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Singular perturbation methods for the solution

of some nonlinear boundary value problems (**)

1 - Introduction

Several examples of nonlinear boundary value problems, exhibiting solutions
of boundary layer type, arise in many areas, including chemical-reactor theory,
optimal control theory, fluid dynamics and the physical theory of semiconducting
devices.

The mathematical model for such problems is given by a differential system of
the form

Ae

dy

dx
4g(x , y , e) , x�I4 [0 , 1 ](1)

where y : IKRn is a n-dimensional unknown vector, Ae is a n3n diagonal ma-
trix, with non null elements aii4e qi, which are integer powers of a small para-
meter e : 0GeEe 0b 1, and where g4] gi(, i41, R , n is a function that is
nonlinear in x , y and e. The solution y(x , e) is subjected to separated boundary
conditions of type:

yr (0)

ys (1)

4a r (ys (0), e) r41, R , m ; s4m11, R , n

4b s2m (yr (1), e)
(2)
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where a r , b s2m are known invertible functions. In addition gi , a r , b s2m have the
asymptotic expansions

C
`
D

gi (x , y , e)

a r (ys (0), e)

b s2m (yr (1), e)

E
`
F

A !
k40

Q C
`
D

gik (x , y)

a rk (ys (0) )

b s2m , k (yr (1) )

E
`
F

e k .(3)

If qi40 for some value of index i , the corresponding solution components yi (x , e)
of the boundary problem (1-2) (called slow variables) will converge uniformly in
[0 , 1 ] as eK0. On the contrary, the other fast variables, which have derivatives
multiplied by a positive power qi of the small parameter e , have strong variation
at the e qi wide boundary layers resulting at the right or left endpoint of I , as a
consequence of the boundary conditions (2). Because of the nonuniform conver-
gence of the fast variables as eK0, the solution is constructed by means of com-
posite asymptotic expansions. This classical method, originated from Prandtl’s pa-
pers and developed by many Authors, see [1], [2], [3], [4] and related bibliogra-
phy, allows to determine suitable boundary layer corrections, derived by rescaling
the independent variable in the stretched variables

t4
x

e qi
, s4

12x

e qi

and having asymptotic expansions as eK0 with terms tending to zero as t ,
sKQ. In this paper the conditions to be satisfied by functions gi and the structure
of the composite solution to obtain a uniformly valid solution of problem (1-2) are
studied. The e-order approximate solution is explicitly determined for some pro-
blems with one or two initial and/or terminal boundary layer. A formal solution
for boundary layers problems of type (1-2), using the aforementioned composite
expansions method, is derived by O’Malley in [5], only when the function g is qua-
silinear, and precisely when it is linear in the fast variables.

Here g is a nonlinear function of any component of the variable y: in this sense
the following analysis may be considered as a generalization of the formal results
presented in book [5]. Explicit results of the proposed analysis will be given in the
last Section.

In particular, in Section 2 the case q140, q241, in which the state vector y is
composed by a slow variable and a fast one, is considered; in Section 3 the more
general case q14q241 with e-order wide boundary layers at both endpoints is
examined. In order to avoid inessential difficulties of treatment, in this paper the
case n42 will be considered. In the last Section the above techniques are applied
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to determine approximate analytical solutions of two boundary value problems
arising from Boltzmann like models.

2 - Problems with a single boundary layer

Calling for simplicity

y14u , y24v , g14 f , g24g ,

consider the first-order system (1) rewritten here in the bidimensional form

.
/
´

du

dx

e
dv

dx

4 f (x , u , v , e)

4g(x , u , v , e)

(4)

for the unknown functions u , v : IKR subjected to given boundary condi-
tions

u(0)4a(v(0), e), v(1)4b(u(1), e) .(5)

2.1 - Initial boundary layer

Let us seek for a uniformly valid solution of problem (4-5) for x� [0 , 1 ] and
eK0 in the composite form:

u(x , e)

v(x , e)

4U(x , e)1j(t , e)

4V(x , e)1h(t , e)
(6)

where (U , V) is the outer solution, i.e. the solution outside the initial boundary-
layer region, and the functions (j , h) of the streched variable t4x/e are the in-
ner solution, i.e. the boundary layer correction terms which occur at the left end
point, vanishing outside the boundary layer region and satisfying the matching
conditions

lim
tKQ

j(t , e)40 ,(7)

lim
tKQ

h(t , e)40 .(8)

We assume that the functions (U , V), (j , h) have asymptotic expansions as eK0
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of the type of Eq. (3):

C
`
`
`
D

U(x , e)

V(x , e)

j(t , e)

h(t , e)

E
`
`
`
F

A !
k40

Q

C
`
`
`
D

Uk (x)

Vk (x)

j k (t)

h k (t)

E
`
`
`
F

e k .(9)

In the sequel we will omit, unless strictly necessary, the arguments of the func-
tions Uk , Vk , j k and h k . Thus, the solution to problem (4-5) can be written in the
form

u(x , e)4 !
k40

Q

[Uk1j k ] e k , v(x , e)4 !
k40

Q

[Vk1h k ] e k .(10)

The problem of convergence of such a procedure is widely treated in the literatu-
re quoted in the Introduction, specially in the book [4]. Here we will observe that
it is assured if the perturbations Uk , j k , Vk , h k , kF1, are bounded (x�I. In fact,
in the applications shown in Section 4 this property is satisfied.

We will show that solution (6) holds, and it can be approximated to the first
order with respect to e , if the problem (4-5) satisfies the following conditions:

l C1. A function W(u , x) exists, that is continuous and differentiable in a
neighbourhood of U0 (x), such that

g(x , u , W(u , x), 0 )40, 0GxG1(11)

and such that a solution U0 (x) to the following nonlinear problem exists:

dU0

dx
4 f (x , U0 , W(U0 , 0 ), 0 ), U0 (1)4l(12)

with l root of the algebraic equation

U0 (1)4b21 (W(U0 (1), 1 ) ) .(13)

l C2. A constant cD0 exists, such that

g0vf
¯g

¯v
(x , U0 , V0 , 0 )G2c(14)

for 0GxG1, with V0 (x)4W(U0 (x), x).
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l C3. For the same value of c also the following applies

g0v (0 , U0 (0), d , 0 )G2c(15)

for all values of d between V0 (0) and v(0)4a21 (U0 (0), 0 ).

In the above conditions, a21 and b21 are the inverse functions of those defin-
ed by Eq. (5), and computed for e40.

By using the asymptotic expansions (3), (9) the solution can be approximated
to the first order with respect to e , i.e. by a truncation at N41 of Eq. (10), as it
follows. Taking into account that the outer functions U , V satisfy the system

.
/
´

dU

dx

e
dV

dx

4 f (x , U , V , e)

4g(x , U , V , e)

(16)

the first two coefficients of their expansions satisfy respectively:

dU0

dx
4 f04 f (x , U0 , V0 , 0 )(17)

04g04g(x , U0 , V0 , 0 )(18)

dU1

dx
4 f14 f0u U11 f0v V11 f0e(19)

dV0

dx
4g14g0u U11g0v V11g0e(20)

where f0u , R , g0e are partial derivatives calculated for e40:

f0u4
¯f

¯u
(x , U0 , V0 , 0 ), R , g0e4

¯g

¯e
(x , U0 , V0 , 0 ) .

Now we require that the composite solution satisfies the system (4). In a right in-
terval of x40, the boundary layer correction functions j(t , e), h(t , e) must sati-
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sfy the system

(21)

dj

dt

dh

dt

4e] f (et, U(et, e)1j(t, e),V(et, e)1h(t, e), e)2f (et, U(et, e),V(et, e), e)(

4g(et,U(et, e)1j(t, e),V(et, e)1h(t, e), e)2g(et,U(et, e),V(et, e), e)fg(t) .

Inserting expansions (3), (9) into (21) and equating coefficients of like powers of e

for finite values of t , give a hierarchy of equations for the boundary layer correc-
tions j k , h k . For k40 we have the differential equations

(22)
dj 0

dt
40

(23)
dh 0

dt
4g(0, U0(0), V0(0)1h 0, 0)2g(0, U0(0), V0(0), 0)4g(0, U0(0), V0(0)1h 0, 0).

Taking into account condition (7), Eq. (22) gives

j 0 (t)4const4j 0 (0)40

which shows that the solution u(x , e) for the slow variable, uniformly converges
in I for eK0. For k41 we have the linear system

dj 1

dt
4 f (0 , U0 (0), V0 (0)1h 0 , 0 )2 f (0 , U0 (0), V0 (0), 0 )(24)

dh 1

dt
4

dg(t)

de Ne40
4g0v (0 , U0 (0), V0 (0)1h 0 , 0 ) Qh 11A0 (t)(25)

where the exponentially decaying term A0 (t) is given by

A0 (t)4t[ g0x (0 , U0 (0), V0 (0)1h 0 (t), 0 )2g0x (0 , U0 (0), V0 (0), 0 ) ]

1[tU 8 (0)1U1 (0)][g0u (0, U0 (0), V0 (0)1h 0 (t), 0)2g0u (0, U0 (0), V0 (0), 0)]

1[tV 8 (0)1V1 (0)][g0v (0, U0 (0), V0 (0)1h 0 (t), 0)2g0v (0, U0 (0), V0 (0), 0)]

1j 1 (t) g0u (0 , U0 (0), V0 (0)1h 0 (t), 0 )1g0e (0 , U0 (0), V0 (0)1h 0 (t), 0 )

2g0e (0 , U0 (0), V0 (0), 0 )

(26)

where the primes denote partial derivatives with respect to et4x. By using the
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expansions (3) the boundary conditions (5) become

U0 (0)1eU1 (0)1R1ej 1 (0)1R

4a 0 (V0 (0), h 0 (0) )1ea 1 (V0 (0), h 0 (0), V1 (0), h 1 (0) )1R

(27)

V0 (1)1eV1 (1)1R1h 0 (1 /e)1eh 1 (1 /e)1R

4b 0 (U0 (1) )1eb 1 (U0 (1), U1 (1) )1R

(28)

being

a 04a(V0 (0), h 0 (0), 0 ),

b 04b(U0 (1), 0 ),

a 14a v (V0 (0)1h 0 (0), 0 )[V1 (0)1h 1 (0) ]1a e (V0 (0)1h 0 (0), 0 )

b 14b u (U0 (1), 0 ) U1 (1)1b e (U0 (1), 0 )

where a v , b u , a e , b e are partial derivatives at e40. The other terms of higher
order a k , b k , k42, 3R , have analogous expressions, and are linear with respect
to Vk (0)1h k (0) and Uk (1). Condition (8) requires that, when eK0, the terms
h k vanish in the first member of Eq. (28), i.e.

lim
eK0

h k (1 /e)40, k40, 1 , R

Therefore, equating in Eqs. (27) and (28) the coefficients of like powers of e

gives

U0 (0)4a(V0 (0)1h 0 (0), 0 )(29)

V0 (1)4b(U0 (1), 0 ) )(30)

and for sufficiently small e:

(31) U1 (0)1j 1(0)4a v (V0 (0)1h 0 (0), 0)[V1 (0)1h 1 (0)]1a e (V0 (0)1h 0 (0), 0)

V1 (1)4b u (U0 (1), 0 ) U1 (1)1b e (U0 (1), 0 ) .(32)

Equations (17-20) and (22-25), when solved with the conditions provided by
Eqs. (29) and (32), supply the unknown functions of the composite solution in the
e-order approximation. Thus the solution can be determined as follows.

Following condition C1, Eq. (18) can be written as a (unique) function V0 (x)
4W(U0 (x), x), and owing to condition (30) the terminal value of U0 (x) must sati-
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sfy Eq. (13). The solution of (17) is therefore

U0 (x)4l2�
x

1

f (s , U0 (s), W(U0 (s), s), 0 ) ds .(33)

The initial value U0 (0) obtained from (33), allows to determine from condition (29)
the initial value h 0 (0) of the boundary layer correction of the fast variable v(x , e).
Integrating (23) with such initial data we find

(34) h 0 (t)4a21 (U0 (0) )2W(U0 (0), 0 )

1�
0

t

[ g(0 , U0 (0), W(U0 (0), 0 )1h 0 (s), 0 )2g(0 , U0 (0), W(U0 (0), 0 ), 0 ) ] ds

that, if condition C3 is satisfied, is monotonically decreasing to zero for tKQ
(crf. [3], pp. 83-84) as prescribed by Eq. (8). Note that (34) is an integral equation
for h 0 which could presumably be solved by successive approximations, but not
explicitely. The solution of the reduced problem is then determined, and it can be
used to obtain the higher-order terms as it will be explained below.

With regard to the outer solution of order e , we first observe that

dV0

dx
4

¯W

¯U0

dU0

dx
1

¯W

¯x
42

g0u

g0v

f01W x .

Replacing in (20) gives

V14
1

g0v
k2 g0u

g0v

f01W x2g0u U12g0el .(35)

The terminal value V1 (1) follows condition (32); so U1 (1) must satisfy the alge-
braic equation

1

g0v
k2 g0u

g0v

f01W x2g0u U12g0el
x41

4b u (U0 (1), 0 ) U1 (1)1b e (U0 (1), 0 ) .(36)

Eq. (36) is a linearized version of (13), so it will be uniquely solvable if the solution
of (13) is locally unique. If m is a solution of Eq. (36), it determines the terminal
condition to assign to the differential equation (19). By substituting (35) we find
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the linear problem

dU1

dx
4a(x , U0 ) U11b(x , U0 ), U1 (1)4m(37)

with

a(x , U0 )4 f0u2
f0v g0u

g0v

, b(x , U0 )4
f0v

g0v
k2 g0u

g0v

f01W x2g0el1 f0e(38)

that has the following solution:

U1 (x)42exp y �
x

1

a(s , U0 (s) ) dsz { �
x

1

exp y2�
s

1

a(t , U0 (t) ) dtz Qb(s , U0 (s) ) ds2m} .

Finally let us consider the e-order boundary layer correction terms. As j 1 must
vanish when tKQ , we find from (24):

j 1 (t)42�
t

Q

[ f (0 , U0 (0), V0 (0)1h 0 (s), 0 )2 f (0 , U0 (0), V0 (0), 0 ) ] ds .(39)

Once U1 (0) and j 1 (0) are known, the boundary condition (31) gives the initial
data of the differential equation (25) for the boundary layer correction term h 1 ,
namely:

h 1 (0)4
U1 (0)1j 1 (0)2a e (V0 (0)1h 0 (0), 0 )

a(V0 (0), h 0 (0), 0 )
2V1 (0)

and, if joined to Eq. (25), defines an initial value linear problem with the
solution

h 1 (t)4exp y �
0

t

g0v (0 , U0 (0), V0 (0)1h 0 (s), 0 ) dsz

Q { �
0

t

A0 (s) exp y2�
0

s

g0v (0 , U0 (0), V0 (0)1h 0 (t), 0 ) dtz ds1h 1 (0)}
that, considering the hypotheses stated above, decreases exponentially to zero
when tKQ , as it is shown in ref. [3]. In conclusion, the e-order approximated
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solution of problem (4-5) is:

u 1 (x , e)

v 1 (x , e)

4U0 (x)1e kU1 (x)1j 1g x

e
hl

4W(U0 (x), x)1h 0g x

e
h1ekV1 (x)1h 1g x

e
hl ,

(40)

and the higher-order terms can be found by proceeding as shown above. General-
ly the solution is not unique, and its multiplicity depends on the number of
solutions of the algebraic equations (13) and (36).

2.2 - Terminal boundary layer

In this subsection we derive conditions under which the fast variable v(x , e)
has a terminal boundary layer in a left neighbourhood of x41. These conditions
may be stated by introducing the simple transformation z412x of the space va-
riable and by applying the calculations developed in § 2.1 in order to obtain ana-
logous results. However, since they will be used in the application which follows in
Section 4.2, for sake of clarity we prefer to avoid this transformation and show
the new conditions in terms of the original space variable x. Thus, let us modify
conditions C1RC3 as follows:

l C1’-C2’. A function W(u , x) exists, that satisfy (11) and such that a sol-
ution to the following problem exists

dU0

dx
4 f (x , U0 , W(U0 , 1 ), 0 ), U0 (0)4l

with initial condition defined by a solution l to the following algebraic
equation

U0 (0)4a(W(U0 (0), 1 ), 0 )

and such that the derivative g0v in (14) is strictly positive: g0v (x , U0 ,
W(U0 , 1 ), 0 )Fc , with c�R1 .

C3’. With the same value of c and with d between V0 (1) and v(1)
4b(U0 (1), 0 ) we have also

g0v (1 , U0 (1), d , 0 )Fc .

Under these conditions the composite solution of the problem (4-5) has to be
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found in the following form

u(x , e)

v(x , e)

4U(x , e)1x(s , e)

4V(x , e)1z(s , e)
(41)

where x(s , e), z(s , e) are boundary layer corrections depending on the stretched
variable s4 (12x) /e� [0 , 1Q), endowed with asymptotic expansions for eK0
and such that vanish outside the terminal boundary layer.

By proceeding in a similar way as above, with obvious modifications, problem
(4-5) has in this case the following solution, approximated to e-order terms:

u 1 (x , e)4U0 (x)1e kU1 (x)1x 1g 12x

e
hl

v 1 (x , e)4W(U0 (x), x)1z 0g 12x

e
h1e kV1 (x)1z 1g 12x

e
hl

where:

U0 (x)4l1�
0

x

f (s , U0 (s), W(U0 (s), s), 0 ) ds

U1 (x)4exp y�
0

x

a(s , U0 (s) ) dsz { �
0

x

exp y2�
0

s

a(t , U0 (t) ) dtz Qb(s , U0 (s) ) ds1m}
(42)

with m4U1 (0) root of

m4a 0e1 k a 0v

g0v
g2 g0u

g0v

f01W x2g0u m2g0ehl
x40

and moreover:

x 1 (s)4�
s

Q

[ f (1 , U0 (1), V0 (1)1z 0 (s), 0 )2 f (1 , U0 (1), V0 (1), 0 ) ] ds(43)

z 0 (s)4b(U0 (1), 0 )2W(U0 (1), 1 )

2�
0

s

[ g(1 , U0 (1), W(U0 (1), 1 )1z 0 (s), 0 )2g(1 , U0 (1), W(U0 (1), 1 ), 0 ) ] ds
(44)
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z 1 (s)4exp y2�
0

s

g0v (1 , U0 (1), V0 (1)1z 0 (s), 0 ) dsz
Q { �

0

s

B0 (s) exp y �
0

s

g0v (1 , U0 (1), V0 (1)1z 0 (t), 0 ) dtz ds1z 1 (0)}
(45)

with:

z 1 (0)4b u (U0 (1), 0 )[U1 (1)1x 1 (0) ]1b e (U0 (1), 0 )2V1 (1) ,

B0 (s)4s[ g0x (1 , U0 (1), V0 (1)1z 0 (s), 0 )2g0x (1 , U0 (1), V0 (1), 0 ) ]

1[sU 80 (1)1U1 (1) ][ g0u (1 , U0 (1), V0 (1)1z 0 (s), 0 )2g0u (1 , U0 (1), V0 (1), 0 ) ]

1[sV 80 (1)1V1 (1) ][ g0v (1 , U0 (1), V0 (1)1z 0 (s), 0 )2g0v (1 , U0 (1), V0 (1), 0 ) ]

1x 1 (s) g0u (1 , U0 (1), V0 (1)1z 0 (s), 0 )1g0e (1 , U0 (1), V0 (1)1z 0 (s), 0 )

2g0e (1 , U0 (1), V0 (1), 0 ) .

3 - Problems with boundary layers at both endpoints

In this Section we consider the case: n42, q14q241 where Eq. (1) is written
in the form

e
dy

dx
4g(x , y , e), x�I4 [0 , 1 ](46)

where the small parameter e multiplies both the components of the derivative of
the unknown vector y4 (y1 , y2 )T. To satisfy the conditions

y1 (0)

y2 (1)

4a(y2 (0), e)

4b(y1 (1), e) ,
(47)

both the components y1 and y2 may undergo strong changes in an initial or termi-
nal boundary layer. A suitable approximation to the solution of problem (46-47),
uniformly valid in I for eK0, must be searched in a composite form consisting of
an outer approximation (Y1 , Y2 ) valid outside the boundary layer regions for 0
ExE1, plus initial or terminal boundary layer correction terms (j , h) or (x , z)
which are to be defined on the basis of properties of the nonlinear function g
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4 (g1 , g2 ). Namely, by assuming that gi , Yi have asymptotic expansions:

i41, 2 : Yi (x , e)A !
k40

Q

Yik (x) e k , gi (x , Y , e)A !
k40

Q

gik (x , Y) e k , Y4(Y1 , Y2 )

and by assuming the existence of the outer solution (Y10 (x), Y20 (x) ) of the redu-
ced problem that is defined by Eq. (46) with e40, we will show that the bounda-
ry layer functions have to be choosen on the basis of the following

P r o p o s i t i o n 1. If the jacobian matrix gy is non-singular in I, and two po-
sitive constants c1 , c2 exist such that for 0GxG1 it results

¯g1

¯y1

(x , Y10 , Y20 , 0 )Fc1 ;
¯g2

¯y2

(x , Y10 , Y20 , 0 )G2c2(48)

with

¯g1

¯y1

(1 , d 1 , Y20 (1), 0 )Fc1

for all values of d 1 between Y10 (1) and b21 (Y20 (1), 0 ) and

¯g2

¯y2

(0 , Y10 (0), d 2 , 0 )G2c2

for all values of d 2 between Y20 (0) and a21 (Y10 (0), 0 ), then the solution of pro-
blem (46-47) has the form

(49) y1 (x, e)4!
k40

Q kY1k (x)1x kg 12x

e
hl e k, y2 (x, e)4!

k40

Q kY2k (x)1h kg x

e
hle k

where y1 (x , e) and y2 (x , e) are, for eK0, non uniformly convergent respectively
in a terminal and initial boundary layer.

This Proposition may be replaced by the following equivalent one.

P r o p o s i t i o n 2. If the jacobian matrix gy is non-singular in I and two po-
sitive costants c1 , c2 exist such that for 0GxG1 it results

¯g1

¯y1

(x , Y10 , Y20 , 0 )G2c1 ;
¯g2

¯y2

(x , Y10 , Y20 , 0 )Fc2(50)
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with

¯g1

¯y1

(0 , d 1 , Y20 (0), 0 )G2c1

for all values of d 1 between Y10 (0) and a(Y20 (0), 0 ), and in addition

¯g2

¯y2

(1 , Y10 (1), d 2 , 0 )Fc2

for all values of d 2 between Y20 (1) and b(Y10 (1), 0 ), then y1 (x , e) and y2 (x , e)
have respectively an initial and terminal boundary layer, and the solution must
be sought in the form

(51) y1 (x, e)4!
k40

Q kY1k (x)1j kg x

e
hl e k, y2 (x, e)4!

k40

Q kY2k (x)1z kg 12x

e
hl e k.

Equations (48) and (50) represent the hyperbolicity conditions of the jacobian
of g(x , Y , e), if calculated in terms of the outer solution of the reduced problem,
and are analogous to the ones introduced in [3] to study singularly perturbed li-
near and quasi-linear systems.

P r o o f s . The terms of the outer solution must satisfy, for 0GxG1, the
equations

04g(x , Y0 , 0 )(52)

dY0

dx
4gy0 Y11ge0(53)

where gy0 is the jacobian matrix of g calculated for e40 and ge0 is the vector of
partial derivatives with respect to e , calculated for e40. The zero and e-order
boundary layer corrections must satisfy:

dx 0

ds
42g1 (1 , Y10 (1)1x 0 , Y20 (1), 0 )1g1 (1 , Y10 (1), Y20 (1), 0 )(54)

dh 0

dt
4g2 (0 , Y10 (0), Y20 (0)1h 0 , 0 )2g2 (0 , Y10 (0), Y20 (0), 0 )(55)

dx 1

ds
42

¯g1

¯y1

(1 , Y10 (1)1x 0 , Y20 (1), 0 ) Qx 11B0 (s)(56)

dh 1

dt
4

¯g2

¯y2

(0 , Y10 (0), Y20 (0)1h 0 , 0 ) Qh 11A0 (t)(57)
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where A0 (t) and B0 (s) are the following known functions of the zero-order
solution:

A0(t)4t m ¯g2

¯x
(0,Y10(0),Y20(0)1h 0(t), 0)2

¯g2

¯x
(0,Y10(0),Y20(0),0)n

1kt dY10

dx
(0)1Y11(0)l m ¯g2

¯y1

(0,Y10(0),Y20(0)1h 0(t),0)2
¯g2

¯y1

(0,Y10(0),Y20(0),0)n
1kt dY20

dx
(0)1Y21(0)l m ¯g2

¯y2

(0,Y10(0),Y20(0)1h 0(t),0)2
¯g2

¯y2

(0,Y10(0),Y20(0),0)n
1

¯g2

¯e
(0,Y10(0),Y20(0)1h 0(t),0)2

¯g2

¯e
(0,Y10(0),Y20(0),0)

(58)

B0(s)4s m ¯g1

¯x
(1,Y10(1)1x 0(s),Y20(1),0)2

¯g1

¯x
(1,Y10(1),Y20(1),0)(n

1ks dY10

dx
(1)1Y11(1)l m ¯g1

¯y1

(1,Y10(1)1x 0(s),Y20(1),0)2
¯g1

¯y1

(1,Y10(1),Y20(1),0)n
1ks dY20

dx
(1)1Y21(1)l m ¯g1

¯y2

(1,Y10(1)1x 0(s),Y20(1),0)2
¯g1

¯y2

(1,Y10(1),Y20(1),0)n
1

¯g1

¯e
(1,Y10(1)1x 0(s),Y20(1)),0)2

¯g1

¯e
(1,Y10(1),Y20(1),0) .

(59)

Taking into account that terms x k , h k vanish outside the corresponding boundary
layers, the boundary conditions (47) give for eK0:

Y10 (0)4a(Y20 (0)1h 0 (0), 0 )(60)

Y20 (1)4b(Y10 (1)1x 0 (0), 0 )(61)

Y11 (0)4
¯a

¯y2

(Y20 (0)1h 0 (0), 0 ) Q [Y21 (0)1h 1 (0) ]1a e0(62)

Y21 (1)4
¯b

¯y1

(Y10 (1)1x 0 (0), 0 ) Q [Y11 (1)1x 1 (0) ]1b e0 .(63)

According to the hypotheses, since the jacobian is non-singular two differentiable
functions W 1 , W 2 exist that satisfy Eq. (53) and represent the outer solution of the
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problem obtained by (46-47) for eK0:

Y10 (x)4W 1 (x)

Y20 (x)4W 2 (x) .
(64)

Eqs. (64) do not necessarily satisfy the boundary conditions. Therefore we must
correct the solution of the reduced problem with boundary layer terms described
by the differential equations (54-55). These equations, subject to initial conditions
x 0 (0), h 0 (0) deduced from (60) and (61), yield:

x 0 (s)4b21 (W 2 (1), 0 )2W 1 (1)

2�
0

s

] g1 (1 , W 1 (1)1x 0 (s), W 2 (1), 0 )2g1 (1 , W 1 (1), W 2 (1), 0 ) )( ds
(65)

h 0 (t)4a21 (W 1 (0), 0 )2W 2 (0)

1�
0

t

] g2 (0 , W 1 (0), W 2 (0)1h 0 (s), 0 ), 0 )2g2 (0 , W 1 (0), W 2 (0), 0 )( ds
(66)

which decay to zero at infinity owing to the hypotheses stated in Proposition 1,
and determine the boundary layer correction terms to account the non-uniform
convergence of Y10 and Y20 near the end points.

As regard to the e-order terms, we observe that equation (53) supplies the
outer solution:

Y1f
.
`
´

Y11

Y21

ˆ
`
˜
4gy0

21g dW

dx
2ge0h(67)

where dW/dx is the vector of the derivatives of the known functions W 1 (x), W 2 (x).
Inserting the terminal values of Y11 , Y21 in Eqs. (62) and (63), the above outer
solution can be solved with respect to x 1 (0) and h 1 (0):

x 1 (0)4
Y21 (1)2b e0

¯b

¯y1

(Y10 (1)1x 0 (0), 0 )

2Y11 (1)

h 1 (0)4
Y11 (0)2a e0

¯a

¯y2

(Y20 (0)1h 0 (0), 0 )

2Y21 (0)

(68)

in order to determine (if the partial derivatives appearing in the right sides do not



149SINGULAR PERTURBATION METHODS FOR THE SOLUTION...[17]

vanish) the initial data for the linear equations (56-57) whose solutions j 1 (s),
h 1 (t), according to the hypotheses, are exponentially vanishing for s , tKQ. In
this way the e-order approximate solution of problem (46-47) is determined; its
component y1 (x , e) has a terminal boundary layer, while y2 (x , e) has an initial
boundary layer.

If on the contrary the function g(x , Y , e) satisfies the hypotheses of Proposi-
tion 2 with regard to the signs of the partial derivatives ¯gi /¯yj defined in (50), by
an analogous treatment we can construct a solution in the form (51) where the re-
gions of non-uniform convergence are inverted, i.e. y1 is characterized by an in-
itial boundary layer, while y2 has a terminal boundary layer. To complete the
composite solution (51), we can obtain the boundary layer corrections terms by
solving the following problems:

dj 0

dt
4g1 (0 , Y10 (0)1j 0 , Y20 (0), 0 )2g1 (0 , Y10 (0), Y20 (0), 0 )(69)

dz 0

ds
42g2 (1 , Y10 (1), Y20 (1)1z 0 , 0 )1g2 (1 , Y10 (1), Y20 (1), 0 )(70)

dj 1

dt
4

¯g1

¯y1

(0 , Y10 (0)1j 0 , Y20 (0), 0 ) Qj 11A0 (t)(71)

dz 1

ds
42

¯g2

¯y2

(1 , Y10 (1), Y20 (1)1z 0 , 0 ) Qz 11B0 (s)(72)

where A0 (t) and B0 (s) are derived from (58-59) by inverting the two components
of g , and the initial conditions are respectively

j 0 (0)4a(W 2 (0), 0 )2W 1 (0)(73)

z 0 (0)4b(W 1 (1), 0 )2W 2 (1)(74)

j 1 (0)4
¯a

¯y2

(W 2 (0), 0 ) QY21 (0)1a e02Y11 (0)(75)

z 1 (0)4
¯b

¯y1

(W 1 (1), 0 ) QY11 (1)1b e02Y21 (1). r(76)

Higher-order terms in the obtained composite solutions can be calculated, as
usual, by using all the terms of lower order appearing in the asymptotic expan-
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sions. Obviously, for the convergence of the method, the perturbation terms must
satisfy the properties already recalled in Section 2.

4 - Applications

Singularly perturbed problems are well known in the context of kinetic theory
and fluid dynamic equations. In particular boundary layer solutions for models of
the Boltzmann equation can be found in [7]. In this Section the techniques here
proposed are applied to determine approximate analytical solutions of two boun-
dary value problems arising from stationary Boltzmann like equations. Contrary
to ref. [7], these two problems are entirely treated at the microscopic scale. In
particular, the theory developed in Section 3 is used to study a modified version of
the well-known Ruijgrok-Wu model, and the techniques of Section 2 are applied,
as a second example, to study a model for a mixture of reacting gases with two
chemical species of disparate molecular masses.

4.1 - A model of the Ruijgrok-Wu type

Two-velocity models of the Boltzmann equation of the Ruijgrok-Wu type [9]
have been studied by assuming a diffusive scaling of the kinetic equations descri-
bing the time and space evolution of a finite mass gas in a medium [10], [8]. In
particular the model equations, at a molecular scale, will take into account:

l absorbtion and scattering effects of the gas particles by the host me-
dium;

l particle source terms, distributed on the interval [0 , 1 ] of the x-axis;
l elastic collisions between the gas particles.

Then in the stationary case the kinetic equations may be written as

.
/
´

e
dy1

dx

2e
dy2

dx

4g1 (x , y1 , y2 , e)42ay11by21egF(y1 ) G(y2 )2d 1 y11s1 (x)

42g2 (x , y1 , y2 , e)4ay12by22egF(y1 ) G(y2 )2d 2 y21s2 (x)

(77)

where y1 (x), y2 (x)�R1 are the number densities of the molecules moving at
equal speeds 6c on the x-axis, respectively; e41/c is the small parameter; F and
G are bounded functions taking into account particle scattering; s1 (x) and s2 (x)
are C 1 [0 , 1 ] positive functions representing sources; and a , b , g , d 1, 2 are non-
negative real constants. In particular, a and b represent cross sections of the par-



151SINGULAR PERTURBATION METHODS FOR THE SOLUTION...[19]

ticle scattering with the host medium; g is the cross section of elastic particle col-
lisions, and d 1, 2 are the total absorption cross sections.

Let us seek for a solution of Eq. (77) satisfying the following boundary
conditions

y1 (0)4k0 y2 (0)(78)

y2 (1)4k1 y1 (1)(79)

describing either absorbtion of the gas molecules by the walls, if the non-negative
constants k0 , k1 are lower than unity, or pure specular reflection if k04k141.

Since the partial derivatives of g1 , g2 satisfy hypothesis (50), the composite
solutions to the problem (77)-(78, 79), truncated at the terms of order e , will have
the form

y1 (x , e)4Y10 (x)1j 0 (t)1e[Y11 (x)1j 1 (t) ]1O(e 2 )

y2 (x , e)4Y20 (x)1z 0 (s)1e[Y21 (x)1z 1 (s) ]1O(e 2 )

where j(t , e), z(s , e) are, respectively, initial and terminal boundary layer cor-
rections to the outer solution Y(x , e)4 (Y1 , Y2 ) for the two densities.

The latter one has zero-order terms that can be found as the unique solution
of g(x , Y1 , Y2 , 0 )40. By setting C4ad 21bd 11d 1 d 2D0, it is given by

Y10 (x)4W 1 (x)4
1

C
[ (b1d 2 ) s1 (x)1bs2 (x) ](80)

Y20 (x)4W 2 (x)4
1

C
[as1 (x)1 (a1d 1 ) s2 (x) ](81)

and is non-negative for all x� [0 , 1 ], under the assumptions made for the above
coefficients. Therefore, using the boundary conditions (73), (74) and integrating
Eqs. (69), (70), the correction terms in the solution of the reduced problem can be
found as

j 0 (t)4 [k0 W 2 (0)2W 1 (0) ] e 2(a1d 1 ) t(82)

z 0 (s)4 [k1 W 1 (1)2W 2 (1) ] e 2(b1d 2 ) s .(83)
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The above zero-order solution is now used to determine the further terms in the
composite expansion of the solution. The outer terms of order e are given by
Eq. (67), that for the present problem yields

Y11 (x)4
1

C
[ (b1d 2 ) W 81 (x)2bW 82 (x)2gd 2 F(W 1 (x) ) G(W 2 (x) ) ](84)

Y21 (x)4
1

C
[aW 81 (x)2 (a1d 1 )W 82 (x)1gd 1 F(W 1 (x) ) G(W 2 (x) ) ](85)

where the primes denote derivatives with respect to x of the previous solution
terms. The values at the boundaries of these outer terms satisfy:

Y11 (0)1j 1 (0)4k0 Y21 (0)

Y21 (1)1z 1 (0)4k1 Y11 (1)

and determine the initial conditions that must be assigned to the linear differen-
tial equations (71) and (72) for the unknown correction terms j 1 (t), z 1 (s). In our
problem these equations are rewritten as

dj 1

dt
42 (a1d 1 ) j 1 (t)1A0 (t)(86)

dz 1

ds
42 (b1d 2 ) z 1 (s)1B0 (s) ,(87)

where the non-homogeneous terms are known functions of the zero-order
solution:

A0 (t)4g[F(W 1 (0)1j 0 (t) )2F(W 1 (0) ) ] G(W 2 (0) )

B0 (s)4gF(W 1 (1) )[G(W 2 (1)1z 0 (s) )2G(W 2 (1) ) ] .

Therefore, integrating Eqs. (86) and (87) one obtains

j 1 (t)4e 2(a1d 1 ) ty �
0

t

A0 (t) e (a1d 1 ) t dt1k0 Y21 (0)2Y11 (0)z

z 1 (s)4e 2(b1d 2 ) sy �
0

s

B0 (t) e (b1d 2 ) t dt1k1 Y11 (1)2Y21 (1)z
which, under wide conditions on the nonlinear functions F(y1 ) and G(y2 ), are
asymptotically vanishing as t , sK1Q , as prescribed by the matching method to
all terms of the boundary layer corrections.
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4.2 - Mixture of reacting gases

A two-velocity model for a finite mass mixture of gas particles has been propos-
ed under suitable assumptions in ref. [11]. The gas mixture is formed by two che-
mical species of disparate molecular masses mA , mB with mA /mB4e b 1, under-
going an irreversible chemical reaction (recombination) of type A1BKC. If in
addition source terms distributed on the interval x� [0 , 1 ] are present, then the
kinetic equations derived in [11] are modified, in the stationary case, into the fol-
lowing two subsystems:

.
/
´

du 1

dx

2e
dv 2

dx

4 f1 (u 1 , v 2 )4
1

c
[2ku 1 v 21s1 (x) ]

42g1 (u 1 , v 2 )4
1

c
[2ku 1 v 21s4 (x) ]

(88)

.
/
´

2
du 2

dx

e
dv 1

dx

42f2 (u 2 , v 1 )4
1

c
[2ku 2 v 11s2 (x) ]

4g2 (u 2 , v 1 )4
1

c
[2ku 2 v 11s3 (x) ]

(89)

where u 1 (x), u 2 (x) : C 0 [0 , 1 ]KR1 are the densities of the particles of species
A moving, respectively, along the positive and the negative directions of the x-
axis; v 1 (x), v 2 (x) : C 0 [0 , 1 ]KR1 are the densities of species B , defined analo-
gously; si (x) are, as in the previous application, C 1 [0 , 1 ] positive functions; k is
the collisional frequency to be considered as a known positive constant, and c is a
reference velocity.

Let us assume that the effects of the molecular interactions at the walls x40
and x41 can be described as

u 1 (0)4a 0 v 2 (0), v 2 (1)4b 0 u 1 (1)(90)

u 2 (0)4a 1 v 1 (0), v 1 (1)4b 1 u 2 (1)(91)

with a 0 , R , b 1G1 are prescribed positive constants. If their value is chosen
lower than unity, it denotes partial absorption by the walls, whereas a 04R4b 1

41 mean specular reflection of the two chemical species. Then Eq. (90) yields the
boundary conditions for the subsystem (88), and Eq. (91) prescribes the boundary
conditions for the subsystem (89).
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Since in the kinetic equations we have

¯g1

¯v 2
4

k

c
u 1D0,

¯g2

¯v 1
42

k

c
u 2E0 ,

it follows that as eK0 the fast variables v 2 (x) and v 1 (x) have non uniform con-
vergence, respectively, in a terminal and in an initial boundary layer. Therefore
the N-order approximate solution to problem (88-90) must be searched in the
form

u 1(x, e)C!
k40

N

[U 1
k (x)1x k (s)] e k, v 2(x, e)C!

k40

N

[V 2
k (x)1z k (s)] e k, s4

12x

e

and the one related to problem (89-91) in the form

u 2 (x , e)C !
k40

N

[U 2
k (x)1j k (t) ] e k , v 1 (x , e)C !

k40

N

[V 1
k (x)1h k (t) ] e k , t4

x

e
.

The solution to the reduced problem for (88-90) is determined as follows. Owing to
(90) the zero-order terms must satisfy the boundary conditions

U 1
0 (0)4a 0 V 2

0 (0), V 2
0 (1)1z 0 (0)4b 0 U 1

0 (1) .(92)

The equation g1 (U 1
0 , V 2

0 )40 is satisfied by

V 2
0 4W(U 1

0 (x), x)4
s4 (x)

kU 1
0 (x)

(93)

where U 1
0 (0) is determined by Eq. (92) as

U 1
0 (0)4o a 0 s4 (0)

k
.

This initial condition is used to calculate U 1
0 (x) from Eq. (42), with the

result

U 1
0 (x)4o a 0 s4 (0)

k
1

1

c
�

0

x

[s1 (t)2s4 (t) ] dt .(94)

Since it is required to be strictly positive, the assumed source terms must satisfy
for each x� [0 , 1 ] the additional condition

�
0

x

s1 (t)dtD�
0

x

s4 (t) dt2co a 0 s4 (0)

k
.(95)

The zero-order corrections in the terminal boundary layer are x 0 (s)f0 and
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z 0 (s) whose initial condition, from Eq. (92), is

z 0 (0)4b 0 U 1
0 (1)2W(U 1

0 (1), 1 ) .

Therefore, integration of Eq. (44) yields

z 0 (s)4 [b 0 U 1
0 (1)2W(U 1

0 (1), 1 )] exp g2 kU 1
0 (1)

c
sh .(96)

The reduced problem for (89-91) can be solved by satisfying the boundary
conditions

U 2
0 (0)4a 1 [V 1

0 (0)1h 0 (0) ] , V 1
0 (1)4b 1 U 2

0 (1).(97)

By solving g2 (U 2
0 , V 1

0 )40 one has

V 1
0 (x)4W(U 2

0 (x), x)4
s3 (x)

kU 2
0 (x)

(98)

where U 2
0 (x) is determined by using Eq. (33) and the second of Eqs. (97):

U 2
0 (x)4o s3 (1)

kb 1

2
1

c
�

x

1

[s3 (t)2s2 (t) ] dt .(99)

Again positivity of U0
2 (x) requires that

�
x

1

s2 (t) dtD�
x

1

s3 (t) dt2co s3 (1)

kb 1

.(100)

The zero-order corrections in the initial boundary layer are j(t)f0 and h(t)
that must satisfy the initial condition prescribed in the first of Eq. (97). By also
applying Eq. (34) one obtains

h 0 (t)4 y U 2
0 (0)

a 1

2W(U 2
0 (0), 0 )z exp g2 kU 2

0 (0)

c
th .

It follows that the zero-order solutions for the fast variables, which satisfy the
prescribed boundary conditions and are uniformly valid in the interval 0GxG1
under the action of source terms satisfying Eqs. (95), (100), are

v 2 (x , e)4
s4 (x)

kU 1
0 (x)

1 yb 0 U 1
0 (1)2

s4 (1)

kU 1
0 (1)

z exp y2 kU 1
0 (1)

ec
(12x)z

v 1 (x , e)4
s3 (x)

kU 2
0 (x)

1 y U 2
0 (0)

a 1

2
s3 (0)

kU 2
0 (0)

z exp g2 kU 2
0 (0) x

ec
h
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where U 1
0 (x), U 2

0 (x) are given by Eqs. (94) and (99). Once the (unique) solutions
to the reduced problems have been determined, the e2order terms and the fur-
ther ones in the composite expansions can now be calculated by a straightforward
application of the procedure given in Section 2.

5 - Conclusions

This paper supplies a methodology which can be applied to determine an ana-
lytical, approximate solution to singularly perturbed boundary-value problems ari-
sing from the study of a wide class of nonlinear systems of ODE. In particular, in
the present paper applications to Boltzmann’s like models have been developed.
Quantitative results can be obtained by solving numerically, if necessary, a perti-
nent set of nonlinear ordinary differential equations describing the boundary
layer functions, i.e. Eqs. (34-44), (65-66) or (69-70) respectively. The above analy-
sis also completes the treatment of singular perturbation techniques, that began
with a previous paper [12] by considering initial–value problems for a similar class
of systems of ODE, with application to extended kinetic theory.
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A b s t r a c t

This paper deals with some singular perturbation problems, described by two classes
of nonlinear differential equations with nonlinear boundary conditions. Uniformly valid
expansions composed of inner and outer solutions are used to solve initial and/or termi-
nal boundary layer problems. In two examples, approximate solutions are explicitly deri-
ved for boundary value problems arising from stationary Boltzmann like model equa-
tions.

* * *


