [30]. A BE for a system of two-level atoms
interacting with monochromatic photons is introduced by Rossani, Spiga and Mo-
naco [31]. Their setup allows for all physically possible inelastic mechanisms of
exchange between the two internal energy levels. Rigorous Boltzmann elastic and
inelastic collision terms for particle-particle collisions are introduced and a kinetic
equation for photons describes the evolution of the radiation field. The approach
to equilibrium is proved by establishing a Boltzmann inequality for the system
whose radiation distribution is found to approach the well-known Planck function.
Rossani and Spiga [32] have generalized the model and taken into account an ar-
bitrary finite number of internal energy levels. Again transitions between diffe-
rent energy levels may occur by inelastic scattering as well as by absorption or
emission of photons of the self-consistent radiation field. The model shows a trend
towards equilibrium where a mass action law is valid and radiation intensities are
described by Planck’s law of radiation. On integrating the Boltzmann equation
Rossani and Spiga derive five fluid dynamical conservation equations correspon-
ding to the conservation of mass, momentum and total (kinetic and internal)
energy. A swarm of one level test particles diffusing in a scattering background of
N-level field particles is treated with the same methods leading to a linear BE for
the test particles. It is interesting to note that, in the Lorentz gas limit, the equili-
brium distribution of the test particles is only a Maxwellian if at least one ratio of
two internal energy jumps is irrational. This is due to an infinite number of colli-
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sion invariants (cf. [33], [34]), or, in the framework of hydrodynamics, to an infini-
te number of conservation laws.

In the study of chemical reactions, gas kinetic approaches based on Boltz-
mann-like equations have a long tradition. The first calculations in this field were
made by Prigogine and coworkers [35], [36], who solved the BE for a dilute
gas undergoing the reaction A1AKproducts. A short summary of the develop-
ment up to 1990 can be found in [37]. Furthermore, the authors considered a spa-
tially homogeneous mixture of rarefied gases of N different species interacting
through binary collisions.

By means of a multigroup discretization, Kügerl [38], [39] solved scalar Boltz-
mann equations for a gas mixture of four species A , B , C , D in which a reversi-
ble bimolecular reaction A1B4C1D occurs. He found that due to translational
non-equilibrium effects, the correction of the chemical rate constants are notice-
able depending on the heat of reaction, the activation energy and the steric factor.
The result is a shortening of the reaction period by up to 25%. In [40], Rossani
and Spiga applied the extended kinetic theory to bimolecular chemical reactions.
Conservation of mass, momentum and energy were correctly taken into account.
The mass action law in equilibrium is recovered as well as the explicit form of the
collision terms discussed. In [41], inelastic scattering is described as a particular
case of binary reactions when products coincide with reactants; however, one of
the products is in an excited state (cf. Eq. (1)). An extension of the formalism to a
chemically reacting gas mixture whose particles are additionally endowed with in-
ternal energy levels can be found in [42].

Based on the formalism used in [29], Rossani [43] applies the linear BE for
inelastic scattering to the study of the distribution function for charged particles.
These particles propagate in a host medium reacting according to (1) with the
field particles. Furthermore, they are subjected to an external electric field. The
inelastic collision integral is studied and the equilibrium distribution is investi-
gated. Connections with the transport of electrons in a semiconductor are pointed
out. A Fokker-Planck approximation, usually applied in the Physics of Weakly Io-
nized Gases, is adapted to the situation and leads to a solvable system for the first
two moments of the distribution function. The author gives explicit results for the
cases of Maxwell and hard sphere interactions. In the framework of extended ki-
netic theory, Fontana and Spiga derive a linear one-dimensional BE that models
propagation of a swarm of test particles in an absorbing and inelastic down-scat-
tering background [44]. As a physical application, the authors use a rigorous algo-
rithm to calculate the penetration of a beam of test particles into a plane slab un-
der steady state conditions. Numerical results are discussed with emphasis on the
most significant parameters relevant to radiation shielding. In [45], Banasiak,
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Frosali and Spiga reconsider the same model from a more mathematical point of
view. Up scattering is again neglected compared to down scattering. This yields
to an energy interval in which test particles remain unscattered. In a natural way,
the model singles out a Knudsen number e whose limit eK0 is investigated and
leads to hydrodynamic equations of the streaming type. After analyzing the colli-
sion mechanism, the hydrodynamic quantity, which is appropriate for the situation
of only down scattering, is introduced. The properties of the zero eigenvalue of
the collision operator are studied.

The model of a Lorentz gas (light test particles interacting with a given back-
ground of heavy field particles at rest), has proved to be very useful for clari-
fying different properties of solutions of linear and nonlinear kinetic problems
(for a historical example see [46]). Bobylev and Spiga [47] generalize this power-
ful tool to the linear extended kinetic theory by proposing a Lorentz-type model
which allows for absorption and for inelastic scattering between a swarm of test
particles and a background of heavy field particles. Attention is focused on the
case in which elastic and inelastic scattering are equally important and prevailing
with respect to absorption and streaming. Small mean free path asymptotics is
studied and an approximate equation at a macroscopic level with first order cor-
rections in the Knudsen number e is deduced. Like in [32], the null space of the
collision operator is found to be infinitely dimensional and an H-theorem is
established.

In the spirit of neutron transport and nuclear reactor calculations, Caraffini,
Ganapol and Spiga [48] propose a multigroup approximation to the nonlinear BE.
Their starting point is the scattering kernel formulation of the BE, whose equiva-
lence to the standard formulation of the BE has been proved in [49] and [50].
They consider a single species gas diffusing in a scattering and absorbing back-
ground. In this framework, the presence of an external force and an external
source can properly be taken into account. The authors compare their approach to
the corresponding semi-continuous kinetic models showing quite a different math-
ematical structure unable to deal with external force terms.

In semi-continuous models, the velocity moduli are discretized while keeping
full angular dependence in the velocity space [51], [52]. In [53], Preziosi and Lon-
go investigate the general discretization problem that is the link between the con-
tinuous and discretized BE. They propose a fully controllable model starting from
the actual continuous kinetic equations and discretizing the speed variable by a
suitable interpolation procedure. The paper clarifies what kind of approximations
are involved in the transition from the continuous to the semi-continuous descrip-
tion. The order of magnitude of the spurious terms appearing in the hydrodyna-
mic limit of a discretized BE is investigated as a «distance» between the discreti-
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zed model and the full BE. By applying an interpolation approximation like in
[53], Spiga [54] shows that on account of the microreversibility properties of the
scattering kernel, the conservation of mass, momentum and energy as well as an
H-theorem for the resulting semi-continuous model hold. Thus, the author esta-
blishes an intrinsic conservation of momentum and energy conservation and an
H-theorem for the multigroup approach of [48].

In [55], Rossani and Spiga present a two-group approximation of the non-
linear BE. By improving the approach in [48], the conservation of momentum
and energy is intrinsic to the paper’s setup independent of the number of groups
considered. It is shown that the macroscopic equations can be made self-consist-
ent by a Maxwell-Cattaneo equation for the heat flux. On the basis of assumptions
on the scattering kernels only, a correct trend versus time and a physically mea-
ningful definition of the transport coefficients are guaranteed by this very simple
model. A P1-approximation (a tool widely utilized in linear transport theory) is ge-
neralized to the nonlinear theory in order to get information on the fluid dynamics
of the model.

The 13 moment method, proposed by Grad [56], [57] for the solution of the BE,
has constituted the basis of a new theory in mathematical physics, namely the so-
called extended thermodynamics [58]. Grad’s procedure represents the distri-
bution function as a truncated Hermite polynomial expansion in which only the
moments of interest are retained. This leads to a closed set of moment equations
for the BE. In [59], Cavazzoni and Spiga take the first step towards the emplo-
yment of the 13 moment approach in the frame of the extended kinetic theory.
Confining themselves to elastic scattering of Maxwell molecules, the authors deri-
ve the relevant 13 moment equations for a mixture of several participating ga-
ses (TP) in the presence of one or more background species (FP). Small mean free
path asymptotics show quite different scenarios depending on the relative impor-
tance of TP-TP collisions on the one hand and TP-FP collisions on the other.

Dealing with spatial dependent problems in extended kinetic theory requires
not only the treatment of the speed variable of the distribution function, but also
the direction dependence of the particle velocities. Semi-continuous models are a
very efficient way to treat the speed dependence. In order to deal with the direc-
tion dependence of the velocities an expansion in terms of spherical harmonics ap-
plies. Overlapping multigroup methods are an alternative way to treat the speed
dependence. These methods as well as the technique of non-linear spline interpo-
lations have – in contrast to the first method – the advantage that external fields
can be dealt with in a natural way.

This paper is organized as follows: After this report of recent approaches to
solve extended nonlinear BEs, Sec. 2 provides a set of extended semi-continuous
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kinetic equations governing the evolution of a gas mixture. The model takes into
account collision excitation and de-excitation processes as well as the interaction
with monochromatic photons. Conservation properties and an H-theorem are
established.

Section 3 is devoted to the derivation of the PN multigroup equations for arbi-
trary scattering models. The truncated moment equations display rigorously con-
servation of mass and energy, while showing the conservation of momentum re-
quires the numerical treatment of one integral.

In Sec. 4 the methods developed in Sec. 2 and 3 are applied to some test cases
like high frequency acoustic waves occurring in degenerate four wave mixing
(DFWM) experiments and the propagation of a hot spot within a cold me-
dium.

A semi-continuous model for chemical reactions is the content of Sec. 5. A four
species gas mixture undergoing chemical reactions is treated by means of a set of
semi-continuous BEs. The model is solved numerically by resorting to a P0 appro-
ximation for spatially homogeneous situations.

The last part of the paper presents multigroup approaches to extended BE.
Section 6 sketches the overlapping multigroup approach that allows one to treat
external force terms in a natural manner. This is illustrated on a three-dimensio-
nal Lorentz gas model. Results are obtained in P1 approximation. The following
Sec. 7 contains the ingredients of a more flexible approach. Instead of working
with rigid shape functions as in the overlapping multigroup approach, a spline in-
terpolation of the speed-dependence of the distribution function is proposed. Fi-
nally, Sec. 8 generalizes this idea. Expanding the speed dependence of the distri-
bution function in terms of Legendre polynomials within compact speed intervals
opens the possibility of a stable and numerically efficient scheme for the solution
of the nonlinear BE.

2 - Semi-continuous extended kinetic theory

In a recently published paper [53], Preziosi and Longo provide a semi-conti-
nuous formulation of the nonlinear Boltzmann equation. This formulation is done
in terms of a set of distribution functions fi depending on a solid angle V×, the spa-
tial position x and time t. In discretizing the kinetic energies (i.e. the moduli of the
velocity) of the particles (subscript i), the authors reduce the complexity of the in-
tegrals in the collision term.

In fact, the collision operator of semi-continuous models contains only inte-
grals over compact domains (parts of the two-dimensional sphere). Physically
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speaking, this operator describes the hopping of the gas particles from one en-
ergy group i to another i 8 due to binary collisions. In leaving a continuous set of
allowed directions of velocities, semi-continuous models provide a larger and more
realistic set of possible outcomes of binary collision processes than discrete veloc-
ity models, where only a finite set of different velocities is accounted for [22].

A great advantage of the semi-continuous approach in numerical implementa-
tions is that the remaining integrals can be treated, e.g., by resorting to an expan-
sion of the distribution functions in terms of spherical harmonics with respect to
the solid angles V×. This aspect is investigated in [60] and [61] and will be discus-
sed in Sec. 3.

2.1 - Semi-continuous kinetic equations

Here, we generalize the ideas of Preziosi and Longo [53] in order to cope with
problems in the field of extended kinetic theory. To this end, we consider a gas
mixture composed of three species, namely A, B and B *, where B * is an excited
state of B. The energy gap between B * and B is denoted by DED0. We take into
account all elastic scattering processes of the form N1M4N1M for N , M
4A , B , B * as well as the inelastic interaction (collision excitation and de-excita-
tion)

A1B4A1B *.(2)

Furthermore, we assume that transitions between B and its excited state B * can
also be induced by monochromatic photons. Therefore, we include the reac-
tions

B1p4B *, B *1pKB12p ,(3)

where p denotes a photon with frequency n4DE/h, (h is Planck’s constant). Such
a situation is, e.g., typical for laser induced thermal acoustics (LITA) experiments
[62], where photons (supplied by a strong coherent laser pulse) excite high fre-
quency acoustic waves.

By assuming equal mass m of the three species, we express the conservation
of energy E and momentum R in binary collisions as

2E/m4v 821v*8
24v 21v*

2
Ze 2 ,(4)

R/m4v 8V×81v*8V×*84vV×1v* V×*,(5)

where, for the purpose of the discretization, we have resorted to a polar decompo-
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sition of the velocity variable v4vV× with v4NvN and the unit vector V×4v/v. Pri-
med symbols refer to post-collision quantities. The quantity e equals zero for ela-
stic collisions and is linked with the energy gap DE by

DE4
m

2
e 2(6)

for inelastic collisions. The minus sign in Eq. (4) refers to an excitation event and
the plus sign to a de-excitation process.

We express the post-collision (primed) velocities by means of the sum of the
pre-collision velocities and the unit vector n×8 pointing in the direction of the relati-
ve velocity g84v82v*8 after the collision:

v84
R

2m
1

g 8

2
n×8 , v8*4

R

2m
2

g 8

2
n×8 ,(7)

where the relative speed after the collision is given by g 84g 64kg 262e 2 in
the case of inelastic collisions and by g 84g in the case of elastic collision. If the
post-collision velocity v8 results from an (de-) excitation event, we will denote it by
(v1) v2. The functions ff f A , f

q

f f B and f×f f B * describe the phase density of the
particles A, B and B *, respectively. According to Ref. [29], the inelastic collision
terms read

J [ f , f×, f
q

]4 �
R3

dv*�
S2

dn×8 g s
q

( g , g)[ f (v1 ) f
q

(v*
1 )2 f (v) f×(v*) ](8a)

1�
R3

dv*�
S2

dn×8 gs×( g , g)[ f (v2 ) f×(v*
2 )2 f (v) f

q

(v*) ] ,

J
q

[ f , f×, f
q

]4 �
R3

dv*�
S2

dn×8 gs×( g , g)[ f×(v2 ) f (v*
2 )2 f

q

(v) f (v*) ] ,(8b)

J×[ f , f×, f
q

]4 �
R3

dv*�
S2

dn×8 g s
q

( g , g)[ f
q

(v1 ) f (v*
1 )2 f×(v) f (v*) ] ,(8c)

where U(.) denotes the unit step function and cos g4n× Qn×8. The microreversibility
condition [29] linking the up (s×) and down (s

q

) scattering cross section is given
by

g 2 s×( g , g)4U( g2k2e)( g 2 )2 s
q

( g 2 , g) and g 2 s
q

( g , g)4( g 1 )2 s×( g 1 , g) .(9)
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The collision terms describing the impact of elastic scattering between particles N
and M on the evolution of N are of the form

J NM4 �
R3

dv*�
S2

dn×8 gs( g , g)[ f N (v8 ) f M (v*8 )2 f N (v) f M (v*) ] ,(10)

with the elastic cross section s. These terms constitute the right hand side of the
continuous Boltzmann equations of the model:

¯f

¯t
1vV× Q

¯f

¯x
4 J1J AA1J AB1J AB * ,(11a)

¯ f
q

¯t
1vV× Q

¯ f
q

¯x
4 J

q

2R(I)1J BB1J BA1J BB * ,(11b)

¯ f×

¯t
1vV× Q

¯ f×

¯x
4 J×1R (I)1J B * B *1J B * A1J B * B .(11c)

The interaction with monochromatic photons of intensity I is modeled by means of
Einstein coefficients a (for spontaneous emission) and b (for absorption and sti-
mulated emission). Neglecting the Doppler effect, the photon-particle interaction
term reads

R (I)4�
S2

dV×*(bI(V×*) f
q

(v)2 (a1bI(V×*) ) f×(v) ) ,(12)

where I denotes the specific intensity of photons with energy DE. The evolution
equation for the specific intensity I(t , x , V×) is given by [63]

¯I

¯t
1cV× Q

¯I

¯x
4

¯IL

¯t
2cDE�

R3

dv (bI f
q

(v)2 (a1bI) f×(v) ) ,(13)

where c stands for the speed of light and IL (t , x , V×) is an impressed time depen-
dent intensity profile of light. The energy density en , the energy flux Qn and the
energy density SL of the impressed light are respectively defined by

en4
1

c
�

S2

I(V×) dV× , Qn4�
S2

V×I(V×) dV× , SL4
1

c
�

S2

IL (V×) dV× .(14)

The conservation of mass, momentum and energy as well as an H-theorem for
the inelastic collision terms of the above sketched model are provided in Ref. [29].



119CONSERVATIVE SOLUTION METHODS FOR EXTENDED BOLTZMANN EQUATIONS[11]

A derivation of Planck’s law of radiation (for IL40) and an H-function for the
photon transport equation can be found in Ref. [31].

In order to discretize the kinetic equations describing the evolution of the gas
mixture and the photon intensity constituted by Eqs. (11) and (13), we apply a ge-
neralized form of the procedure introduced in [53]. Following these lines, we re-
strict the range of the particle’s kinetic energies to the interval In4 [Em , EM ),
0EEmEEMEQ. The bounds of In are to be chosen such that all particles with
kinetic energies outside of In may be neglected. Next we introduce an arithmetic
sequence of energies

Ei4Em1 gi1 1

2
h d , i40, 1 , R , n ,(15)

with d4 (EM2Em ) /(n11) that are the centers of the subintervals (energy
groups)

Ii4 kEi2
d

2
, Ei1

d

2
l , i40, 1 , R , n .(16)

Furthermore, we have to adapt the energy gap DE in such a way that it fits into
the discretization scheme. Therefore, we set DE4qd with q� ]1, 2 , R , 2n21(
which implies e 242qd/m. When appearing as an integrand, any function of kine-
tic energy (and thus of the speed v) is approximated by a piecewise constant inter-
polant defined over the above stated discretization:

g(E)B !
i40

n

gi x Ii
(E) ,(17)

where x B(.) denotes the characteristic function of the set B.
Each energy knot Ei corresponds to a speed vi4k2Ei /m. The combination of

conservation of momentum and total energy, i.e. Eqs. (4) and (5), implies a re-
striction on V×* [64]. In fact, when fixing V×, the variation of the solid angle V×* is
restricted to

uD×*
D
q

*

v4 mV×*�S2N2 v 8 v*8

vv*
Z

e 2

2vv*
GV× QV×*G

v 8 v*8

vv*
Z

e 2

2vv*
n .(18)

Figure 1 shows a graphical representation of these sets.
For elastic collisions (e40), the inner product V× QV×* is symmetric with re-

spect to zero. In this case we define D*4D×*4D
q

*. For inelastic excitation (D×*)
and de-excitation (D

q

*) processes this is no longer true.
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Fig. 1 - Domains of V×* as implied by the conservation of momentum for elastic scattering
(a), collision de-excitation (b), and collision excitation (c).

Furthermore, by introducing the angle w between the pre-collision and post-
collision plane spanned by the pairs (g , R) and ( g8 , R), respectively, the surface
element dn×8 appearing in the collision terms can be written as

dn×84
4

g 8R
v 8 dv 8 dw .(19)

By following the considerations of Sec. 4 in [53], we obtain semi-continuous
versions of the inelastic collision terms. We integrate Eqs. (8) over one energy in-
terval Ii with the appropriate measure k2E/m 3dE4v 2 dv and approximate all
functions of kinetic energy by piecewise constant interpolants. If the cross section
is independent of the scattering angle, which we shall assume for simplicity, they
read

Ji [ f , f
q

, f×]4Cx
2!

j40

n

vj !
h, k40

h1k4i1j1q

n

�
0

2p

dw �
D
q

*(vi, vj, vh)

dV×*A
q

ij
hk (V× QV×*)( f 8h f

q

8*k2fi f×*j )(20a)

1Cx
2 !

j40

n

vj !
h, k40

h1k4i1j2q

n

�
0

2p

dw �
D×*(vi, vj , vh)

dV×*A×ij
hk (V× QV×*)( f 8h f×8*k2 fi f

q

*j ) ,

J
q

i [ f , f
q

, f×]4Cx
2!

j40

n

vj !
h, k40

h1k4i1j2q

n

�
0

2p

dw �
D×*(vi, vj , vh)

dV×*A×ij
hk (V× QV×*)( f×8h f 8*k2f

q

i f*j ) ,(20b)

J×i [ f , f
q

, f×]4Cx
2!

j40

n

vj !
h, k40

h1k4i1j1q

n

�
0

2p

dw �
D
q

*(vi, vj , vh)

dV×*A
q

ij
hk (V× QV×*)( f

q

8h f 8*k2f×i f*j ) ,(20c)
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where Cx4d/m. The application of the same strategy to the elastic collision
terms, i.e. Eq. (10), yields

(21) J NM
i [ f N, f M]4Cx

2!
j40

n

vj !
h, k40

h1k4i1j

n

�
0

2p

dw �
D *(vi , vj , vh)

dV×*Aij
hk (V× QV×*)( f N

h 8 f*k
M82f N

i f M
*j) ,

for N , M4A , B , B *. The domain D×*(vi , vj , vh ) already takes into account the
unit step function U( g2k2e). We have used the shorthand notations

fi
N4 fi

N (V×)4 f N (vi V×) , f*
N

j4 fj
N (V×*)4 f N (vj V×*) ,(22)

fh
N84 fh

N (V×8 )4 f N (vh V×8 ) , f*
N 8

k 4 fk
N (V×*8 )4 f N (vk V×*8 ) ,(23)

where N4A , B , B *. Post-collision solid angles are functions of pre-collision
solid angles, of the speeds vi , vj , and vh and of the angle w. The kernels are given by

Aij
hk (V× QV×*)4

4s (g)

R
, A×ij

hk (V× QV×*)4
4g

g 2

s×(g)

R
, A

q

ij
hk (V× QV×*)4

4g

g 1

s
q

(g)

R
.(24)

In these formulae, the quantities g , g 6 and R have to be evaluated at the speed
knots,

g4kvi
21vj

222vi vj V× QV×* , R4kvi
21vj

212vi vj V× QV×*(25)

and so on for g 1 and g 2. By applying the same strategy to the streaming part
of the Boltzmann equations and equating the result to the above stated collision
terms, we obtain the semi-continuous kinetic equations

¯fi

¯t
1vi V×

¯fi

¯x
4 Ji1J AA

i 1J AB
i 1Ji

AB * ,(26a)

¯ f
q

i

¯t
1vi V×

¯ f
q

i

¯x
4 J

q

i2Ri (I)1J BB
i 1J BA

i 1J BB *
i ,(26b)

¯ f×i

¯t
1vi V×

¯ f×i

¯x
4 J×i1Ri (I)1J B * B *

i 1J B * A
i 1J B * B

i ,(26c)

with Ri (I) being defined as Eq. (12) evaluated at the speed knot i, i.e. for f
q

i (V×)
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and f×i (V×). The photon transport equation now reads

¯I

¯t
1cV× Q

¯I

¯x
4

¯IL

¯t
2cDE(bIn

q

2(a1bI) n×) ) .(27)

In the semi-continuous formulation, the macroscopic quantities of each species
N, namely particle density, the mean velocity, the momentum flux and the kinetic
energy flux are respectively given by

n N4Cx !
i40

n

vi�
S2

fi
N (V×) dV× ,(28a)

uN4
Cx

n N
!

i40

n

vi
2�
S2

V× fi
N (V×) dV× ,(28b)

KN4Cx m !
i40

n

vi
3�
S2

V×7V× fi
N (V×) dV× ,(28c)

Q N4
Cx m

2
!

i40

n

vi
4�
S2

V× fi
N (V×) dV× .(28d)

The kinetic energy density of species N is given by the trace k N4 (1 /2) tr KN.
The total energy density e of the gas is the sum of the kinetic energy densities
plus the internal energy density of B *:

e4k A1k B1k B *1n B * DE .(29)

By using these definitions, we can integrate Eqs. (26) and (27) to obtain the ma-
croscopic equations for the semi-continuous model:

¯n

¯t
1

¯

¯x
Q (nu)

¯

¯t
(n
q

1n×)1
¯

¯x
Q (n

q

u
q

1n×u×)

m
¯

¯t
(n
q

u
q

1n×u×1nu)1
¯

¯x
Q (K1K

q

1K×)

¯

¯t
(e1en )1

¯

¯x
Q (Q1Q

q

1Q×1Qn1DE n B * uB * )

40 ,

40 ,

40 ,

4
¯SL

¯t
.

(30a)

(30b)

(30c)

(30d)
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They reflect the conservation of particles A, B plus B *, the conservation of total
momentum and injection of energy due to external light sources. Proof of these
macroscopic equations involves important properties of the collision terms and is
presented in [64].

In order to state the properties of the semi-continuous collision terms for a set
of arbitrary functions W N

i (V×), N4A , B , B *, we introduce the notation

aW N , f N b4Cx !
i40

n

vi�
S2

dV×W N
i (V×) f N

i (V×) .

Now we can summarize the main properties of the model: First, the expres-
sion

cW , Jdf aW , J1J AA1J AB1J AB * b

1aW
q

, J
q

1J BB1J BA1J BB * b1 aW×, J×1J B * B *1J B * A1J B * B b
(31)

vanishes for the choices W i41, W
q

i4W× i40; W i40, W
q

i4W×i41; W i4W
q

i4W×i

4vi V× and W i4W
q

i4vi
2 , W×i4vi

21e 2. They correspond to the conservation and
balance equations stated in Eqs. (30). Furthermore, we obtain a space homogene-
ous H-theorem by setting W N

i 4 log f N
i . It reads

¯H

¯t
fc log f , JdG0 .(32)

This H-function is zero (collision equilibrium of the gas mixture) if and only if

f N
i (V×)4A N exp (vi b QV×2cvi

2 ) ,(33)

with the constants A N , b, and c4m/(2kB T), where T is the temperature and kB

denotes Boltzmann’s constant. The ratio between the densities of B * and B
reads

n×

n
q

4exp g2 DE

kB T
h ,(34)

which is exactly Boltzmann’s formula. Finally, in the absence of external light
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sources, the equilibrium intensity is given by Planck’s law [31]

I4
a/b

exp (DE/(kB T) )21
.(35)

2.2 - Comparison with exact solutions

In [53], Preziosi and Longo investigate the fluid dynamic behavior of the semi-
continuous model. By working with local Maxwellians, the authors give estimates
of the errors in the fluid dynamics that are introduced by the discretization proce-
dure. However, little is said about the quality of the relaxation behavior of the
model. Therefore, we show here to what extent the local relaxation described with
the full continuous Boltzmann equation coincides with that of the semi-continuous
model.

For the nonlinear Boltzmann equation of gas dynamics, analytical solutions
exist only in very special cases and for particular interaction models. One exact
solution is known for Maxwell molecules whose cross section is inversely propor-
tional to the relative speed. This is the so-called BKW mode [6]. Thus it is possible
to test the accuracy of the semi-continuous model by performing a comparison
with this solution.

Since this analytic solution assumes spatially homogeneous and isotropic con-
ditions, we use the ansatz

fi (V×)4
1

4pvi

ni .(36)

Apart from the multiplicative constant Cx, the quantities

ni4vi�
S2

fi (V×) dV×(37)

represent the number of gas particles within the energy group Ii . The evolution
equations for the quantities ni are obtained by integrating Eq. (26a) (simplified to
one only elastically interacting species) with respect to V×:

dni

dt
4

Cx
2

2
!

j40

n

!
h , k40

h1k4 i1 j

n

(Ihk
ij nh nk2Iij

hk ni nj ) ,(38)
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with the integrated cross sections

Iij
hk4

2pk

vi vj

.
`
/
`
´

arctan g 2vh vk

Nvh
22vk

2N
h

arctan u 2vi vj

Nvi
22vj

2N
v

for vh vkGvi vj

for vh vkDvi vj

(39)

for Maxwell molecules, where the positive parameter k controls the strength of
the interaction.

In three dimensions, the BKW mode [6] for Maxwell molecules is given by

f (x , t)4
2 kx

kp (11g 1 )3/2
exp g2 x

11g 1
h m11 g 1

11g 1
g 3

2
2

x

11g 1
hn ,(40)

where x stands for the kinetic energy, x4v 2 /2, and the temporal evolution of g 1

is given by

g 1 (t)4he 2l 2 t , 20.4GhE0 .(41)

The quantity l 2 is a nonlinear eigenvalue of the collision operator. Its value is
linked with the strength of the interaction measured by k. For isotropic scatte-
ring, l 2 is given by

l 24
2

3
p

k

4
.(42)

For the solution of the semi-continuous model, the kinetic energy is resolved
using 175 energy groups. The strength of interaction is taken to be k4100 and
the initial data correspond to h420.4.

Figure 2 shows the relaxation for different kinetic energies x in the case of
Maxwell molecules. For very low and very high energies (xG1 or xD4), the par-
ticle density increases whereas for average energies (1ExE4) it decreases dur-
ing the evolution. For high energies, the relaxation becomes slower and slower.
This behavior is partially due to the decreasing cross section. It is remarkable
that not the slightest difference between the BKW mode and the relaxation of the
semi-continuous model can be observed. The curves for both cases match.

Another way of showing the precision of the semi-continuous model is the in-
vestigation of the nonlinear eigenvalue l 2 . For a given kinetic energy x, this is
the only parameter in the BKW mode. Thus, for some energies x, we take the cur-
ves of Fig. 2 and adapt the parameter l 2 of the BKW mode by a least-squares fit.
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Fig. 2 - Relaxation behavior of Maxwell molecules at different kinetic energies. The curves
calculated with the semi-continuous model coincide with those of the analytical solution.
The initial distribution in these illustrations coincides with the starting point of the BKW
mode at h420.4.

It is very satisfying that they coincide with the exact value within less than 0.2%
for average particle speeds. We observe that the discrepancy increases for high
speeds. One reason for this behavior is the unphysical but necessary cut-off at vM .
Particles propagating with kinetic energies near the maximum e M have a very li-
mited possibility of scattering, because no particles with energies greater than e M

may result from the collision processes. Nevertheless, even here the discrepancy
is less than 1%.

3 - PN approximation

In non-homogeneous regimes the distribution function depends not only on
the modulus of the velocity but also on its direction. In order to treat the direction
dependence, moment methods are very convenient.

The PN method, e.g., has been used very efficiently in the neutron transport
theory [65], where a linear form of the Boltzmann equation applies. In the nonli-
near case, Jaffé [66] was the first to apply this particular method in the kinetic
theory. He confined himself to terms up to second order to obtain solutions of the
Boltzmann equation for the case of small Knudsen numbers. In more recent pa-
pers, the spherical harmonics method has been generalized to arbitrary order,
where the collision term has been included in the expansion scheme [67], [68],
[69]. An extension of this method by performing the expansion of the distribution
function for a moving reference system in velocity space can be found in [70]. Nu-
merical simulations of thermal and spatial relaxation behavior of a gas of Maxwell
molecules in P1 approximation are given in [60].
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Here we discuss the PN method to the extended semi-continuous Boltzmann
equation. We confine ourselves to the one-dimensional case in real space. This
means that we expand the distribution functions for each discretized speed in
terms of Legendre polynomials with respect to the angle between the velocity and
the direction vector in real space. Inserting this ansatz into the semi-continuous
Boltzmann equation and projecting it over the Legendre polynomials up to a cer-
tain order N results in a closed, coupled set of nonlinear partial differential equa-
tions for the moments of the expansion. Since the discretization of the modulus of
the particle velocity is performed in such a way that the resulting kinetic energy
classes form an arithmetic series [53], we call our method the PN multigroup
approximation.

For simplicity, we demonstrate the method only for the case of elastic scat-
tering (the strategy can easily be extended to inelastic interactions), where the
Boltzmann equation for the unknowns fi (V× , x , t)4

def
f (vi V× , x , t) read

¯fi

¯t
1vi V× Q˜fi

4Cx
2 !

j40

n

!
h1k4 i1 j

h , kGn

vj �
0

2p

dw �
DV×

*
(vi , vj , vh )

dV×* Aij
hk (V× QV×*, w)( f 8h f 8*k2 fi f*j ) ,

(43)

with the constant Cx4d/2 [53]. Conservation of momentum restricts the domain
of integration of the solid angle V×* to the set

DV×*
(vi , vj , vh )4 {V×*: NV× QV×* NG

vh vk

vi vj
} .(44)

The quantities A of Eq. (43) are related to the collision cross section s and the to-
tal momentum of the two colliding particles by

Aij
hk (V× QV×*, w)44

s ij
hk (V× QV×*, w)

Rij (V× QV×*)
.(45)

The symbol R denotes the modulus of the total momentum, and the angle w is
linked with the angle of deflection. The dependence of the cross section on the re-
lative speed g of the colliding particles is hidden by our notation. The quantities R
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and g are defined as

Rij (V× QV×*)4
def
kv 2

i 1v 2
j 12vivjV

× QV×*, gij (V× QV×*)4
def
kv 2

i 1v 2
j 22vivjV

× QV×* ,(46)

and are preserved under collisions.
We expand the distribution function for each speed in a truncated series of Le-

gendre polynomials Pl . Thus, we assume azimuthal symmetry and account for the
N first Legendre moments and make the following ansatz:

fi (V× , x , t)4 fi ( cos u , z , t)4 !
l40

N

al
(i) (z , t) Pl ( cos u) .(47)

In order to evaluate the streaming term of Eq. (43), we insert the ansatz, Eq.
(47), in the LHS of the Boltzmann equation (43), multiply the result by Pl ( cos u)
and integrate over the angle u using the measure sin udu:

(48) �
0

p

sin u du Pl ( cos u) g ¯

¯t
!

l40

N

al
(i) Pl ( cos u)1vi

¯

¯x
cos (u) !

l40

N

al
(i) Pl ( cos u)h .

In the case N43, i.e., when we neglect all Legendre moments higher than 3, we
are led to the following set of equations for l40, 1 , 2 , 3:

¯

¯t
2a0

(i)1vi
¯

¯x

1

3
2a1

(i)

¯

¯t

2

3
a1

(i)1vi
¯

¯x

2

3
ga0

(i)1
2

5
a2

(i)h
¯

¯t

2

5
a2

(i)1vi
¯

¯x

2

5
g 2

3
a1

(i)1
3

7
a3

(i)h
¯

¯t

2

7
a3

(i)1vi
¯

¯x

2

7

3

5
a2

(i)

4 J (i)
0 (a0, a1, a2, a3) ,

4 J (i)
1 (a0, a1, a2, a3) ,

4 J (i)
2 (a0, a1, a2, a3) ,

4 J (i)
3 (a0, a1, a2, a3) .

(49)

(50)

(51)

(52)

These equations are obtained by exchanging the order of integration and summa-
tion as well as by exploiting the orthogonality relations of Legendre polynomials.
The collision terms for each Legendre moment l and speed i are abbreviated by
J (i)

l . We use a vector notation summarizing all speeds of a given Legendre mo-
ment l to al 4]al

(0) , R , al
(n)(.

The collision terms J (i)
l are inferred from Eq. (43) by taking into account the
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ansatz, Eq. (47), and integrating over the variable u. They can be cast into the
form

J (i)
l 4Cx

2!
j40

n

!
i1j4h1k

h, kGn

vj !
l, l *40

N

(G ij
hk (l ; l , l*) al

(h) al *
(k)2L ij

hk (l ; l , l*) al
(i) al*

( j) ) ,(53)

where the loss terms are given by

(54) L ij
hk (l; l, l*)4�

0

p

sin u du Pl (cos u)�
0

2p

dw �
DV×

*

dV×* Aij
hk (m, w) Pl (cos u) Pl *

(cos u *) ,

and the gain terms read

(55) G ij
hk (l; l, l*)4�

0

p

sin u du Pl (cos u)�
0

2p

dw �
DV×*

dV×*Aij
hk (m, w) Pl (cos u 8) Pl*

(cos u *8) .

We use the abbreviation m4cos b4V× QV×*.
It is possible to carry out analytically all integrals [64] of the loss term by re-

sorting to an expansion of the collision cross section A(m) in Legendre polyno-
mials, which results in

L ij
hk (l ; l , l*)42p�

0

p

sin u du Pl ( cos u) Pl ( cos u) Pl *
( cos u)

3 �
0

2p

dw �
2m 0

m 0

du Pl *
(m) Aij

hk (m , w) .

(56)

While the integration over u can be performed easily, the integral over m repre-
sents the above mentioned expansion of the cross section in Legendre polyno-
mials. The symbol m 0 stands for m 04min ]1, (vh vk ) /(vi vj )(.

Due to the transformation of the argument of the distribution function f to
pre-collision velocities, the evaluation of the gain term is more complicated. In
fact, it was not possible to carry them out in general analytically but only by
means of a numeric quadrature scheme.

It is important to note that not all possible combinations of l , l , l* yield non-
vanishing loss and gain terms, respectively. Therefore, in the P3 case we can sim-
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plify the collision terms in the following way:

J (i)
l 4Cx

2 !
j40

n

!
i1 j4h1k

h , kGn

vj !
(l , l *)

( G ij
hk (l ; l , l*) al

(h) al *
(k)2L ij

hk (l ; l , l*) al
(i) al *

( j) ) .(57)

3.1 - Macroscopic quantities, moment equations

In order to obtain the macroscopic quantities of the density r, momentum den-
sity ru and total kinetic energy density e of the gas in the PN approximation, we
insert ansatz (47) into the relevant definitions [53]:

r44pmCx !
j40

n

vj a0
( j) , ru4

4p

3
mCx !

j40

n

vj
2 a1

( j) , e42pmCx !
j40

n

vj
3 a0

( j) .(58)

The conservation of mass, momentum and energy is expressed by the moment
equations derived from Eqs. (49-50). In fact, summing up the evolution equations
for the zeroth moment a0

(i), Eq. (49), yields the moment equations for the mass
density and energy density:

¯r

¯t
1

¯(ru)

¯x

¯e

¯t
1

¯

¯x
g 2p

3
mCx !

i40

n

vi
4 a1

(i)h
42pmCx !

i40

n

vi J (i)
0 (a0, a1, a2, a3) ,

4pmCx !
i40

n

vi
3 J (i)

0 (a0, a1, a2, a3) ,

(59)

(60)

From the evolution of the first Legendre moment a1
(i) as stated in Eq. (50), we

infer the evolution of the momentum density:

(61)
¯(ru)

¯t
1

¯

¯x
g 2

3
e1

8p

15
mCx!

i40

n

vi
3a2

(i)h42pmCx!
i40

n

vi
2 J (i)

1 J (i)
0 (a0, a1, a2, a3) .

Due to the knowledge of the explicit form of the gain terms for l40, conser-
vation of mass and energy can be proven rigorously for arbitrary N [64].

Similar considerations for the collision term of Eq. (61) show that for the con-
servation of momentum, the following relation is sufficient:

(62) vh
2vk G hk

ij (1, l, l*)1vk
2vh G kh

ji (1, l*, l)2vi
2vj L ij

hk (1, l, l*)2vj
2vi L ji

hk (1, l*, l)40 .

Since we have no explicit expression for the gain terms G hk
ij (1 , l , l*), we are not

in the position to show rigorously that this is really fulfilled. Numerically, how-
ever, this relation is satisfied to high accuracy, i.e. the LHS of Eq. (62) is of the
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order B10223 whereas each term in this equation is of the order B10213. There-
fore, the moment equations expressing conservation of mass, momentum and en-
ergy under the evolution of the P3 equations are given by

¯r

¯t
1

¯(ru)

¯x

¯(ru)

¯t
1

¯

¯x
g 2

3
e1

8p

15
mCx !

j40

n

vj
3 a2

( j)h
¯e

¯t
1

¯

¯x
g 2p

3
mCx !

j40

n

vj
4 a1

( j)h

40 ,

B0 ,

40 .

(63)

(64)

(65)

4 - Simulations

The PN multigroup equations are a set of coupled nonlinear partial differential
equations. One way of solving them numerically is to resort to an operator split-
ting method [71]. This approach divides the evolution of the system into a free-
streaming part and a collision part within each time step.

An alternative to any operator splitting scheme is the expansion of the spatial
dependence of the distribution function f in a Fourier series. This can be done
with advantage in the case of cyclic boundary conditions. It has been shown in
[60] that this method conserves rigorously mass, momentum and energy. How-
ever, care must be taken when tackling the collision terms. Due to their quadratic
dependence on f, they introduce high spatial frequencies that must be dropped in
a numerical implementation. In order to mitigate the Gibbs oscillations, damping
coefficients shall be applied when expanding the initial distribution. A comparison
between different approaches to Gibbs damping can be found in [72].

4.1 - High frequency acoustic waves

First, we apply the P1-multigroup equations to a simplified model of the ther-
mal gratings as occurring in degenerate four wave mixing (DFWM) experiments
[73]. Two strong coherent laser beams interfere at a small angle within a gas mix-
ture. Their common frequency is tuned as to excite a rare species of the mixture
electronically. Within one interval of periodicity of the resulting intensity pattern,
called fringe spacing, the intensity variations of the laser light follow a cosine-
curve. This is due to the two beam interference. Thus, for small laser intensities,
the excitation of the rare species has the shape of a cosine within one fringe
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spacing. For higher intensities, saturation phenomena alter the shape of this
function: The slopes become steeper producing a plateau in the center of the frin-
ge spacing.

The excited species lose their internal energy due to inelastic binary collisions
with the dominant species. Thus, kinetic energy and pressure of the gas rise mai-
nly in the center of the fringe spacing. Since this effect occurs periodically accor-
ding to the interference pattern of the laser beams, a stationary acoustic wave is
triggered.

To simulate the evolution of these high frequency density oscillations in the
dominant gas, we choose an initial condition of the gas corresponding to the re-
sults of these de-excitation processes. Since these oscillations are triggered by a
spatially non-homogeneous de-excitation process, the initial condition is not a local
Maxwellian. The evolution of the gas is then studied by means of the P1 multi-
group equations.

We choose a spatial interval of l42pmm. This is a realistic value for the frin-
ge spacing [73]. To implement the effect of the de-excitation concentrated in the
center of the interval, we alter the total thermal equilibrium. Taking into account
16 energy groups, we move particles from the highly occupied low energy groups
1 and 2 to the high energy groups i0 and i011 in the tail of the Maxwellian (e.g.
i0411). The spatial variation of this initial condition has the shape of a simple co-
sine function.

To illustrate the departure from thermal equilibrium, Fig. 3 shows the ratio
of the distribution function in the center of the fringe spacing to the global Max-
wellian. The time evolution is calculated by applying a Fourier expansion in real
space [60]. Because of the small Maxwellian tail, one can observe temporal oscilla-
tions for high energy groups.

When exciting acoustic waves with a two beam interference pattern it may oc-
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Fig. 3 - Distribution functions W i (i labels the energy groups) divided by the global Ma-
xwellian in the center of the fringe spacing. The peak involving the energy groups i411
and i412 at approx. 0.18 eV results from the initial distribution. It relaxes and thus trig-
gers the oscillations.
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the collision cross section of the gas particles corresponds to that of N2 .

cur that the excitation has not the shape of a simple cosine. This is due to satura-
tion phenomena resulting from the nonlinear reaction of the absorption of the gas
for strong intensities. In an extreme case, the initial distribution resembles a rec-
tangular box. The higher spatial frequencies of the initial condition die out very
soon leaving a strongly damped stationary acoustic wave. This is illustrated in Fi-
gures 4 and 5. We observed no noticeable difference between the results of the
operator splitting algorithm and those of the Fourier algorithm.

In the next step we apply the P3 multigroup equations, Eq. (49-52), to a less
simplified model of thermal gratings. We solve the equations numerically by
means of the the operator splitting method [71]. The free-streaming time step is
approximated by an implicit finite differencing scheme of order 2. The collision
time step is carried out on each spatial knot by the application of a Runge Kutta
scheme with adaptive step-size control.

The evolution of the high frequency density oscillations of the dominant gas is si-

-4e+17

-3e+17

-2e+17

-1e+17

0e+00

1e+17

2e+17

3e+17

0 5 10 15 20 25 30t/ns

moment 1
moment 3
moment 5

-2.0e+23

-1.5e+23

-1.0e+23

-5.0e+22

0.0e+00

5.0e+22

1.0e+23

1.5e+23

2.0e+23

2.5e+23

0 5 10 15 20 25 30t/ns

moment 1
moment 3
moment 5

Fig. 5 - Solution of the P1 equations at T4293 K and p40.1 bar. The left plot shows the
odd cosine-coefficients of the density variations whereas cosine-coefficients of the energy
variations are plotted at the RHS. Even coefficients do practically not occur. The amplitude
of the third coefficient is multiplied by 5 and that of the fifth coefficient by 25.
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Fig. 6 - Oscillations of damped, stationary sound waves generated by two interfering laser
beams. The waves are simulated by solving the P3 multigroup equations within a one-di-
mensional slab geometry (thickness 10 mm) for different gas pressures: p41 bar (on the
top) and p40.01 bar (on the bottom). The pictures on the LHS show the energy density,
whereas the pictures on the RHS display the corresponding particle density. The more ra-
refied the gas is, the stronger the oscillations are damped.

mulated in a one-dimensional slab. The slab thickness is adapted to the fringe spacing
given by 10mm. The intensity pattern implies periodic boundary conditions. We choo-
se an initial condition of the gas corresponding to the results of the de-excitation pro-
cess. Since the oscillations are triggered by a spatially non-homogeneous de-excita-
tion process, the initial condition is not a local Maxwellian. Mainly in the center of the
spatial interval, high energy groups are overpopulated.

The evolution of the gas can be split into two phases: At first, local thermal equili-
brium is approached within a few nanoseconds due to binary collisions. After that, the
collision term virtually vanishes and a damped acoustic wave propagates.

Figure 6 shows the result of such calculations using 13 energy groups for dif-
ferent gas pressures at room temperature T4293 K. We observe that the high
energy density in the center of the slab at t40 leads to a flow of particles to the
borders of the slab. It results in a particle depletion in the center, whereas the
particle density increases at the borders. This, in turn, increases the energy den-
sity and thus the pressure at the borders, which implies a backflow of the gas to
the center of the slab. With increasing energy density in the center, the next
period of a stationary acoustic wave starts. The more the gas is rarefied, the
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higher the Knudsen number is and the more the waves are damped. The speed of
sound inferred from the P3 calculation is 36762m/s for the case of p41 bar.
This value is in good agreement with the fluid dynamic expectation: the isentropic
speed of sound of a monatomic gas is 374 m/s.

4.2 - Evolution of a hot spot

In order to show that a P3 approximation of the semi-continuous Boltzmann
equation deals well with hydrodynamic problems, we consider a more pronounced
flow problem: the evolution of a hot spot. We choose a spatial interval of length
l410 mm with cyclic boundary conditions and a gas density corresponding to a
pressure of p40.1 bar.

At the beginning of the simulation, the gas of constant density is in local ther-
mal equilibrium in each point of the space interval. We assume, however, a tem-
perature spot exponentially decaying from 352 K in the center to 293 K at the bor-
ders of the slab. Figure 7 shows the first 55 ms of the temporal evolution of the
energy and particle density and the temperature. At first, the energy peak de-
creases to a certain amount and propagates to the borders of the slab. Here, the
energy density increases in order to be reflected. Then, the two counter propaga-
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ting energy density peaks superpose in the center of the slab, where the next
cycle starts.

Considering the evolution of the particle density, we notice that this quantity
decreases in the center of the slab at first. The reason is the particle flow in direc-
tion to the borders triggered by the high energy density in the center of the slab.
On the one hand, we observe the propagation of a particle density peak to the
borders of the slab and its reflection similar to the propagation of the energy den-
sity peaks. On the other hand, we see the continuation of the particle density de-
pletion and the high temperature summit in the center of the slab, only periodical-
ly interrupted by the moving particle density and temperature peaks, respec-
tively. It is interesting to note that there are large unaffected parts of the space-
time plane during the first few cycles of the evolution. In course of time, however,
these flat regions disappear.

4.3 - Interaction of monochromatic photons with a mixture of gases

Here we present some numerical results of the extended semi-continuous
model. For simplicity, we confine ourselves to the case of a spatially homogeneous
and isotropic gas mixture. At this level, we study the impact of a monochromatic
laser pulse on the shape of the distribution functions of the gas mixture. The re-
sults demonstrate the power and practical usefulness of the model. For the nume-
rical simulations, we implement a P0 approximation of the semi-continuous kinetic
equations.

Apart from the multiplicative constant Cx, the quantities

ni
N4vi�

S2

f N
i (V×) dV×(66)

represent the number of particles N, N4A , B and B *, within the energy group
Ii . The evolution equations for the quantities ni , n

q

i , n×i and eR are obtained by in-
tegrating Eqs. (26) and (27) with respect to V×:

dni

dt
4 Q i1Q AA

i 1Q AB
i 1Q AB *

i ,(67a)

dn
q

i

dt
4 Q

q

i2Si1Q BB
i 1Q BA

i 1Q BB *
i ,(67b)



137CONSERVATIVE SOLUTION METHODS FOR EXTENDED BOLTZMANN EQUATIONS[29]

dn×i

dt
4 Q× i1Si1Q B * B *

i 1Q B * A
i 1Q B * B

i ,(67c)

deR

dt
4

d SL

dt
2Cx DE !

i40

n

Si .(67d)

These equations form a set of coupled ordinary differential equations. Here the
coupling of the gas particles with the radiation field reads Si4bceR n

q

i

2(a1bceR ) n×i and the integrated collision terms are given by

(68a) Q i4
Cx

2

2
!
j40

n m !
h, k40

h1k4i1j1q

n

(I×hk
ij nhn

q

k2I
q

ij
hknin×j)1 !

h, k40
h1k4i1j2q

n

(I
q

hk
ij nhn×k2I×ij

hknin
q

j)n ,

Q
q

i4
Cx

2
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!

j40

n

!
h , k40

h1k4 i1 j2q

n

(I
q

hk
ij n×h nk2I×ij

hk n
q

i nj ) ,(68b)

Q
q

i4
Cx

2
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!

j40

n

!
h , k40

h1k4 i1 j1q

n

(I×hk
ij n

q

h nk2 I
q

ij
hk n×i nj ) ,(68c)

and

(68d) Qi
NM4

Cx
2

2
!

j40

n

!
h , k40

h1k4 i1 j

n

(Ihk
ij n N

h n M
k 2Iij

hk n N
i n M

j ) .

The integrated elastic cross section for Maxwell molecules, e.g., is given by
Eqs. (39).

Especially simple expressions for the integrated inelastic cross section are
obtained by the choice s

q

( g)4d 2 g 1 /(4g), s×( g)4U( g2k2e) d 2 g 2 /(4g) as
sketched in Fig. 8 with a hard core of diameter d:

I
q

ij
hk4

2pd 2

vi vj

gkvi
21vj

212vi vj u12kvi
21vj

212vi vj u0
h .(69)

Alternatively, the expression for down-scattering s
q

( g)4k/g corresponding to an
up-scattering cross section s×(g)4kU(g2k2e) g 2/g 2 is also available analytically:

I
q

ij
hk4

pk

vi vj

arctan u 2vi vj u2e 2

k(vi
21vj

2 )212e 2 (vi
21vj

212vi vj u)24v 2
i v 2

j u 2
vN

u0

u1

.(70)
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 0

 2

 4

 6

 8

10

0 2 4 6 8 10

cr
os

s 
se

ct
io

n

relative speed

hard core
Maxwell

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 2 4 6 8 10

cr
os

s 
se

ct
io

n

relative speed

hard core
Maxwell
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tion and the right plot de-excitation. Speeds are measured in units of e.

The domain of integration (n0 , n1 ) coincide with the bounds of the product V× QV× *
as given in Eq. (18). The expression for hard sphere down-scattering including el-
liptic integrals is rather lengthy and shall not be given here.

In order to study relaxation phenomena, Eqs. (67) are solved numerically. Due
to the high speed of light cB3 Q108 m/s, the radiation originating from emission
and absorption processes of gas particles is always very close to its equilibrium
value. Thus, we approximate it by Planck’s law. For the calculation, we fix the
following parameters: a4105 s21 , b4107 m2 J21 , m444 a.m.u., n B1n B *

42.53 1022 m23 , DE40.27 eV, s
q

( g)45310217 m3 s21 /g. For the dominant spe-
cies A, we choose three different densities, namely 2.53 1023 m23 (low density),
2.53 1024 m23 (medium density), and 2.53 1025 m23 (high density).

The following scenario is considered: At time t40, the gas mixture is in ther-
mal equilibrium with the radiation field at temperature T4293 K. Then a laser
pulse supplies additional photons. Its intensity is given by the function IL (t)
4I0 (t/t L ) exp (2(t/t L )2 ) with I04100 W/m2 and t L45 ns. A fraction of these
photons is absorbed by species B yielding B *. The excited particles B * interact
inelastically with particles A in collision de-excitation events (cf. Fig. 10).

The high internal energy released in such a process causes a distortion of the di-
stribution functions. The actual deviation of the particle distribution functions from a
Maxwellian depends critically on the assumed cross section and is most pronounced
for species B. Figure 9 shows the distribution function of particles B at different in-
stants of time for Maxwell molecules (s( g)45310217 m3 s21 /g) and a low density of
particles A (Fig. 10). The deformation can be seen best for t430 ns.

The equivalent simulation for a hard sphere gas (diameter 3.5 Å) does not
show such significant deviations from mechanical equilibrium. The reason is that
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for hard sphere particles the collision frequency increases with relative speed and
consequently the depletion of the tails is accelerated.

On the other hand, the macroscopic quantities (excitation, energy, kinetic en-
ergy) of the gas mixture as depicted in Fig. 11 are relatively unaffected by the
choice of the elastic cross section. The curves calculated for hard sphere molecu-
les (HS) virtually coincide with those obtained for Maxwell molecules (MM). The
excitation is slightly smaller for hard sphere molecules because of the more effi-
cient Maxwellization of the tails. Consequently, the laser can inject more energy
into a hard sphere gas mixture (right column of Fig. 11) as can be seen best for a
medium density of species A.

Furthermore, Fig. 11 illustrates how the relaxation behavior depends on the
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cles A is shifted towards higher energies as a consequence of the conversion of internal
into kinetic energy.



140 W. KOLLER and F. SCHÜRRER [32]
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density of particles A: The less particles A the less collision de-excitation events
occur per unit time and the greater relaxation times are observed. For the same
reason, the excitation (ratio n B * /n B) reaches much higher values for low densities
of A than for high ones. In the latter case, internal energy is converted to kinetic
energy much more efficiently than in the former.

5 - A semi-continuous kinetic model for bimolecular chemical reactions

This section presents a generalization of the semi-continuous kinetic equations
to a mixture of four chemically reacting gases. A discussion of the continuous ki-
netic equations describing the evolution of the gas mixture can be found in [40],
[42].

The major new aspect as compared to the previous section is the introduction
of different masses of the interacting gas species. This feature gives rise to more
complicated expressions for the conservation of momentum and energy already at
the level of elastic binary collisions. In the rest of this section, we will denote the
four gas species by A , B , C and D, respectively, whereas the letters N and M
stand for arbitrary species, N , M4A , B , C , D.

For the introduction of the semi-continuous model, we first have to discuss bi-
nary collision events involving particles of different masses. After a polar decom-
position of the momentum space for any binary collision N1M4N 81M 8, the



141CONSERVATIVE SOLUTION METHODS FOR EXTENDED BOLTZMANN EQUATIONS[33]

conservation of momentum implies the restriction

1

2pp*
( (p 82p*8 )22p 22p*

2 )GV× QV×*G
1

2pp*
( (p 81p*8 )22p 22p*

2 )(71)

as a consequence of 21GV×8 QV×*8G1. Here p , p*, R denote the moduli and
V× , V×*, R the direction of the momenta. For a fixed V×, the set of all V×* satis-
fying the above condition will be referred to as D*(p , p*, p 8 , p*8 ).

For the purpose of speed-discretization for each species N, we introduce a dis-
crete set of allowed speeds according to

vi
N4o 2

m N gEm1 gi1 1

2
h dh ,(72)

where n40, 1 , R , n, EmD0 is the minimal kinetic energy and dD0 is the size
of one energy group. The associated momenta are given by pi

N4m N vi
N .

This form of discretization has the advantage of a simple expression for the
conservation of energy. In fact, for elastic collisions, energy conservation is
expressed by i1 j4h1k. Moreover, as long as the difference in internal energy
Q is given by Q4qd, q�N, also the reactive collisions imply i1j4h1k6q.

We introduce a set of distribution functions f N
i (V× , x , t), i40, 1 , Rn for each

species N4A , B , C , D. The semi-continuous kinetic equations are obtained by
resorting to the discretization procedure of [53] and [64]. They are of the
form

¯f N
i

¯t
1vi

N V× Q
¯f N

i

¯x
4 J i

N1!
M

Ji
NM ,(73)

where Ji
NM denotes the influence of elastic collisions between species N and spe-

cies M on the evolution of the i-th energy group of species N. Similarly, J i
N con-

tains the impact of chemical reactions on the i-th energy group of species N.
First we tackle the problem of elastic collision terms in the semi-continuous

theory of the Boltzmann equation. The main problem is to introduce different
masses, say mass m N for species N and mass m M for species M. The considered
interaction reads

N1M4N1M .(74)

The total mass of the colliding particles is given by M4m N1m M whereas the
reduced mass and the mass ratio read m NM4m N m M /M and r N4m N /M, re-
spectively. In analogy to the formulation given in [53] and [64], the elastic semi-
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continuous collision term reads

Ji
NM [ f N , f M ]4

d 2

m M m N
!
j40

n

vj
M !

h, k40
i1j4h1k

n

�
0

2p

dw �
D *(m N vi

N , m M vj
M , m N vh

N , m M vk
M )

dV×*

3]Aij
hk (V× QV×*, w)(NM [ f*k

M 8 fh
N82 f*j

M fi
N ] ,

(75)

and for the kernel one finds [74]

]Aij
hk (V× QV×*, w)(NM4

4m N

R
g11 1

4

(m N2m M )2

m N m M h s NM ( g , w) ,(76)

where s NM
fs NM ( g , w) denotes the differential scattering cross section for the

elastic interaction, i.e. Eq. (74).
Next, we consider the bimolecular chemical reaction treated in [40], i.e.

A1B4C1D2Q ,(77)

where QD0 is the additional internal energy due to stronger chemical bounds of
C and D as compared to A and B. We assume that this quantity can be expressed
as a multiple of the energy gap d according to Q4qd with q�N. We intro-
duce the cross section s AB

CD relevant to the chemical reaction and the speeds
gNM

2 42Q/m NM. Then the relative speeds after the chemical reaction are given
by

g 24o m AB

m CD
( g 22gAB

2 ) and g 14o m CD

m AB
(g 21gCD

2 )(78)

for the endothermic (K) and the exothermic (J) direction of the chemical reac-
tion, respectively.

For species A, the semi-continuous collision term for the chemical reaction
reads

J i
A [ f M ]4

d 2

m B m C
!

j40

n

vj
B !

h , k40
i1 j4h1k1q

n

�
0

2p
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D *(m A vi

A , m B vj
B , m C vh

C , m D vk
D )

dV×*

3]Aij
hk (V× QV×*, w)(Ayg m A m B

m C m D h3

f*k
D 8 fh

C82 f*j
B fi

Az ,

(79)



143CONSERVATIVE SOLUTION METHODS FOR EXTENDED BOLTZMANN EQUATIONS[35]

where, the kernel A is given by

]Aij
hk (V× QV×*, w)(A4

4gm C

g 2 R
g11 1

4

(m D2m C )2

m C m D h s AB
CD ( g , w) .(80)

For species B, C and D one obtains similar expressions which can be found
in [74].

The obtained semi-continuous transport equations conserve particles, total
momentum and total energy [74]. As an impact of the chemical reactions, the indi-
vidual densities n N do not remain constant. Only their sum is preserved.

5.1 - Numerical results

In this section, some results of the semi-continuous model obtained by an im-
plementation of a P0 approximation are presented. To this end, we consider a fast
exothermic chemical reaction taking place in the mixture of hard sphere particles
of diameter a43.46 Å. The starting point is mechanical (but not chemical) equili-
brium of all four species at T4300 K. The initial densities are given by
n A40.0416 mol/m3 , n B40.00416 mol/m3 , n C44.16 mol/m3 , n D441.6 mol/m3 and
the masses are m A47, m B417, m C414 and m D410 of the various species.
The difference in internal energy is given by Q4125 meV. Chemical reactions are
described by sAg 2 /g, and the cross section is chosen 60 times smaller than that
for elastic interactions.

Figure 12 shows the evolution of macroscopic quantities during the first 80 ps.
Due to the initial rarity of species B, at the beginning, the increase of temperature
and particle number is most pronounced for this species. As can be seen in the
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shows the evolution of temperature and the right plot the evolution of the densities of the
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remain virtually constant.
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right plot of Fig. 12, the number of particles B is 100 times greater at t480 ps
than at the beginning.

During the considered period of time, however, the generated particles A and
B undergo very few elastic collisions. For species A additionally, the mass ratio is
far from ideal for energy transfer through elastic collisions. Therefore, the pro-
ducts A lose their high kinetic energy very slowly, and their distribution function
shows extreme deviations from a Maxwellian. This is illustrated in Fig. 13, which
show the distribution functions of the products A and B at different instants of
time after the ignition of the reaction. The lowest curves show the distributions at
t40, whereas the highest curves correspond to t4125 ps. On the other hand,
the distribution functions of C and D stay virtually constant during the first
80 ns. Due to the non-equilibrium distribution functions of A and also B, the appli-
cation of the concept of temperature is, of course, highly questionable.

Moreover, Fig. 14 shows the evolution of the temperatures and densities of the
various species for the first few nanoseconds of the evolution. We observe that the
temperature of the reactants C and D increase to the common limit of about
387 . 48 K whereas the products A and B approach the limit from above.

After four nanoseconds, a common temperature is reached and the four par-
ticle densities have arrived at constant levels. The final densities of the four spe-
cies are in excellent agreement with the mass action law [40] that predicts in
equilibrium

n A n B

n C n D
4 g m A m B

m C m D h3/2

e
Q

kB T 432.9
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Fig. 14 - First few nanoseconds of a fast highly exothermic chemical reaction. The left plot
shows the evolution of temperature and the right plot the evolution of the densities of the
various gas species. For convenience, the density of species D is divided by ten.

which has to be compared with the actual value of 32.8 obtained from the numeri-
cal results. The discrepancy is less than 0.3 per cent.

Very interesting new features appear as soon as we introduce a threshold for
the exothermic direction of the chemical reaction [28]:

s AB
CD ( g)A

1

g 2 g12 gAB
2 1gx

2

g 2 h U( g 22 ( gAB
2 1gx

2 ) ) ,(81)

where gx
2 is given by gx

242rd/m AB and r denotes the additional threshold. The dy-
namics of the reaction depends critically on this threshold r. Depending on the
magnitude of the r, we observe a more or less rapid ignition of the reac-
tion.

Two cases are illustrated in Fig. 15, namely the case of a low and a high thres-
hold. For the calculations, the distribution function is resolved using 75 energy
groups. The energy gap of the chemical reaction is given by q4503d and the
threshold equals r4253d. The two different values for the threshold are obtai-
ned by modifying the width d of the energy groups. The values are given by
d46.25 and 11.25 meV, respectively. All calculations start at mechanical equili-
brium at T4300 K.

For a low value of r, we find that the densities do not decay exponentially to
their final values as was the case without exothermic threshold, cf. Fig. 14. As
expected, the increasing temperature accelerates the reaction.

For medium and especially very high r, on the other hand, the ignition is delay-
ed for a long time. In the beginning, only a few gas particles react because the
gas is still cold. The reactions, however, constantly heat the gas mixture. As soon
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Fig. 15 - Low (top), and high (bottom) threshold.

as the temperature of C and D is high enough, the reaction starts very brutally
followed by a rapidly increasing temperature.

6 - Overlapping multigroup approach

In the following sections we present further methods to treat the speed depen-
dence of the distribution function in order to solve the Boltzmann equation. The
intention of these alternative approaches is to sustain the smooth character of the
velocity distribution. This will allow us to deal with problems where external for-
ces affect the considered gas particles.

Indeed, multigroup discretizations for solving scalar extended Boltzmann
equations are not new. A few years ago, the standard multigroup method original-
ly devised for neutron transport was generalized for nonlinear extended kinetic
equations [48]. Such an approach, which is the most straightforward application of
the method of weighted residuals [75], fits well to the collision term in the linear
frame, because it guarantees exact fulfillment of mass conservation at each level
of approximation. In fact, when considering the evolution of the test particles,
mass is the only quantity conserved under collisions since momentum and energy



147CONSERVATIVE SOLUTION METHODS FOR EXTENDED BOLTZMANN EQUATIONS[39]

are actually exchanged with the field particles. When treating charged particles,
the external force term entails derivatives with respect to velocity. The standard
procedure [48] eliminates all such derivatives by integration by parts but brings in
additional unknowns. In a second step, these quantities must be expressed by suit-
able interpolation in terms of the actual unknowns and this introduces further
approximations.

For this reason, it is preferable to adopt a kind of overlapping multigroup ap-
proach [76], which still falls within the method of weighted residuals [75], allowing
an exact integration by parts within each group. This is due to the fact that the
support of the k-th expansion function consists of two adjacent intervals relevant
to the indices k and k11. In addition, different weight functions can be used in
combination with the standard one yielding mass conservation. In this way, a bet-
ter description of the continuous macroscopic balance equations for momentum
and energy, although not strictly necessary, is built in the discretized multigroup
scheme. In any case, the output for numerical computations is a set of linear inte-
gro (with respect to the direction V×4v/v) differential (with respect to t, x and V×)
equations for the distribution function evaluated at particular speed knots.

The advantage of this approach is that the external force term can be treated
in a natural manner avoiding any additional ad hoc assumptions. This, however,
has to be paid with a more complex structure of the multigroup equations: A ma-
trix appears in front of the time derivative linking the evolution of the various en-
ergy groups also on the left hand side of the Boltzmann equation. A refinement of
the method sketched in Sec. 8 circumvents this complication by working with or-
thogonal polynomials.

6.1 - Extended linear Boltzmann equation

To demonstrate the overlapping multigroup approach, we consider a linear
Boltzmann equation governing the evolution of charged structureless particles
scattering inelastically with heavy field particles. External electric and magnetic
fields are accounted for. Conservation of mass as well as balance equations for
momentum and energy transfer are discussed in the Lorentz gas limit.

For this physical problem the equation governing the evolution of the test par-
ticle distribution function reads as [29]

¯f

¯t
1v Q

¯f

¯x
1 (a1v3b) Q

¯f

¯v
4C[ f ] ,(82)
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where the collision term on the right hand side C[ f ] is given by

C[ f ]4
1

v
�dV×8]n1 v1

2 s 12 (v1 , V× QV×8 ) f (v1 V×8 )

1n2 U(v 22d 2 ) v 2 s 12 (v , V× QV×8 ) f (v2 V×8 )

2f (v)[n1 U(v 22d 2 ) v 2 s 12 (v , V× QV×8 )1n2 v1
2 s 12 (v1 , V× QV×8 ) ]( .

(83)

The integration on the right hand side extends over the two-dimensional unit
sphere S 2. Here, U denotes the unit step function and V×, V×8 are unit vectors in
the velocity space such that the polar decomposition of the velocity vector v is
given by vV× with v4NvN. To simplify notation, the dependence on x and t is not
explicitly shown, unless necessary. Furthermore, we have introduced the abbre-
viations

v64kv 26d 2 , d 24
2DE

m
, a4qE/m , b4qB/m .(84)

For simplicity, only constant external electric (E) and magnetic (B) fields will
be considered. Field particles are taken to be in equilibrium at zero drift velocity
and temperature T, with number densities n1 and n2 for the fundamental and
excited species B1 and B2 , respectively. All quantities are assumed to be constant
versus x and t. In thermal equilibrium, the densities n1 and n2 are related by the
Boltzmann factor

n2

n1

4exp g2 DE

kB T
h ,(85)

where DE4E22E1D0 is the difference between the energy levels of species B
and kB denotes the Boltzmann constant.

The cross section s 12 refers to the scattering collision which transforms spe-
cies B1 into B2 ; the other cross section s 21 for the de-excitation process has been
eliminated by means of the microreversibility condition

v 2 s 12 (v , V× QV×8 )4U(v 22d 2 ) v2
2 s 21 (v2 , V× QV×8 ) .(86)

One can easily recognize the four addends making up the collision integral: The
gain term contributed by down-scattering, the gain term due to up-scattering and
the corresponding two loss terms, respectively. Of course, any excitation (de-exci-
tation) process corresponds to decreasing (increasing) the test particle’s quadratic
speed by d 2. The step function U accounts for the relevant thresholds. In view of
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the planned speed discretization, it is useful to split the velocity gradient as

¯f

¯v
4V×

¯f

¯v
1

1

v

¯f

¯V×
.(87)

The properties of the collision term C [ f ] are discussed in [32]. For the pur-
pose of this paper, it is sufficient to note that it guarantees mass conserva-
tion, i.e.

�
0

Q

v 2 dv�C[ f ] dV×40 for all f ,(88)

and that collision equilibria are exhausted by the class of functions

f (vV×)4G(v 2 ) exp g2 mv 2

2kB T
h with G(d 21v 2 )4G(v 2 ) .(89)

These equilibria are a Maxwellian at the background drift velocity and tempera-
ture times any periodic function of v 2 with period d 2 /k, k�N.

We shall confine ourselves to small spatial gradients and small fields. This al-
lows a treatment of the angle variable V× by resorting to the lowest order trunca-
ted spherical harmonics expansion (P1-approximation). Of course, the considera-
ble simplification achieved has a counterpart in the loss of generality associated to
the restricted range of validity of a linear anisotropy approximation for the distri-
bution function.

In the rest of this section, we shall drop the superscript 12 from the cross sec-
tion since the inverse cross section will not be needed.

6.2 - Overlapping multigroup approach

The strategy of the approach is the following: After discretizing the speed va-
riable v, we introduce shape functions x(v) bearing the v dependence of the distri-
bution function f within each energy group. Subsequently, we multiply the Bol-
tzmann equation by the non-negative weight functions v l , l42, 3 , R . We then
obtain moment equations by integrating the weighted Boltzmann equation with
respect to v over the various energy groups. These moment equations are shown
to conserve the number of test particles.

For the introduction of energy groups, we consider a partition of the non-
negative real axis v� (0 , 1Q) in terms of N intervals located between the N11
knots wi , i40, 1 , R , N (starting from w040). The number N has to be large
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enough, so that the distribution function evaluated at the final knot, f (wN V×), can
be considered negligible. Introducing fi (V×)f f (wi V×) as the new unknowns en-
tails that only N nonvanishing functions are left. The physical problem suggests
the following choice:

w040, wi114kwi
21e , with e4d 242DE/m .

As in each weighted residuals method, we introduce N non-negative continuous
basis functions x i (v), i40, 1 , R , N21. In particular, we choose them in such a
way that they meet the requirements

x i (v)40 for vGwi21 and iD0

x i (wi )41

x i (v)40 for vFwi11 .

R e m a r k 1. It is also possible to work with an adimensionalized system of
equations by using v 2 as new independent variable and measuring it in units of
2DE/m. This has the consequence that the knots are equally spaced and located
at integer numbers. r

For the purpose of the multigroup approach, we make the usual assumption of
separability. Therefore, the function f (vV×) is approximated by

f (vV×)4 !
i40

N21

f (wi V
×) x i (v) .(90)

The assumption of linear and continuous functions x i on the intervals [wi21 , wi ]
and [wi21 , wi ] (i.e. tent functions) is equivalent to the linear interpolation of f (v)
between the knots.

R e m a r k 2. Since the ansatz of Eq. (90) provides values of f for each speed
v, it implicitly rules out any arbitrariness of the equilibrium distribution as stated
in Eq. (89). Notice, however, that this arbitrariness also disappears physically as
soon as we apply an external field. In this case, each velocity v is related to all
other velocities by the streaming term of the Boltzmann equation. r

A system of equations for the unknowns fk (V×) is constructed by multiplying
the linear kinetic equation Eq. (82) by some weight function c(v) and integrating
over the intervals v� [wk , wk11 ] for k40, 1 , R , N21. The original multigroup
method [48] corresponds to the option c(v)4v 2 on all intervals, which guaran-
tees exact fulfillment of mass conservation. This choice remains appropriate here,
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but, for the sake of generality, we will take as weight function an arbitrary power
of v, say v l, with integer l.

For a general lF2, the system of N multigroup equations can be written as

¯

¯t
( fk I (l)

k 1 fk11 J (l)
k )1V× Q˜( fk I (l11)

k 1 fk11 J (l11)
k )

1a QV× [wk11
l fk112wk

l fk2 l( fk I (l21)
k 1 fk11 J (l21)

k ) ]

1a Q
¯

¯V×
( fk I (l21)

k 1 fk11 J (l21)
k )1 (V×3b) Q

¯

¯V×
( fk I (l)

k 1 fk11 J (l)
k )

4n1�dV×8 [ fk11 (V×8 ) G(l21)
k , k11 (V× QV×8 )1 fk12 (V×8 ) G(l21)

k , k12 (V× QV×8 ) ]

1dOk , 0 n2�dV×8 [ fk21 (V×8 ) G (l21)
k , k21*(V× QV×8 )1 fk (V×8 ) G (l21)

k , k *(V× QV×8 ) ]

2dOk , 0 n1 (L (l21)
k , k fk1L (l21)

k , k11 fk11 )2dOk , N21 n2 (L (l21)
k , k * fk1L (l21)

k , k11* fk11 ) ,

(91)

where we have used the abbreviations

I k
(l)4 �

wk

wk11

x k (v) v l dv and J k
(l)4 �

wk

wk11

x k11 (v) v l dv .(92)

It should be noted that different power moments of the basis functions x i are nee-
ded for a consistent approximation of different macroscopic quantities. The index
k ranges from k40, 1 , R , N21. The integral �dm is always extended over the
interval [21, 11]. In addition to the complementary Kronecker delta dOk , l41
2d k , l , we have introduced the following new symbols:

G
(l)
k , i (m)4 �

wk

wk11

v l dv[v1
2 s(v1 , m) x i (v1 ) ] ,(93a)

G*k , i
(l) (m)4 �

wk

wk11

v l dv[v 2 s(v , m) x i (v2 ) ] ,(93b)

L
(l)
k , i4 �

wk

wk11

v l dv�2pdm[v 2 s(v , m) x i (v) ] ,(93c)

L*(l)
k , i 4 �

wk

wk11

v l dv�2pdm[v1
2 s(v1 , m) x i (v) ] .(93d)

As stated above, the choice l42 yields a valid algorithm for numerical implemen-
tation, even though we miss the powers v 3 and v 4 needed to accurately describe
the evolution of momentum and energy density.
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We construct a consistent and closed set of multigroup equations in the fol-
lowing way. We choose an integer number L and consider Eq. (91) for all
l42, R , L. This yields a system of (L21)3N equations for the N unknowns
f0 , R , fN21, which is, except for L42, overdetermined. This overdetermina-
tion is cured by adding L21 neighboring equations (with respect to k) to obtain
one new equation. For this reason, N must be chosen as a multiple of L21, and
N/(L21) equations are obtained for each value of l.

R e m a r k 3. This procedure is equivalent to integrating over intervals of the
length (L21) DE in energy space. For LF4 not only mass conservation, but
also momentum and energy balance are adequately accounted for. In any case,
the unknowns fk are representative for the energy groups and come from a
weighting procedure over energy intervals of length DE or multiples the-
reof. r

6.3 - Numerical treatment

By formulating an overlapping multigroup approach in Eq. (91), we have trea-
ted the speed variable of the distribution function. With respect to the direction V×

of the velocity, Eq. (91) is still of integro-differential type. In the next step, one
has to reduce the system of multigroup equations to a system of linear partial dif-
ferential equations with respect to time t and space x.

If both the spatial gradients and the electric field are small, we can achieve
our aim of reducing the integro-differential equation, Eq. (91), to a differential
equation by resorting to a truncated spherical harmonic expansion of fk (V×). Up to
the first order, our ansatz for f (V×) reads

fk (V×)4
1

4p
(Nk13V× QJk ) ,(94)

where the symbols appearing in this definition are defined as

Nk4� fk (V×) dV× , Jk4�V×fk (V×) dV× .

In order to simplify notation, we work with a coordinate system whose z axis
coincides with the direction of the electric field. Furthermore, we rotate the coor-
dinate system in such a way that the x component of the magnetic flux vanishes.
Therefore, we can write

a4 (0 , 0 , a)† and b4 (0 , by , bz )† .(95)
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The resulting P1 overlapping multigroup equations can be cast after some algebra
as shown in [77] in a matrix form:

¯

¯t

.
`
´

N

J z

J x

J y

ˆ
`
˜
4

.
`
`
`
´

C

2aD/3

0

0

2aB

F

2by E

0

0

by E

F

2bz E

0

0

bz E

F

ˆ
`
`
`
˜

.
`
´

N

J z

J x

J y

ˆ
`
˜

,(96)

where E stands for the unit matrix. We now write N, J z, J x and J y for the N-
tuples (N0 , R , NN21 )† , R , respectively. For crossed fields, i.e. bz40, the equa-
tion for J y is not needed.

As the easiest test case, we illustrate the relaxation of an isotropic non-equili-
brium distribution to a Maxwellian. Its temperature is imposed by the field parti-
cles. Due to the special distortion of the initial distribution function, the kinetic
energy of the test particles first increases to a maximum and then slowly decrea-
ses to its equilibrium value. The 3d plot of Fig. 16 gives an impressive apprecia-
tion of the actual departure from equilibrium. It shows the ratio of the distribu-
tion function divided by the final Maxwellian versus speed and time.

Next we study the impact of an electric field on the distribution function f. Ac-
cording to the results obtained by a Fokker-Planck approximation [43], [78] for
DE b 3kB T/2, this impact depends on the interaction law. It is, of course, much
stronger for the 1 /v decreasing cross section of Maxwell molecules than for hard
spheres, where the cross section is constant versus v. Figure 17 shows the isotro-
pic part of the distribution function divided by the Maxwellian versus speed and
time. At time t41000 the electric field is turned on and begins to act on the initial
distribution which is a Maxwellian with the temperature of the background gas.

It should be noted that the differently strong fields induce an almost equal di-
stortion of the distribution function for high speeds. For low speeds, however, the
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Fig. 16 - Relaxation to a Maxwellian. The plot shows the distribution function Nk versus
speed and time divided by the Maxwellian.
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phase trajectory has the form of a spiral.

cross section of Maxwellian molecules tends to infinity. Therefore, the distribution
function is only very slightly below unity as compared to the case of hard sphere
particles.

Next, we introduce an external electric field giving rise to a current, and in a
further step we add a magnetic field acting on this current. Thus, we obtain a sim-
ple, spatially homogeneous kinetic model of the Hall effect. If we change the sign
of the electric field and simultaneously apply the magnetic field in both directions,
y and z, we obtain the most interesting behavior of such a model: When plotting
the (Jx , Jy , Jz) projection of the phase space, we find a spiral on a cone. This phe-
nomenon can be seen in Fig. 18.

7 - Linear spline interpolation

The overlapping multigroup approximation as described in Sec. 6 represents a
first approach to incorporate external fields in a discretization of a linear Bol-
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tzmann transport equation. Although meeting the major physical requirements
(conservation of particles, balance of momentum and energy), this method turns
out to work well only for small electric fields. Numerical instabilities are found to
spoil the algorithm by inducing heavy and unphysical oscillations of the distribu-
tion function. This happens predominantly as soon as one tries to simulate the im-
pact of higher electric fields.

Here, we therefore present a more stable generalization of the overlapping
multigroup approach. Instead of working with rigid shape functions, we resort to
a spline approximation of the speed-dependence of the distribution function.
External fields can be naturally included in this multigroup scheme.

The method presented here has the advantage of great flexibility. The degree
of smoothness of the distribution function can be controlled by means of a certain
number of continuity conditions. Furthermore, in this way, one obtains many mo-
re equations per speed interval (in fact, as many as one wants to deal with) than
in the former approach and thus increases the accuracy of the approximation. Fi-
nally, the original overlapping multigroup method can be recovered as a special
case of the spline multigroup approach.

7.1 - Multigroup equations

For convenience, we absorb the factor v 2 in the definition of the distribution
function and resort to a polar decomposition of the velocity variable v4vV×,
where v4NvN and V×4v/v. In terms of the new dependent variable W(v , V×)
4v 2 f (vV×), where f (v , x , t) stands for the phase density of particles A, the
Boltzmann equation reads

¯W

¯t
1vV×Q

¯W

¯x
1aQkg2 2

v
W1

¯W

¯v
hV×1

1

v

¯W

¯V×
l1(V×3b)Q

¯W

¯V×
4C[W] .(97)

In the case of a Lorentz gas where (test) particles A collide inelastically with
heavy field particles B, i.e., the model described in the previous section, the linear
collision operator C describing the interaction A1B1 2A1B2 is given by

C[W]4
1

v
�dV×8mn1 v 2 s (v1 , V×8 QV×) W(v1 , V×8 )1n2

v 4

v2
2

s (v , V×8 QV×) W(v2 , V×8 )

2W(v)[n1 v 2 s (v , V×8 QV×)1n2 v1
2 s (v1 , V×8 QV×)n .

(98)

The density of B1 (ground state of B) and B2 (excited state of B) is denoted by n1
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and n2 , respectively. The cross section s controls the rate of the above mentioned
interaction (excitation of B).

The positive real axis of speeds is partitioned in terms of N intervals located
between the N11 knots w040Ew1EREwN. Henceforth it shall be assumed
that the influence of particles of speed higher than wN is negligible. On each inter-
val In4 [wn21 , wn ), the distribution function is approximated by a polynomial of
degree L. The dependence on v and on V× is separated by the ansatz

W(v , V×)4 !
n41

N

W n (v , V×)4 !
n41

N

!
l40

L

W n
(l) (V×) x In

(v) (v2wn21 )l ,(99)

where x B stands for the characteristic function of the set B and W n (v , V×) is the
restriction of the distribution function W to the interval In . The (L11)3N un-
knowns W n

(l) depend on space x, time t and the angle V×. Thus the same number of
equations is needed. Part of them stem from the requirement of continuity of W at
the speed knots wn ,

W n (wn , V×)4W n11 (wn , V×) ,

W n8 (wn , V×)4W n118 (wn , V×) ,(100)

QQ
Q n41, R , N21 ,

¯M

¯v M
W n (wn , V×)4

¯M

¯v M
W n11 (wn , V×) ,

where primes refer to derivatives with respect to v. This yields a set of (N21)
3 (M11) equations. Combined with the natural and physically meaningful boun-
dary conditions

W 1 (0 , V×)4W 18 (0 , V×)40 ,

W N9 (wN , V×)4R4
¯M

¯v M
W N (wN , V×)40 ,

(101)

we obtain a set of (M11)3N equations. In terms of the new unknowns W n
(l) (V×),

the boundary conditions read

W 1
(0) (V×)4W 1

(1) (V×)

!
l4m

L g l

m
h (wN2wN21 )l2m W N

(l) (V×)

40 ,

40 , m42, R , M .
(102)
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The continuity conditions are of the form

!
l40

L

(wn2wn21 )l W n
(l) (V×)4W n11

(0) (V×) ,

!
l41

L

l(wn2wn21 )l21 W n
(l) (V×)4W n11

(1) (V×) ,(103)

QQ
Q n41, R , N21 ,

!
l4M

L g l

M
h (wn2wn21 )l2M W n

(l) (V×)4W n11
(M) (V×) .

The other equations are, of course, obtained from the linear Boltzmann equa-
tion. To this end, Eq. (97) is multiplied by the weights v l, for l40, 1 , R , L and
integrated over the intervals In . This procedure yields a set of (L11)3N spline-
multigroup equations. For the Lorentz gas model with inelastic scattering, these
equations take on their simplest form if the speed knots are chosen as wi

24 id 2

with i40, 1 , R , N and d 242DE/m. In this case we find

!
l40

L mav l bn , l

¯

¯t
W n

(l) (V×)1 av l11 bn , l V× Q
¯

¯x
W n

(l) (V×)

1av l21 bn , l a Q k22 V×W n
(l) (V×)1

¯

¯V×
W n

(l) (V×)l1lav l bn , l21 a QV×W n
(l) (V×)

1av l bn , l (V×3b) Q
¯

¯V×
W n

(l) (V×)n
4!

l40

L m�dV×8[G (lH)
n,l (V×8 QV×) W n11

(l) (V×8)1G (lI)
n,l (V×8 QV×) W n21

(l) (V×8)]2L (lHI)
n,l W n

(l) (V×)n .

(104)

When introducing the complementary Kronecker delta dO i , j412d i , j , the newly
appearing symbols can be written as

av l bn , l4 �
wn21

wn

dv v l (v2wn21 )l ,(105a)

G (lH)
n , l 4n1 dO n , N �

wn21

wn

dv v l11 (v12wn )l s (v1 , V×8 QV×) ,(105b)
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G (lI)
n , l 4n2 dO n , 1 �

wn21

wn

dv v l13 (v22wn22 )l (v2 )22 s (v , V×8 QV×) ,(105c)

L (lHI)
n , l 42p �

21

1

du �
wn21

wn

dv v l21 (v2wn21 )l(105d)

3]dO n , 1 n1 v 2 s (v , u)1dO n , N n2 (v1 )2 s (v1 , u)( .

In order to obtain as many equations as there are unknowns, we have to choose
L , M and L such that they satisfy the condition

L1M114L .(106)

One physically meaningful choice would be L44, L42, M41. In this way, one
recovers the exact conservation and balance laws of the kinetic model by working
with smooth distribution functions.

7.2 - Implementation

For the numerical implementation, it is advantageous to eliminate as many un-
knowns as possible. Provided LDM, this can be achieved by expressing the conti-
nuity equations, i.e. Eq. (103), at each speed knot n41, R , N21 as

!
l4L11

L

(wn2wn21 )l W n
(l) (V×)4W n11

(0) (V×)2 !
l40

L

(wn2wn21 )l W n
(l) (V×) ,

QQ
Q

!
l4L11

L g l

m
h (wn2wn21 )l2m W n

(l) (V×)4W n11
(m) (V×)2 !

l4m

L g l

m
h (wn2wn21 )l2m W n

(l) (V×) ,

QQ
Q

!
l4L11

L g l

M
h (wn2wn21 )l2M W n

(l) (V×)4W n11
(M) (V×)2 !

l4M

L g l

M
h (wn2wn21 )l2M W n

(l) (V×) .

This can be interpreted as a set of M11 equations for the unknowns W n
(l) (V×)

with l4L11, R , L. It can be solved by inversion of the M11 by M11 matrix
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on the left hand side. The result can be cast in the form

W n
(l) (V×)4 Mn

(l) Q

.
`
`
`
`
`
´

W n
(0) (V×)

QQ
Q

W n
(L) (V×)

W n11
(0) (V×)

QQ
Q

W n11
(M) (V×)

ˆ
`
`
`
`
`
˜

,
l4L11, R , L

n41, R , N21
,(107)

with a M11 by L1M12 matrix Mn at each interior speed knot. At the upper
bound of the interval of allowed speeds, the situation is a bit different. From
Eq. (102) we find a set of M21 equations,

!
l4L13

L g l

m
h (wN2wN21 )l2m W N

(l) (V×)42 !
l4m

L12 g l

m
h (wN2wN21 )l2m W N

(l) (V×) .

By inversion of the matrix on the left hand side, we can thus express the M21
unknowns W N

(l) (V×), l4L13, R , L in terms of W N
(l) (V×), l4m , R , L12.

In general, the collision terms of the spline multigroup equations will still con-
tain integrals over the solid angles V×. Therefore, for a numerical implementation
of these equations, the dependence of the distribution function on this variable
has to be approximated appropriately. A well-established procedure is the expan-
sion of W(v , V×) in terms of spherical harmonics.

8 - Non-linear spline interpolation

In this section, we present a numerical method for treating the nonlinear
Boltzmann equation. In [79], a revised version of the multigroup approach to the
non-linear Boltzmann equation was proposed. That method intrinsically assures
the exact conservation of particles, momentum and energy and drops any ad hoc
assumption as well as restrictions [54] imposed on the form of the shape fun-
ctions. This is achieved by a kind of weighted residual method designed to fit the
specific requirements of the non-linear Boltzmann equation. A shortcoming of
that method, however, is the introduction of macro intervals extending over vari-
ous energy groups. Furthermore, the use of rigid shape functions c i (v) introdu-
ces a certain degree of arbitrariness and limits the accuracy of the approach.
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These restrictions can be lifted by introducing a more flexible interpolation of
the distribution function W(v) within each energy group. This is done in an equiva-
lent way as in the linear case. The Boltzmann equation then models the approxi-
mate distribution function in a more accurate and physically meaningful way.

We perform a polar decomposition of the velocity variable v writing v4vV×

with v4NvN and V×4v/v. Furthermore, the speed axis is subdivided into N
intervals In4 [wn21 , wn ), n41, 2 , R , N21 located between the N11 speed
knots w040Ew1EREwN. We introduce the centers of these intervals
vn4 (wn1wn21 ) /2 as well as their lengths Dvn4wn2wn21. All particles with
speeds greater than wN shall henceforth be neglected.

The dependence of the distribution function on the speed variable is now ap-
proximated within each energy group. In contrast to the usual multigroup approach,
we do not introduce shape functions but resort to a polynomial approximation of
the distribution function with respect to the speed variable v within each energy
group. This ansatz reads

W(vV×)fv 2 f (vV×)

4 !
n41

N

W n (vV×)4 !
n41

N

x In
(v) !

l40

L

P (l)
n (v) W n

(l) (V×) ,
(108)

where L�N is the order of the spline approximation and x B (v) stands for the
characteristic function of the set B. The polynomial P (l)

n (.) is given by

P (l)
n (v)4o 2

Dvn

P (l)g 2(v2vn )

Dvn

h .(109)

Here, P (l)(.) denotes the Legendre polynomial of degree l and consequently we
can say that the distribution function is approximated by a polynomial of degree
L within each energy group In . The new unknowns of this approach are the
N3 (L11) functions W n

(l) (V×) that, of course, also depend on x and on t.
At the borders of the energy groups, we demand the continuity of the distribu-

tion function W(vV×) and of some of its derivatives with respect to v, say up to the
M-th order. This yields a set of (M11)3 (N21) equations,

W n (wn V×)4W n11 (wn V×) n41, R , N21 ,(110a)

W 8n (wn V×)4W 8n11 (wn V×) n41, R , N21 ,(110b)

QQ
Q QQ

Q

W (M)
n (wn V×)4W (M)

n11 (wn V×) n41, R , N21 ,(110c)
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where the prime denotes the first and (M) denotes the M-th derivative with re-
spect to v. This is a set of (M11)3 (N21) equations. Consequently, to retain
some degrees of freedom for the function W, M has to be chosen smaller than L,
MEL. Furthermore, from the definition of W, we have the boundary conditions
at the origin,

W(0V×)4W 8 (0V×)40 .(111)

If MD1 it seems natural to put the higher derivatives to zero at v4wN . We ob-
tain a set of (M11)3N equations from continuity relations if we demand

W 9 (wN V×)4WR(wN V×)4R4W (M) (wN V×)40 .(112)

To derive the spline-multigroup equations, we insert the ansatz, i.e. Eq. (108), into
the nonlinear Boltzmann equation

¯W(vV×)

¯t
1v V× Q

¯W(vV×)

¯x
4J[W , W] ,(113)

where, as usual, J[W , W] stands for the nonlinear collision term expressed in the
scattering kernel formulation,

J[W , W]4�
0

Q

dv 8�
0

Q

dv 9�dV×8�dV× 9 g(Nv 8V×82v 9V× 9 N) P(v 8V×8 , v 9V× 9KvV×)

3W(v 8 , V×) W(v 9 , V× 9 )2W(v , V×)�
0

Q

dv 8�dV×8 g(NvV×2v 8V8 N) W(v 8 , V×) .

(114)

This formulation of the scattering term is best suited for proving the conservation
of mass, momentum and kinetic energy of the gas. The symbol g stands for the
microscopic collision frequency g(V)4V s 0 (V), where s 0 is the total cross section
depending on the relative speed V of the colliding particles. In the case of isotro-
pic scattering, the kernel P corresponding to the Boltzmann equation is given by

P(v 8V×8 , v 9V× 9KvV×)4
1

p

v 2

Nv 8V×82v 9V×9 N
d( (vV×2v 8V×8 ) Q (vV×2v 9V× 9 ) ) .(115)

Because of the Dirac delta function, the gain term in Eq. (114) actually collapses
to the familiar fivefold integral. Since the speeds of the gas particles are restric-
ted to the interval [0 , wN ), we put P40 whenever vDwN or v*

24v 821v 922v 2

DwN
2.

Then we multiply the Boltzmann equation by Pn
(l) (v), where l40, 1 , 2 , R , L,
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n41, 2 , R , N and integrate over the energy group In4 [wn21 , wn ). This yields
a set of (L11)3N multigroup equations. In order to reproduce the important
conservation laws concerning particle density, momentum density and kinetic en-
ergy density,

�
0

Q

dv�dV×P(v 8V×8 , v 9V× 9KvV×)41 ,(116a)

�
0

Q

dv�dV× v V×P(v 8V×8 , v 9V× 9KvV×)4
1

2
(v 8V×81v 9V× 9 ) ,(116b)

�
0

Q

dv�dV× v 2 P(v 8V×8 , v 9V× 9KvV×)4
1

2
(v 821v 92 ) ,(116c)

we will need at least L42. Of course, choices LD2 are also permissible. As al-
ready stated in [79], with L43 it is possible to reproduce the left hand side of the
third order moment equation that gives rise to the constitutive equation for heat
flow.

The correct relation between the order of the spline interpolation L, the order
of continuity M and the maximal power L of v is given by

L4M1L11 .(117)

In order to state the resulting multigroup equations in a compact form, we in-
troduce the following integrals:

av k bn(l)(l)

gn , n*
(l)(l)(l*) (V× QV×*)

4 �
wn21

wn

dv v k Pn
(l) (v) Pn

(l) (v) ,

4 �
wn21

wn

dv Pn
(l) (v) Pn

(l) (v) �
wn

*
21

wn
*

dv*Pn*
(l *)(v*) g(NvV×2v*V×*N) ,

(118a)

(118b)

gn 8 , n 9
(l)(l 8 )(l 9 ) (V×8 QV×9 ) P n 8 , n 9 ; n

(l)(l 8 )(l 9 ) (V×8 , V 9×KV×)4 �
wn21

wn

dv Pn
(l) (v) �

wn 821

wn8

dv 8 �
w 9n21

wn 9

dv 9

3Pn 8
(l 8 ) (v 8 ) Pn 9

(l 9 ) (v 9 ) g(Nv 8V×82v 9V× 9 N) P(v 8V×8 , v 9V× 9KvV×) .

(118c)

Equation (118a) is an average over the energy group n of the k-th power of the
speed v. As a consequence of the orthogonality of the Legendre polynomials, we
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obtain for the case k40

a1 bn(l)(l)4 �
wn21

wn

dv Pn
(l) (v) Pn

(l) (v)4
2

2 l11
d l , l .(119)

Equations (118b) and (118c) are the integrated versions of the collision frequency
g and the scattering kernel P, respectively.

By using these definitions and exchanging the orders of sums and integrals,
we obtain the following set of non-linear Legendre-multigroup equations

2

2 l11

¯W n
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¯t
1 !
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avbn(l)(l) V× Q
¯W n
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¯x

4 !
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!
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(l 8)(V×8)W n 9

(l 9)(V× 9)

2 !
l , l *40

L

W n
(l) (V×) !

n*41

N

�dV×* W n *
(l *) (V×*) gn , n *

(l)(l)(l *) (V× QV×*)

(120)

approximating the continuous Boltzmann equation (113).

R e m a r k . The advantage of working with Legendre polynomials lies in the
fact that the sum in front of the temporal derivative collapses to one single term.
When respecting the matching condition (117), the spline multigroup equa-
tions (120) combined with the continuity relations (110)-(112) represent a closed
set of (L11)3N integro-differential equations for the (L11)3N unknowns
W n

(l). r

Following the lines of [79], it can be shown that the spline-multigroup approxi-
mation displays particle, momentum and kinetic energy conservation provided
LF2 and LF2.

9 - Conclusion

This paper reviews different procedures of kinetic energy discretization in the
extended kinetic theory and their applications. Boltzmann transport equations are
solved numerically within the approximations of a semi-continuous formulation or
a multigroup approach.

Semi-continuous Boltzmann equations are found to be well suited for treating
problems, where external force terms can be neglected. These models are obtai-
ned through a partition of the positive real axes of kinetic energies into a number
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of energy groups. Within each group, the distribution function is approximated by
a constant value.

Semi-continuous models display excellent properties. The relaxation behavior
of such models agrees to a high extent with the exact solution of the BKW mode
for Maxwell molecules. In fact, for a sufficient number of groups, the discrepancy
is found to be less than 0.2%. It can be expected that semi-continuous models re-
flect the correct relaxation behavior also for general interaction models.

An extension of the discretization concept to a mixture of elastically and inela-
stically scattering gas particles interacting with monochromatic photons is formu-
lated. The resulting model reflects all major aspects (conservation laws, equili-
bria, Planck’s law of radiation and H-functional) of the continuous kinetic descrip-
tion. The impact of an intense laser pulse that is in resonance with the transition
of a two-level atom is studied numerically. In case of Maxwell molecules, far-
from-equilibrium distribution functions are observed during the relaxation pro-
cess. Moreover, the extended semi-continuous kinetic model is applied to the si-
mulation of thermal acoustic experiments. To this end, it is solved by applying a
P3 approximation in one-dimensional spatial geometry.

Different masses of the involved gas particles are considered to be the major
obstacle in the formulation of discrete velocity models for a mixture of chemically
reacting gases. Due to the greater flexibility of semi-continuous models, i.e. the
continuous solid angles in velocity space, the difficulty can be overcome in a semi-
continuous formulation. This is achieved for arbitrary mass ratios by adapting the
ranges of integration over the solid angles properly. The resulting semi-conti-
nuous model governs the evolution of a four component gas mixture undergoing
bimolecular chemical reactions. The major advantage as compared to scalar
Boltzmann equations is the capability of treating spatially dependent phenomena.
As a first step, however, space homogeneous problems are solved, and the evolu-
tion of the distribution function is studied. During fast exothermic reactions, espe-
cially the reactants exhibit highly athermal kinetic energy distributions. When a
threshold is also accounted for in the exothermic reaction, delayed ignition of the
reaction can be observed.

The overlapping multigroup approach is a first attempt to tackle consistently
kinetic problems involving an external force term within the framework of multi-
group approaches. Based on the method of weighted residuals, this scheme takes
into account electric and magnetic forces acting on charged particles without any
additional assumptions. It is applied to the study of an extended Lorentz gas
model. To this end, a P1 approximation is carried out and solved numerically. Pro-
blems related to the use of rigid shape functions are expected to be overcome by
resorting to a spline interpolation of the speed variable.
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Due to the importance of all three conservation laws in nonlinear kinetic the-
ory, the concept of multigroup schemes has to be generalized if one wants to ap-
ply it to nonlinear Boltzmann equations. One single weight function is not enough
to satisfy the conservation of mass, momentum and kinetic energy. A fully conser-
vative scheme is achieved by introducing at least three weight functions and by
extending the speed-integration over so-called macro intervals. The scheme can
be made more flexible and numerically stable when working with orthogonal po-
lynomials within each energy group.
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A b s t r a c t

We review current strategies of energy discretization of the Boltzmann equation in
the framework of extended kinetic theory. When external fields can be neglected, the semi-
continuous Boltzmann equation yields a sound basis for various applications. A three
component gas mixture interacting with monochromatic photons as well as a four com-
ponent gas mixture undergoing chemical reactions are dealt with by means of this ap-
proach. The model equations reflect all major aspects of a continuous kinetic description,
such as, conservation laws, equilibria and an H-theorem. Spatially dependent problems
are treated by applying an expansion of the distribution function in terms of Legendre
polynomials with respect to the polar angle. The resulting PDE in real space and time
are solved by an implicit finite differencing scheme combined with an operator splitting
method. In the presence of external fields, an overlapping multigroup method (with a
spline-interpolation method as its extension) is developed for numerical studies. Further-
more, a formulation of a multigroup approach consistent with the non-linear Boltzmann
equation is presented.
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