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MICHAEL G. VO S K O G L O U (*)

Differential simplicity and dimension

of a commutative ring (**)

1 - Preliminaries

All the rings considered in this paper are commutative with identity and all
the fields are of characteristic zero (unless if it is otherwise stated).

A local ring R is understood to be a Noetherian ring with a unique maximal
ideal; if R is not Noetherian, following the terminology of [4], we call it a quasi-lo-
cal ring.

For special facts on commutative algebra we refer freely to [1], [4], [7] and
[16].

Let d be a derivation of a ring R, then an ideal I of R is called a d-ideal if d(I)
’I , and R is called a d-simple ring if it has no non zero, proper d-ideals (in order
to simplify our notation we shall write dI instead of d(I) ).

Non commutative d-simple rings exist in abundance, e.g. every simple ring is
d-simple for every derivation d of R, and that is why our interest is turned to
commutative d-simple rings only.

One should note that a d-simple ring R contains the field F4]x�R : dx40(,
and therefore is either of characteristic zero, or of a prime number p.

It is well known that if a ring R of characteristic zero is d-simple, then R is an
integral domain, while if R contains the rationals and has no non zero prime d-
ideals, then R is a d-simple ring ([5]; Corollary 1.5.)
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2 - Some remarks on the dimension of a d-simple ring

Given a ring R no criterion is known to decide whether or not there exists a
derivation d of R (at least one) such that R is d-simple, but it seems that there is a
connection between the d-simplicity and the dimension of R.

To verify this, let us consider first d-simple rings of characteristic pc0. In
this case it is easy to prove the following theorem:

T h e o r e m 2.1. Let R be a d-simple ring of prime characteristic p, then the
nilradical of R is the unique prime ideal of R.

P r o o f . It is sufficient to show that the nilradical N of R is a maximal ideal.
For this, let M be a maximal ideal of R and let I be the ideal generated by the set
]x p : x�M(.

Since ch R4p , I is a proper d-ideal of R. But R is d-simple ring, therefore
I4 (0).

Thus M’N and so M4N .
The previous theorem tells us that a d-simple ring of prime characteristic is a

0-dimensional, quasi-local ring. Further, if R is a domain, then R is a field.
The following case is a non trivial example of a d-simple ring of prime

characteristic:

E x a m p l e 2.2. Let k[x] be a polynomial ring over a field k of prime charac-

teristic, say p. Then I4 (x p ) is obviously a
d

dx
-ideal of k[x], therefore

d

dx
indu-

ces a derivation d of the ring R4k[x] /I by d( f1I)4
df

dx
1I, for all f in k[x].

Let A be a non zero d-ideal of R, then A 84] f�k[x] : f1I�A( is obviously a
d

dx
-ideal of k[x] containing properly I.

Given f4 !
i40

n

ai x i in A 8, with nFp, we can write f4 f11 f2 , where

f14 !
i40

p21

ai x i and f24 !
i4p

n

ai x i. But f2 is in I and therefore in A 8 and so f1 is also

in A 8.
Thus

d p21 f1

dx
c0 is in A 8Ok and therefore A4R , i.e. R is a d-simple

ring.
In the rest of this paper we shall be dealing with d-simple rings of characteri-

stic zero, which are therefore integral domains containing the rational numbers
(since they contain the field F: see section 1).

Seidenberg ([10] and [11]) proved that, if a d-simple algebra over a field k is
either finitely generated, or a complete local ring, or a localization of such rings,
then it is regular.
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Hart ([2]; Corollary of Theorem 1) extended this result to the wider class of G-
rings. Hart [3] further proved that, if R is a regular local ring of finitely genera-
ted type over a field k, then the converse is also true, i.e. there exists a derivation
d of R admitting no non trivial d-ideals. He gave also examples [3]; examples (i),
(iii) and (iv)) to show that the hypotheses «regular», «local» and «finitely genera-
ted type» are not superflous (i.e. they must hold all together).

The above results show that for a wide class of rings the d-simplicity is con-
nected with the regularity, a property which requires from a ring R to have a
«special» kind of dimension (namely in this case every maximal ideal M of R can
be generated by dim RM elements, where RM denotes the localization of R at M).

But we shall proceed further on examining the connection between the d-sim-
plicity and the dimension of a ring. For this, notice first that, since a d-simple ring
R is a domain, if R is 0-dimensional, then it is a field. Further we give the follo-
wing result, which is a straightforward consequence of Zariski’s lemma for
derivations:

T h e o r e m 2.3. Let R be a complete local ring and let d be a derivation of R
admitting no non trivial d-ideals. Then R is a 1-dimensional ring.

P r o o f . Assume that R is not 1-dimensional and let M be its unique maximal
ideal. Then, since dM%O M , there exists x in M, such that dx is in R-M, i.e dx is a
unit of R. Thus, according to Zariski’s lemma for derivations ([15]; Lemma 4), R
contains a subring S such that R4Sexf (ring of formal power series), with
dS40.

But dim Sexf411dim S , therefore S is not a field. Thus, since dS40, every
proper ideal of R generated by elements of S is a d-ideal, fact which contradicts
our hypothesis that R is a d-simple ring.

As a staightforward consequence of the previous theorem a formal power
series ring kex1 , x2 , R , xn f over a field k has no derivation d admitting no non

trivial d-ideals for any integer nF2 (obviously kex1 f is
d

dx1

-simple).

Further, by Theorem 2.3, the completion of a d-simple local ring R is not d-
simple if dim RD1 (it is well known that a derivation of a local ring can be exten-
ded to the completion and that completion preserves dimension).

One should note that there exist 1-dimensional rings R which are not d-simple
for any derivation d of R; e.g. see example of [6].

The next theorem gives a necessary and sufficient condition for a 1-dimensio-
nal finitely generated k-algebra R to be d-simple, where d is a given k-derivation
of R.
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T h e o r e m 2.4. Let R be a 1-dimensional finitely generated algebra over a
field k, say R4k[y1 , y2 , R , yn ] and let d be a k-derivation of R. Then R is a d-
simple ring if, and only if, R4 (dy1 , dy2 , R , dyn ).

P r o o f . Assume first that R is d-simple and let M be a maximal ideal
of R such that dyi is in M for each i41, 2 , R , n . Then, given f in M, df

4 !
i41

n ¯f

¯yi

dyi is also in M, therefore dM’M, which is absurd. Thus R

4 (dy1 , dy2 , R , dyn ).
Conversely assume that R4 (dy1 , dy2 , R , dyn ), and let M be a non-zero pri-

me, and therefore (since dim R41) maximal ideal of R, such that dM’M . Then
dyi is in M for each i41, 2 , R , n ([14]; Lemma 2.2), which is a contradiction.
Therefore R has no non zero prime d-ideals, fact which shows that it is a d-simple
ring (see section 1).

R e m a r k . By the first part of the proof of Theorem 2.4, if R
4k[y1 , y2 , R , yn ] is a d-simple finitely generated algebra for some k-derivation
d of R, then R4 (dy1 , dy2 , R , dyn ).

The converse is not true in general. For example let d be the k-derivation of
the polynomial ring R4k[x1 , x2 ] defined by dx141 and dx24ax2 , with 0ca in
k; then, although R4 (dx1 , dx2 ), (x2 ) is a non zero proper d-ideal of R.

One should note also that, if k is an algebraicaly closed field, then Theorem 2.4
is a straightforward consequence of Hilbert’s Nullstellensatz ([4]; Theorem 32).

Finally, if k is the field Q of the rational numbers, it is easy to check that every
derivation of k is a k-derivation, and therefore Theorem 2.4 is true for all deriva-
tions of k.

The following example illustrates the previous theorem:

E x a m p l e 2.5. Consider the ideal I4 (x 2
1 1x 2

2 21) of the polynomial ring R
4k[x1 , x2 ] and let d be the k-derivation of R defined by dx14x2 and dx242x1 .
Then d induces a derivation of the ring R/I, denoted also by d. But R/I has dimen-
sion 1 and x2 dx12x1 dx241, therefore, by Theorem 2.4, R/I is a d-simple ring.

3 - Examples of d-simple rings of dimension greater than 1

Our first example will be a generalization of an unpublished result due to G.
Bergman, which states that the polynomial ring R4k[x1 , x2 ] is d-simple for some
derivation d of R; but first we need the following lemma:
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L e m m a 3.1. Let R be a d-simple ring. Extend d to a derivation of the po-
lynomial ring R[x] by dx4ax1b , with a, b in R and assume that the equation
b1dy4ya has no solution y in R. Then R[x] is also a d-simple ring.

P r o o f . Assume that R[x] is not a d-simple ring and let I be a non zero pro-
per d-ideal of R[x]. Then it is easy to check that the set A of all leading coefficien-
ts of the elements of I of minimal degree, say n, together with zero is a non zero
d-ideal of R and therefore A4R .

Thus there exists an element f of I of the form f4x n1 !
i40

n21

ai x i , with ai in R
for each i.

Then df-naf is also in I and has degree less than n, therefore df4naf
(1).

But df4nx n21 (ax1b)1dan21 x n211an21 (n21) x n22 (ax1b)1R1da0

4nax n1 [nb1dan211 (n21) a an21 ] x n211R1da0 and therefore on com-
paring the coefficients of x n21 in relation (1) we get that nb1dan21

1(n21) a an214n a an21 or b1d g 1

n
an21h4a g 1

n
an21h, with y4

1

n
an21 in

R, which is a contradiction.
We are ready now to prove:

T h e o r e m 3.2. Let Rn4k[x1 , x2 , R , xn ] be a polynomial ring in n indeter-
minates over a field k, and let d be the k-derivation of Rn defined by dx141 and
dxi4xi21 xi11, for each i41, 2 , R , n . Then Rn is a d-simple ring.

P r o o f . We shall apply induction on n. The polynomial ring R1 is d-simple be-
cause it is a PID and d lowers the degree. Assume that Rn21 is d-simple, then we
must show that Rn4Rn21 [xn ] is also a d-simple ring.

To show this, according to the previous lemma, it is enough to show that the
equation

11dy4yxn21(1)

has no solution y in Rn21 .
In fact, if y is in k, then (1) gives that 14yxn21 , which is absurd. Also by (1)

becomes evident that we can not have y4y(x1 , x2 , R , xn22 ).

Finally if there exists y4 !
i40

k

gi (x1 , x2 , R , xn22 ) x i
n21 in Rn21 satisfying (1),

then obviously the degree of dy with respect to xn21 will be at most k, a fact
which contradicts (1) again.
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Given a derivation d and a pime ideal P of a ring R, d extends to a derivation
of the local ring Rp (denoted also by d) by the usual rule of differentials for quo-
tients. Further an algebra R over a field k is d-simple if, and only if, R is a domain
and RM is d-simple, for all maximal ideals M of R ([9]; Corollary 2.2). This result
combined with Theorem 3.2 provides us examples of local d-simple rings of di-
mension greater than 1.

Using also results from [8], where conditions are obtained, which guarantee
that certain rings are polynomial rings in one indeterminate over a field, we get
some additional cases where one can recognize that a given ring has a derivation
d admitting no non trivial d-ideals.

The following corollary gives an example of a d-simple ring with infinite
dimension:

C o r o l l a r y 3.3. Let R4k[x1 , x2 , R , xn , R] be a polynomial ring in infi-
nitely many indeterminates over k. Define a k-derivation d of R recursively by
dx141 and by dxi411xi xi21 , for all iF2. Then R is a d-simple ring.

P r o o f . Set Rn4k[x1 , x2 , R , xn ], i41, 2 , R , then dRn’Rn and, by the
previous theorem, Rn is a d-simple ring.

Let I be a non zero proper d-ideal of R, then IORnc0 for some nEQ and
d(IORn )’IORn . But IORn is obviously a proper ideal of Rn , therefore we ha-
ve a contradiction to the d-simplicity of Rn .

C o r o l l a r y 3.4. Let Rn and d be as in Theorem 3.2 and let K
4k(x1 , x2 , R , xn21 ) be the quotient field of Rn21 . Then d extends to a deriva-
tion of the polynomial ring A4K[xn ] and A is a d-simple ring.

P r o o f . It is easy to check that A is isomorphic to the ring of fractions (Rn )S ,
where S is the set of all non zero polynomials of Rn21 and therefore d extends to
a derivation of A by the usual rule of differentials for quotients. Further, if I is a
non zero proper d-ideal of A, then RnOI is obviously a proper non zero d-ideal of
Rn , which is a contradiction, since, by Theorem 3.2, Rn is a d-simple ring.

A similar argument to that applied in Lemma 3.1 gives the following
result:

T h e o r e m 3.5. Let R4k[x1 , x1
21 , x2 , x2

21 , R , xn , xn
21 ] be a Laurent

polynomial ring over a field k, and let d be the k-derivation of R defined by
dxi4ai xi , ai�k , i41, 2 , R , n .
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Then R is a d-simple ring if, and only if, the ai’s are linearly independent over
the ring Z of integers.

P r o o f . Assume first that the a ai’s are linearly independent over Z, then we
want to show that R is a d-simple ring. We shall apply induction on n.

The case n=0 is true, since k is a field.
Assume that R 84k[x1 , x1

21 , x2 , x2
21 , R , xn21 , xn21

21 ] is a d-simple ring, then
we must show that R4R 8 [xn , xn

21 ] is also a d-simple ring.
For this, let I be a non zero d-ideal of R, then I 84IOR 8 [xn ] is obviously a

non zero d-ideal of R 8 [xn ]. As in the proof of Lemma 3.1 I 8 contains a polynomial

of the form f4x 8n t1 !
i40

t21

gi x i
n , with gi in R 8 for each I and df4 tan f . Then, calcula-

ting df, we get tan gi4dgi1 ian gi or dgi4 (t2 i) an gi (1), for each i.
Thus gi R 8 is a d-ideal of R 8 and therefore is either gi40 or gi is a unit of R 8.
If gi40 for each i, then f4xn

t is in I 8 and therefore I4R , i.e. R is a d-simple
ring.

Assume therefore that gi is a unit of R 8 for some iE t , then we shall have gi

4bx1
t1 x2

t2
R xn21

tn21 with b in k and tj in Z for each j41, 2 , R , n21.
T h e n d gi 4 b d(x1

t1 ) x2
t2
R xn21

tn21 1 b x1
t1 d(x2

t2 ) R xn21
tn21 1R1 x1

t1 x2
t2
R d(xn21

tn21 )

4gi !
j41

n21

aj tj and therefore relation (1) gives that (i2 t) an1 !
j41

n21

aj tj40.

Thus i2 t4 t14 t24R4 tn2140, i.e. i4 t , which is absurd.
Conversely assume that R is a d-simple ring and that the ai’s are linearly depen-

dent over Z; then we can find t1 , t2 , R , tn in Z, not all zero, such that !
i41

n

ai ti40.

Consider the Laurent polynomial f4x1
t1 x2

t2
R xn

tn11, which is obviously a non unit

of R, then df4 ( f21) !
i41

n

ai ti40. Therefore fR is a proper, non zero, d-ideal of R,

which is a contradiction.
The following corollary is an immediate consequence of the previous theo-

rem:

C o r o l l a r y 3.6. Let R and d be as in the previous theorem. Assume further
that the dimension of k (as a vector space) over the field Q of rationals is less than
n. Then R is not a d-simple ring.

We shall close by giving a generalization of the definition of a d-simple ring. Let
D be a set of derivations of a ring R, then an ideal I of R is called a D-ideal if dI’I
for each derivation d of D, and R is called a D-simple ring if it has no proper non
zero D-ideals.

It becomes evident that, if R is d-simple for some d in D, then it is also a D-sim-
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ple ring, but the converse is not true in general. For example, by Theorem 2.3, the

formal power series ring R4kex1 , x2 f over a field k is not
¯

¯x1

-simple, but it is ea-

sy to check that R is a m ¯

¯x1

,
¯

¯x2
n-simple ring.

Finally notice that the D-simplicity of a ring R is connected with the simplicity
of the skew polynomial ring R[x , D] (cf. [12] and [13]).
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A b s t r a c t

In the present paper the differential simplicity of a commutative ring is studied with
respect to its dimension. It is shown that a d-simple ring of prime characteristic is 0-di-
mensional. In the case of characteristic zero a necessary and sufficient condition is given
for the d-simplicity of a 1-dimensional finitely generated algebra over a field k and exam-
ples are presented of rings with dimension greater than 1 and even of infinite dimension
(polynomial rings in finitely many and infinitely many indeterminates and Laurent po-
lynomial rings).

* * *


