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MICHAEL G. VOSKOGLOU (¥)

Differential simplicity and dimension

of a commutative ring (**)

1 - Preliminaries

All the rings considered in this paper are commutative with identity and all
the fields are of characteristic zero (unless if it is otherwise stated).

A local ring R is understood to be a Noetherian ring with a unique maximal
ideal; if R is not Noetherian, following the terminology of [4], we call it a quasi-lo-
cal ring.

For special facts on commutative algebra we refer freely to [1], [4], [7] and
[16].

Let d be a derivation of a ring R, then an ideal I of R is called a d-ideal if d(I)
cl, and R is called a d-simple ring if it has no non zero, proper d-ideals (in order
to simplify our notation we shall write dI instead of d(I)).

Non commutative d-simple rings exist in abundance, e.g. every simple ring is
d-simple for every derivation d of R, and that is why our interest is turned to
commutative d-simple rings only.

One should note that a d-simple ring R contains the field = {xeR:dx =0},
and therefore is either of characteristic zero, or of a prime number p.

It is well known that if a ring R of characteristic zero is d-simple, then R is an
integral domain, while if R contains the rationals and has no non zero prime d-
ideals, then R is a d-simple ring ([5]; Corollary 1.5.)
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2 - Some remarks on the dimension of a d-simple ring

Given a ring R no criterion is known to decide whether or not there exists a
derivation d of R (at least one) such that R is d-simple, but it seems that there is a
connection between the d-simplicity and the dimension of R.

To verify this, let us consider first d-simple rings of characteristic p # 0. In
this case it is easy to prove the following theorem:

Theorem 2.1. Let R be a d-simple ring of prime characteristic p, then the
nilradical of R is the unique prime ideal of R.

Proof. It is sufficient to show that the nilradical N of R is a maximal ideal.
For this, let M be a maximal ideal of R and let I be the ideal generated by the set

{x?: xeM}.
Since ch R =p, I is a proper d-ideal of R. But R is d-simple ring, therefore
I=1(0).

Thus McN and so M =N.

The previous theorem tells us that a d-simple ring of prime characteristic is a
0-dimensional, quasi-local ring. Further, if R is a domain, then R is a field.

The following case is a non trivial example of a d-simple ring of prime
characteristic:

Example 2.2. Let k[x] be a polynomial ring over a field k of prime charac-
teristic, say p. Then I = («?) is obviously a — -ideal of k[x], therefore i indu-
ces a derivation d of the ring R = k[x]/I by g(f‘f‘ I = % + I, for allfyiﬂn klx].

Let A be a non zero d-ideal of R, then A’ = { feklx]: f+ 1A} is obviously a
%—ideal of k[iﬁ] containing properly I.

(iiy?n f=2:0 aiac’:nin A', with n=p, we can write f=f, +f,, where

fi= X a;xand fo = a;x’. But f; is in I and therefore in A’ and so f; is also
i=0 »

i=

in A" ar-if

Thus 7 L %0 is in A’ Nk and therefore A=R, ie. R is a d-simple
. x
ring.

In the rest of this paper we shall be dealing with d-simple rings of characteri-
stic zero, which are therefore integral domains containing the rational numbers
(since they contain the field F: see section 1).

Seidenberg ([10] and [11]) proved that, if a d-simple algebra over a field k is
either finitely generated, or a complete local ring, or a localization of such rings,
then it is regular.
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Hart ([2]; Corollary of Theorem 1) extended this result to the wider class of G-
rings. Hart [3] further proved that, if R is a regular local ring of finitely genera-
ted type over a field k, then the converse is also true, i.e. there exists a derivation
d of R admitting no non trivial d-ideals. He gave also examples [3]; examples (i),
(iii) and (iv)) to show that the hypotheses «regular», «local» and «finitely genera-
ted type» are not superflous (i.e. they must hold all together).

The above results show that for a wide class of rings the d-simplicity is con-
nected with the regularity, a property which requires from a ring R to have a
«special» kind of dimension (namely in this case every maximal ideal M of R can
be generated by dim R;, elements, where R); denotes the localization of R at M).

But we shall proceed further on examining the connection between the d-sim-
plicity and the dimension of a ring. For this, notice first that, since a d-simple ring
R is a domain, if R is 0-dimensional, then it is a field. Further we give the follo-
wing result, which is a straightforward consequence of Zariski’s lemma for
derivations:

Theorem 2.3. Let R be a complete local ring and let d be a derivation of R
admitting no non trivial d-ideals. Then R is a 1-dimensional ring.

Proof. Assume that R is not 1-dimensional and let M be its unique maximal
ideal. Then, since dM ¢ M, there exists x in M, such that dx is in R-M, i.e dx is a
unit of R. Thus, according to Zariski’s lemma for derivations ([15]; Lemma 4), R
contains a subring S such that R = S[x] (ring of formal power series), with
dS=0.

But dim S[x] =1 + dim S, therefore S is not a field. Thus, since dS = 0, every
proper ideal of R generated by elements of S is a d-ideal, fact which contradicts
our hypothesis that R is a d-simple ring.

As a staightforward consequence of the previous theorem a formal power
series ring kfx;, @, ..., «, ] over a field k£ has no derivation d admitting no non

d
trivial d-ideals for any integer n =2 (obviously kfx;] is d——simple).
x

Further, by Theorem 2.3, the completion of a d-simple loclal ring R is not d-
simple if dim R > 1 (it is well known that a derivation of a local ring can be exten-
ded to the completion and that completion preserves dimension).

One should note that there exist 1-dimensional rings R which are not d-simple
for any derivation d of R; e.g. see example of [6].

The next theorem gives a necessary and sufficient condition for a 1-dimensio-
nal finitely generated k-algebra R to be d-simple, where d is a given k-derivation
of R.



114 MICHAEL G. VOSKOGLOU [4]

Theorem 2.4. Let R be a 1-dimensional finitely generated algebra over a
field k, say R =kly1, Ys, --., Yn] and let d be a k-derivation of R. Then R is a d-
simple ring if, and only if, R = (dy;, dys, ..., dy,).

Proof. Assume first that R is d-simple and let M be a maximal ideal
of R such that dy; is in M for each 1=1, 2, ..., n. Then, given f in M, df

n a
= —fdy,l- is also in M, therefore dMcM, which is absurd. Thus R

i=1 0Y;
= (dyy, dys, ..., dy,).

Conversely assume that R = (dy,, dys, ..., dy,), and let M be a non-zero pri-
me, and therefore (since dim R = 1) maximal ideal of R, such that dM c M. Then
dy; is in M for each 1 =1, 2, ..., n ([14]; Lemma 2.2), which is a contradiction.
Therefore R has no non zero prime d-ideals, fact which shows that it is a d-simple
ring (see section 1).

Remark. By the first part of the proof of Theorem 24, if R
=kly1, Y2, ---, Y] is a d-simple finitely generated algebra for some k-derivation
d of R, then R = (dy,, dys, ..., dy,).

The converse is not true in general. For example let d be the k-derivation of
the polynomial ring R = k[x;, x,] defined by dx; =1 and dx, = ax,, with 0 # @ in
k; then, although R = (dx;, dx,), (x3) is a non zero proper d-ideal of R.

One should note also that, if k is an algebraicaly closed field, then Theorem 2.4
is a straightforward consequence of Hilbert’s Nullstellensatz ([4]; Theorem 32).

Finally, if k is the field @ of the rational numbers, it is easy to check that every
derivation of k is a k-derivation, and therefore Theorem 2.4 is true for all deriva-
tions of k.

The following example illustrates the previous theorem:

Example 2.5. Consider the ideal I = (xf + x5 — 1) of the polynomial ring R
= kl[x;, x,] and let d be the k-derivation of R defined by dx; = x, and da, = — ;.
Then d induces a derivation of the ring F/I, denoted also by d. But E/I has dimen-
sion 1 and x,dx; — x; dx, = 1, therefore, by Theorem 2.4, R/I is a d-simple ring.

3 - Examples of d-simple rings of dimension greater than 1
Our first example will be a generalization of an unpublished result due to G.

Bergman, which states that the polynomial ring R = k[x;, x5 ] is d-simple for some
derivation d of R; but first we need the following lemma:
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Lemma 3.1. Let R be a d-simple ring. Extend d to a derivation of the po-
lynomial ring Rlx] by dx = ax + b, with a, b in R and assume that the equation
b+ dy =ya has no solution y in R. Then Rl[x] is also a d-simple ring.

Proof. Assume that R[«] is not a d-simple ring and let I be a non zero pro-
per d-ideal of R[x]. Then it is easy to check that the set A of all leading coefficien-
ts of the elements of I of minimal degree, say n, together with zero is a non zero
d-ideal of R and therefore A =R. _—

Thus there exists an element f of I of the form f=x" + .E a; ¢, with a; in R
for each 1. =0

Then df-naf is also in I and has degree less than n, therefore df=naf
Q).

But df=mnx" (ax+b)+da,_ 12" *+a,_ ;(m—1)x" 2(ax+b) + ... + day
=nax™ + [nwb+da, 1+ (n—-1)aa,_;]x" '+...+day and therefore on com-

paring the coefficients of x" ! in relation (1) we get that b+ da,_;

1 1 1
+(n—1)aa,.1=nada,_, orb+d(—an_1) =a(—an1),withy= —a,_;in
R, which is a contradiction. " " "

We are ready now to prove:

Theorem 3.2. Let R, = k[x,, xs, ..., ,] be a polynomial ring in n indeter-
minates over a field k, and let d be the k-derivation of R, defined by dx, =1 and
de; =x;_;x;+ 1, for each 1=1,2, ..., n. Then R, is a d-simple ring.

Proof. We shall apply induction on 7. The polynomial ring R, is d-simple be-
cause it is a PID and d lowers the degree. Assume that R, _; is d-simple, then we
must show that R, =R, _,[«x,] is also a d-simple ring.

To show this, according to the previous lemma, it is enough to show that the
equation

(1) 1 +dy:ymn—1

has no solution y in R, _;.
In fact, if y is in k, then (1) gives that 1 = yx, _;, which is absurd. Also by (1)
becomes evident that we can not have y = y(x;, ®s, ..., 2, _2).
k
Finally if there exists y = >, ¢;(x;, @3, ..., €,_2) &} _; in R, _; satisfying (1),
i=0

then obviously the degree of dy with respect to x,_; will be at most k, a fact
which contradicts (1) again.
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Given a derivation d and a pime ideal P of a ring R, d extends to a derivation
of the local ring R, (denoted also by d) by the usual rule of differentials for quo-
tients. Further an algebra R over a field & is d-simple if, and only if, R is a domain
and Ry is d-simple, for all maximal ideals M of R ([9]; Corollary 2.2). This result
combined with Theorem 3.2 provides us examples of local d-simple rings of di-
mension greater than 1.

Using also results from [8], where conditions are obtained, which guarantee
that certain rings are polynomial rings in one indeterminate over a field, we get
some additional cases where one can recognize that a given ring has a derivation
d admitting no non trivial d-ideals.

The following corollary gives an example of a d-simple ring with infinite
dimension:

Corollary 3.3. Let R =klxy, 3, ..., @,, ...] be a polynomial ring n infi-
nitely many indeterminates over k. Define a k-derivation d of R recursively by
dey=1 and by dx;=1+x;x;_1, for all :=2. Then R is a d-simple ring.

Proof. Set R, =klx, xs, ..., x,], 1=1,2, ..., then dR,cR, and, by the
previous theorem, R, is a d-simple ring.

Let I be a non zero proper d-ideal of R, then I N R, # 0 for some n < © and
dINR,)cINR,. But I N R, is obviously a proper ideal of R,, therefore we ha-
ve a contradiction to the d-simplicity of R,.

Corollary 34. Let R, and d be as in Theorem 32 and let K
= k(xy, %o, ..., @, _1) be the quotient field of R, _1. Then d extends to a deriva-
tion of the polynomial ring A = Klx,] and A s a d-simple ring.

Proof. Itis easy to check that A is isomorphic to the ring of fractions (R,)s,
where S is the set of all non zero polynomials of B, _; and therefore d extends to
a derivation of A by the usual rule of differentials for quotients. Further, if I is a
non zero proper d-ideal of A, then R, N I is obviously a proper non zero d-ideal of
R,, which is a contradiction, since, by Theorem 3.2, R, is a d-simple ring.

A similar argument to that applied in Lemma 3.1 gives the following
result:

Theorem 3.5. Let R =Fk[x,, a7}, &, @5 ', ..., &,, €, '] be a Laurent
polynomial ring over a field k, and let d be the k-derivation of R defined by
de;=a;x;, o€k, 1=1,2, ..., n.
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Then R is a d-simple ring if, and only if, the a;’s are linearly independent over
the ring Z of integers.

Proof. Assume first that the a a;’s are linearly independent over Z, then we
want to show that R is a d-simple ring. We shall apply induction on #.

The case n=0 is true, since k is a field.

Assume that R’ = k[xy, #; , @0, 25 1, ..., ¥, _1, @, 1] is a d-simple ring, then
we must show that R =R'[x,, ¢, '] is also a d-simple ring.

For this, let I be a non zero d-ideal of R, then I'=1N R '[x,] is obviously a
non zero d-ideal of Rt’ [fcn]. As in the proof of Lemma 3.1 I’ contains a polynomial

of the form f=x,' + >, g;x, with g; in R’ for each I and df = ta,, f. Then, calcula-
i=0
ting df, we get ta,g, =dg; +ia,g; or dg;=(t—1) a,g; (1), for each 1.

Thus ¢g; R’ is a d-ideal of R’ and therefore is either g;=0 or g; is a unit of R".
If g; = 0 for each i, then f=x! is in I’ and therefore I = R, i.e. R is a d-simple

ring.

Assume therefore that g; is a unit of R’ for some ¢ <t, then we shall have g,
=bxfraf.. x! with b in k and t;in Z for eachj 1,2,...,n—1.

Then dg; = bd(xf) afe... a/} + befd(ad) .. et + ... +abel... d ]

n—1 n—1

—gl Z a;t; and therefore relation (1) gives that (i —1) a, + E a;t;=0.

Thus 1—t=t1=t,=...=t,_, =0, i.e. 1 =t, which is absurd
Conversely assume that R is a d-simple ring and that the a;’s are linearly depen-

dent over Z; then we can find ¢, t,, ..., t, in Z, not all zero, such that ﬁ: a;t;=0.
Consider the Laurent polynomial f= '@ ... x!" + 1, which is obviousl;:; non unit
of R, thendf= (f—1) ﬁ: a;t; = 0. Therefore fR is a proper, non zero, d-ideal of R,
which is a contradicticl)r:l.1

The following corollary is an immediate consequence of the previous theo-
rem:

Corollary 3.6. Let R and d be as in the previous theorem. Assume further
that the dimension of k (as a vector space) over the field @ of rationals is less than
n. Then R is not a d-simple ring.

We shall close by giving a generalization of the definition of a d-simple ring. Let
D Dbe a set of derivations of a ring R, then an ideal I of R is called a D-ideal if dI c I
for each derivation d of D, and R is called a D-simple ring if it has no proper non
zero D-ideals.

It becomes evident that, if R is d-simple for some d in D, then it is also a D-sim-
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ple ring, but the converse is not true in general. For example, by Theorem 2.3, the

formal power series ring R = kfx;, x,] over a field k is not — -simple, but it is ea-
L1

0 0
sy to check that R is a { _—, — }-simple ring.
X1 3062

Finally notice that the D-simplicity of a ring R is connected with the simplicity
of the skew polynomial ring R[x, D] (cf. [12] and [13]).
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Abstract

In the present paper the differential simplicity of a commutative ring is studied with
respect to its dimension. It is shown that a d-simple ring of prime characteristic is 0-di-
mensional. In the case of characteristic zero a necessary and sufficient condition is given
for the d-simplicity of a 1-dimensional finitely generated algebra over a field k and exam-
ples are presented of rings with dimension greater than 1 and even of infinite dimension
(polynomial rings in finitely many and infinitely many indeterminates and Laurent po-
lynomial rings).



