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General recombination-generation laws

for charge transport equations (**)

1 - Introduction

There is a strict relation in representation of ion electro-diffusion and the phe-
nomenological theory of the electron and hole transport in semiconductors. The
basic equations [20] are essentially the same, the main difference being in the ge-
neration-recombination term which may have different analytical expressions [13],
[23]. In this paper we present a unified treatment for a quite general class of ge-
neration-recombination laws. Moreover, since heat production plays an important
role in many applications, we assume the diffusion coefficients to be given func-
tions of the temperature and couple the system of diffusion with the heat flow
equation. Let p and n denote the concentration of positive and negative charges
respectively, W the electric potential and E42˜W the corresponding electric
field. The flux densities are given by the relations

Jp42B(u) ˜p2mp˜W(1.1)

Jn42D(u) ˜n1nn˜W ,(1.2)

where B(u) and D(u) are the coefficients of diffusion, m and n the ionic mobilities,
u the temperature and

I4Jp2Jn(1.3)
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the total current. Throughout this paper ionic mobilities are supposed to be con-
stant. This is inherent to the method and, as pointed out by the referee, excludes
consideration of, e.g., Ga-As devices, see [3]. We shall study the system

pt1˜ QJp4R(p , n)(1.4)

nt1˜ QJn4R(p , n)(1.5)

2eDW4p2n(1.6)

u t2˜ Q (k˜u)42I Q˜W ,(1.7)

where k , a positive constant, is the coefficient of thermal diffusion. Crucial in the
model is the form of the generation-recombination law R(p , n). The law, typical of
the ionic conduction, for example in a salt

R(p , n)4N 2
0 2apn ,

is often inadequate in other situations. It is well-known that other mechanisms
are more important, especially in semiconductor devices. A more realistic model is
the Shockley-Read-Hall recombination-generation rate which reads

R4
N0

22apn

r11r2 p1r3 n
, riD0 i41, 2 , 3

and take into account the essentially quantistic nature of the processes involved.
In this paper we make an attempt to present a unified treatment for a quite large
class of recombination-generation law satisfying the geometric condition (D) of
Section 2, which permits to prove the existence of an invariant region for the con-
centrations and the unique solubility of the related initial-boundary value pro-
blem. Hypothesis (D) also implies the existence of at least one electro-neutral sta-
tionary solution (p, n, W, u), p4n. In certain cases (see Section 3), the time-de-
pendent solution tends, as tKQ , to (p, n, W, u). The heat production term in the
right-hand side of the heat flow equation (1.7) is also a major modelization pro-
blem. The simplest form W14 (Jp2Jn ) QE4I QE proposed in [8] is the same of
the metallic conduction. However, in a semiconductor, where there are two types
of carriers and where the individual carrier fluxes are not conserved, there is an
additional production-consumption of heat through recombination-generation. To
take into account this peculiar phenomenon, a different formulation has been pro-
posed in [1] i.e.: W24˜ Q (Ev Jp2Ec2Jn ), where Ec and Ev are the conduction
band edge energy and the valence band edge energy respectively. For non dege-
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nerate materials W2 simplifies to W34 (Jp2Jn ) QE1R(p , n)(Ec2Ev ), where the
dependence on the recombination law becomes nicely apparent. On the other
hand, even more general formulations for heat generation have been proposed,
see e.g.: [23]. In Section 4 we consider as heat generation term a generic function
W(u , p , n , ˜W , ˜p , ˜n) with minimal assumption on W. Clearly in this way there
is no hope of proving for the stationary problem a theorem of existence and uni-
queness for arbitrarily large data. However, for small data this can be obtained
using the implicit function theorem in Banach spaces.

Time dependent solutions for carrier transport equations have attracted great
interest from the point of view of nonlinear PDE’s. We quote the pioneering pa-
per of M. S. Mock [16], the contribution of H. Gajewski and K. Gröger [7], and the
works of T. Seidman and G. Troianiello [21], [22] where the temperature coupling
is considered. Most of these works are concerned with special recombination-ge-
neration laws.

2 - Existence and uniqueness of a classical solution

Let V be an open and bounded subset of R3 with a regular boundary ¯V. We
shall use the Hölder space C k , g (V) and the Sobolev spaces W k , p (V), W k , p

0 (V)
and L q (0 , T ; W k , p (V) ). For definitions and properties we refer to [1]. The L 2-
norm in V is denoted V V , moreover we define

Q4V3 (0 , T), G4V3]0(N¯V3 (0 , T], S4¯V3 [0 , T] .

Let u(x , t) be defined in Q and let 0EaE1. We set

VuV04 sup
Q

NuN , VuVa4VuV01 sup
P1 , P2�Q

Nu(P1 )2u(P2 )N

d(P1 , P2 )a
,

VuV11a4VuVa1 !
i41

3

V

¯u

¯xi
V

a
, VuV21a4VuV11a1 !

i41

3

N ¯u

¯xi
N11a

1N ¯v

¯t Na
,

where d(P1 , P2 ) is the usual parabolic distance i.e. d(P1 , P2 )4 (Nx 82x 9 N21Nt 8
2 t 9 N)1/2 , P14 (x 8 , t 8 ), P24 (x 9 , t 9 ) x�V. We say that u� C q (Q), (q40, a ,
11a , 21a), if VuVq is finite (1). Crucial in proving existence will be the following
a priori estimates proved by A. Friedman [5], [6].

(1) Note that C q (Q)cC q (Q).
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T h e o r e m 2.1. Let u(x , t)� C 21a (Q) be a solution of the equation

!
ij41

3

aij (x , t) uxi xj
1 !

i41

3

bi (x , t) uxi
1c(x , t) u2ut4 f (x , t)(2.1)

in the cylinder Q and uNG4h. Assume that there exists a function C(x , t) such
that C xi

, C xi xj
, C t are continuous in Q and which coincides with h on G. Let the

domain V�C 2, a and the coefficients in (2.1) be continuous and satisfy the
conditions

!
i , j41

3

aij
(x , t) j i j jFH0 !

i41

3

j i
2(2.2)

!
i , j41

3

Vaij
Va1 !

j41

3

Vbi V01VcV0GH1 , !
ij41

3

Vaij V1
SGH2(2.3)

where

Vaij V1
S4 sup

P�S
Vaij (P)V1supP1 , P2�S

Naij (P1 )2aij (P2 )N

Nx 82x 9 N1Nt 82 t 9 N
.(2.4)

Then, for any positive sE1, there exists a constant k depending only on
s , H0 , H1 , H2 and Q such that

VuV11dGkV f V0 VCV2 .(2.5)

We shall study the following initial-boundary value problem (EP) which is ob-
tained inserting (1.1) and (1.2) into (1.4) and (1.5) and plugging (1.3) in (1.8)

pt2˜ Q (B(u) ˜p)2m˜ Q (p˜W)4R(p , n)(2.6)

nt2˜ Q (D(u) ˜n)1n˜ Q (n˜W)4R(p , n)(2.7)

2eDW4p2n(2.8)

u t2˜ Q (k˜u)4 (mp1nn)N˜WN21 [B(u) ˜p2D(u) ˜n] Q˜W(2.9)

p(x , 0 )4p0 (x), n(x , 0 )4n0 (x), u(x , 0 )4u 0 (x), x�V(2.10)

p4pb , n4nb , u4u b on S4¯V3 [0 , T](2.11)

W4W b on S4¯V3 [0 , T] .(2.12)
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Equations (2.6) and (2.7) can be rewritten, by (2.8), as:

pt2B(u) Dp2 [B 8 (u) ˜u1m˜W] Q˜p42
m

e
p(p2n)1R(p , n)(2.13)

nt2D(u) Dn1 [n˜W2D 8 (u) ˜u] Q˜n4
n

e
n(p2n)1R(p , n) .(2.14)

We make on the data the following hypotheses.
(A) There exist functions C k (x , t), k41, 2 , 3 of class C 2, a (Q) which coincide

on G respectively with p0 , pb , n0 , nb and u 0 , u b. Moreover

p0F0, pbF0, n0F0, nbF0 .(2.15)

(B) There exists a function L�C 2, a (Q) which reduces to W b on S.
(C) B(u), D(u)�C 1 (R1 ) satisfy

B(u)FB0D0, D(u)FD0D0(2.16)

NB 8 (u)NGB1 , ND 8 (u)NGD1 .(2.17)

(D) R(p , n) is a function locally lipschitz in R2. Moreover, let F4 ( f , g) be the
vector field

.
/
´

f (p , n)42
m

e
p(p2n)1R(p , n)

g(p , n)4
n

e
n(p2n)1R(p , n) .

Let us define S r4](p , n)�R2 ; 0EpEr , 0EnEr(, rD0 and denote ¯S r the
boundary of S r . We assume that there exists rD0 such that, for all rF r, FN¯S r

does not vanish and points toward the interior of S r .

R e m a r k 2.1. If Hypothesis (D) holds, at least one stationary solution of
electroneutrality, i.e. p4n , exists. In fact, we have R(0 , 0 )D0 and R(r, r)E0.
Let hD0 be any solution of R(p , p)40. It is easy to verify that (p , n , W , u)
4 (h , h , W, u) is a stationary solution of (1.4)-(1.8) if DW40 and u solves the
equation

2˜ Q (k˜u)4 (mh1nh)N˜WN2 .

An example of a dissociation-recombination law to which the theory applies is
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given by

R(p , n)4N b
0 2ap b n b , bD1, aD0 .

Define G 14](p, n); n40, 0EpEr(, G 24](p, n); p4r, 0EnEr(, G 34](p, n);
n4r , 0EpEr(, G 44](p , n); p40, 0EnEr( and let n be the exterior unit
normal to ¯S r .

Let v(n)4F QnNG 2
42 m

e
r(r2n)1N 2

0 2ar b n b. It is easily seen that

v(n)G2
m

e
r 21

m

e
g m

abe
h

1

b21

1N 2
0 2a g m

abe
h

b

b21

.

Hence, if r is sufficiently large we have F QnNG 2
E0 when 0EnEr and rF r.

Eventually increasing r we find, on the whole boundary of S r , F QnE0 when
rF r, except for the corner’s point on which condition (D) can be verified directly.
Another recombination term which satisfies (D) is of the form

R(p , n)4
N0

22apn

r(p , n)

with a positive function r (p,n). When r (p,n)4(r11r2p1r3n), riD0, i41,2,3
we have the well-known [23] Shockley-Read-Hall law.

T h e o r e m 2.2. Let (A)-(D) be satisfied. Then problem (EP) has one and only
one classical solution.

P r o o f . We apply the Leray-Schauder principle, referring for a precise state-
ment to the book [6], pag. 293. Let B 4 (C 11a (Q) )3 and w4 (p , n , u)� B. Define
the map F : B3[0 , 1 ]K B,

wA4F(w , l) , wA4 (pA, nA, u
A) , l� [0 , 1 ] ,(2.18)

via the following chains of linear problems:

2eDW4p2n , W4W b on ¯V(2.19)

pAt2 [ (12l)1lB(u) ] DpA2l[m˜W1B 8 (u)˜u] Q˜pA

4l kR(p , n)2
m

e
p(p2n)l(2.20)

pA(x , 0 )4p0 (x), pA 4pb on S ,(2.21)
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nAt2 [ (12l)1lD(u) ] DnA1l[n˜W2D 8 (u) ˜u] Q˜nA

4l kR(p , n)1
n

e
n(p2n)l(2.22)

nA(x , 0 )4n0 (x), nA4nb on S(2.23)

u
A

t2˜ Q (k˜u
A)4l[ (mp1nn)N˜WN21 (B(u) ˜p2D(u) ˜n) Q˜W](2.24)

u
A(x , 0 )4u 0 (x), u

A4u b on S .(2.25)

By elliptic regularization we have

W(x , t)� C 21a (Q) ,(2.26)

and, by Theorem 2.1,

pA(x , t), nA(x , t)� C 11d (Q), 0EaEdE1(2.27)

u
A(x , t)� C 11d (Q) .(2.28)

Thus F is well-defined and compact. We claim that the solutions of the functional
equation

F(w , l)4w , l� [0 , 1 ](2.29)

are a priori bounded in the B-norm by a constant which depends only on the data.
Equation (2.29) is equivalent to the system

pt2 [ (12l)1lB(u) ] Dp2l[m˜W1B 8 (u) ˜u] Q˜p

4l k2 m

e
p(p2n)1R(p , n)l(2.30)

p(x , 0 )4p0 (x) , p4pb on S(2.31)

nt2 [ (12l)1D(u) ] Dn1l[n˜W2D 8 (u) ˜u] Q˜n

4l k n

e
n(p2n)1R(p , n)l(2.32)

n(x , 0 )4n0 (x) , n4nb on S(2.33)

2eDW4p2n(2.34)
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W4W b on S(2.35)

u t2˜ Q (k˜u)4l[ (mp1nn)N˜WN21 (D(u) ˜p2D(u) ˜n) Q˜W](2.36)

u(x , 0 )4u 0 (x) , u4u b on S .(2.37)

We first find an a priori bound in the C 0 (Q)-norm using assumption (D). Take
rD0 such that rF r and

(p0 (x), n0 (x) )�S r , (x�V(2.38)

(pb (x , t), nb (x , t) )�S r , ((x , t)�S .(2.39)

We prove that, if l� (0 , 1 ] and w4 (p , n , u) is a solution of (2.29), then

(p(x , t), n(x , t) )�S r , ((x , t)�Q .(2.40)

Let, by contradiction,

(x, t)�Q and (p(x, t), n(x, t) )�S r .

Recalling (2.38) and (2.39), there exists, by continuity, t *� (0 , T] and x *�V such
that

(p(x , t), n(x , t) )�S r , (t� [0 , t *), (x�V(2.41)

(p(x *, t *), n(x *, t *) )�¯S r .(2.42)

Assume, e.g.

(p(x *, t *), n(x *, t *) )�G 2 .(2.43)

Then

p(x , t *)Gp(x *, t *) , (x�V(2.44)

p(x *, t)Gp(x *, t *) , (t� [0 , t *] .(2.45)

Hence

˜p(x *, t *)40, Dp(x *, t *)G0, pt (x *, t *)F0 .(2.46)

Furthermore, we have

2
m

e
p(x *, t *)[p(x *, t *)2n(x *, t *) ]1R(p(x *, t *), n(x *, t *) )E0 ,(2.47)
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since the vector field F defined in assumption (D) points toward the interior of
S r . Evaluating (2.30) for (x , t)4 (x *, t *) and l� (0 , 1 ], we obtain that (2.43) is
impossible in view of (2.46) and (2.47). If (p(x *, t *), n(x *, t *) ) belongs to other
parts of the boundary of S r the proof is similar. Hence (2.40) follows and we
have

0Gp(x , t)Gr , 0Gn(x , t)Gr , ((x , t)�Q, (l� [0 , 1 ] .(2.48)

From (2.34) we infer, with a constant C depending only on the data,

V˜WVC a (Q)GC .(2.49)

Multiplying (2.30), i.e.

pt2 (12l)Dp2l˜ Q (B(u)˜p)2l˜ Q (mp˜W)4lR(p , n) ,(2.50)

by p2C and integrating by parts over V , we deduce, using the Cauchy-Schwartz
inequality and recalling assumption (B) and (2.48), (2.49),

d

dt
�

V

p 2 dx1�
V

N˜pN2 dxGC(2.51)

for all 0G tGT and with C an appropriate constant.
A similar inequality holds for n. The Gronwall’s inequality yields the estima-

tes:

p , n are bounded in L Q (0 , T ; L 2 (V) )OL 2 (0 , T ; W 1, 2 (V) ) .(2.52)

˜p , ˜n are bounded in L 2 (0 , T ; L 2 (V) ) .(2.53)

As the right hand side of (2.36) is bounded in L 2 (Q), by (2.49) and (2.53) we
have

u is bounded in W 1, 2 (0 , T ; W 2, 2 (V) ) .(2.54)

Applying a result of O. A. Ladyzhenskaia (see [12] page 443), we obtain from
(2.30)-(2.33) that

˜p , ˜n are bounded in C 0 (Q) .(2.55)

By Theorem 2.1 applied to (2.30)-(2.37) we also conclude that:

p , n and u are bounded in C 11a (Q) ,(2.56)
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by constants depending only on C i , (i41, 2 , 3), B0 , D0 , r and T. Thus all solu-
tions of (2.29) remain in a bounded set of B. To apply the Leray-Schauder princi-
ple we need to show that the map F is uniformly continuous with respect to
l�[0, 1]. Let w4(p, n, u)�B, l 1 , l 2�[0, 1] and wA14F(w, l 1), wA24F(w, l 2),
where wA14 (pA1 , nA1 , u

A
1 ), wA24 (pA2 , nA2 , u

A
2 ). Let PA4 pA12pA2 , NA4nA12nA2 ,

U
A4u

A
12u

A
2 . By difference from (2.30)l4l 1

, (2.30)l4l 2
, we obtain that PA satisfies

PAt2a(x , t ; l 1 ) DPA2l 1 b(x , t) Q˜PA4 (l 22l 1 ) F(x , t),(2.57)

where b(x , t) and F(x , t) are easily computed and do not depend on l. Owing to
Theorem 2.1, we have

VPA VC 11a (Q)GkNl 22l 1N .(2.58)

In a similar way

VNA VC 11a (Q)GkNl 22l 1 N , NU
A
VC 11a (Q)GkNl 22l 1N .(2.59)

Hence the uniform continuity follows and problem (EP) has at least one solution.
A straightforward application of the Gronwall’s inequality implies uniqueness. Let
(pi , ni , W i , u i ), i41, 2 be two solutions of problem (EP) and define

P4p12p2 , N4n12n2 , f4W 12W 2 , U4u 12u 2 .

By difference from (2.6) we have

Pt2˜ Q (B(u 1 ) ˜P)2˜ Q [ (B(u 1 )2B(u 2 ) ) ˜p2 ]

2m˜ Q (p1 ˜f)2m˜ Q (P˜W 2 )4R(p1 , n1 )2R(p2 , n2 ) .
(2.60)

Multiplying this equation by P and integrating by parts we obtain, using assump-
tion (B),

1

2

d

dt
�

V

P 2 dx1B0�
V

N˜PN2 dxG�
V

NUNN˜p2 NN˜PNdx

1m�
V

Np1NN˜fNN˜PNdx1m�
V

NPNN˜W 2 NN˜PNdx1LR�
V

(P 21NNNNPN) dx .
(2.61)
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In the same way, having (2.7) multiplied by N and (2.9) multiplied by U , we
get

1

2

d

dt
�

V

N 2 dx1D0�
V

N˜NN2 dxGLD�
V

NUNN˜n2NN˜NNdx

1n�
V

Nn1NN˜fNN˜NNdx1n�
V

NNNN˜W 2NN˜NNdx1LR�
V

(N 21NNNNPN) dx .
(2.62)

1

2

d

dt
�

V

NUN2 dx1k�
V

N˜UN2 dx

G�
V

(mNp1N1nNn1N)(N˜W 1N1N˜W 2N)N˜WNNUNdx

1�
V

(mNPN1nNNN)NUNN˜W 2N2 dx1�
V

B(u 1 )N˜p1NN˜fNNUNdx

1�
V

B(u 1 )N˜PNN˜W 2NNUNdx1LD�
V

N˜p2NN˜W 2NNUN2 dx .

(2.63)

Moreover, from (2.8) we easily deduce

V˜fVGC1 (VPV1VNV) .(2.64)

Adding (2.61), (2.62) and (2.63), using the elementary inequality NaNNbNG
1

2h
a 2

1
h

2
b 2 , hD0, and the Cauchy-Schwartz inequality, we obtain, recalling (2.48)

and (2.64),

1

2

d

dt
(VPV

21VNV

21VUV

2 )1 (12hC2 )(V˜PV

2

1V˜NV

21V˜UV

2 )GC3 (VPV

21VNV

21VUV

2 ) ,

(2.65)

where C2 and C3 are constants easily computed. If we take h4
1

2C2

and apply the
Gronwall’s inequality, uniqueness follows. r

3 - Asymptotic behaviour of solutions

In this section we treat the recombination-generation term typical of the ionic
transport [13], i.e.

R(p , n)4N0
22apn , aD0 ,(3.1)
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and assume

m4nD0, D(u)4B(u), D0GD(u)Gd .(3.2)

Let ¯V4¯V 1N¯V 2 , ¯V 1O¯V 24¯ , ¯V 2c¯. We consider equations (2.6), (2.7),
(2.8) and (2.9) with the boundary conditions

p4n4
N0

ka
on ¯V 1(3.3)

p4pb , n4nb on ¯V 2(3.4)

W4W b on ¯V 1(3.5)

˜W Qn40 on ¯V 2 ,(3.6)

where n is the unit outward normal vector along ¯V 2 . All other assumptions re-
main the same. We prove the following asymptotic estimate:

�
t

t11gVp(Q , t)2
N0

ka
V

2
1
V

n(Q , t)2
N0

ka
V

2h dt

G�
0

1gVp02
N0

ka
V

2
1
V

n02
N0

ka
V

2h dt e 2t1C(2d 1/41d 1/2 ) .

(3.7)

If ¯V 24¯ , we have the stronger result

V
p(Q , t)2

N0

ka
V
K0,

V
n(Q , t)2

N0

ka
V
K0, as tKQ .(3.8)

A similar problem, but with different boundary conditions, is studied in [16] and
[17]. To rescale the problem in a more convenient form we define in this
section

(3.9) P4
ka

N0

p21, N4
ka

N0

n21, tA 4
t

kaN0

, mA4
m

kaN0

, WA4
ka

N0

W .

In terms of these new quantities, equations (2.6), (2.7) and (2.8) become, after sup-
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pressing the tildas,

Pt2˜ Q (B(u)˜P)2m˜P Q˜W

1g12 m

e
h N1 g11 m

e
h P1 g12 m

e
h PN1

m

e
P 240

(3.10)

Nt2˜ Q (D(u)˜N)1m˜N Q˜W

1g12 m

e
h P1 g11 m

e
h N1 g12 m

e
h PN1

m

e
N 240

(3.11)

2eDW4P2N(3.12)

P4N40 on ¯V 1(3.13)

W4W b on ¯V 1(3.14)

P4Pb , N4Nb on ¯V 2(3.15)

˜W Qn40 on ¯V 2 .(3.16)

Let z(x)�C Q (V) such that

lim
xK¯V 2

z(x)

dist (x , ¯V 2 )
41(3.17)

and define z h4min ]z , h( h21 , h a positive constant. If we multiply (3.10) by
Pz h and (3.11) by Nz h we obtain, using (3.12) and adding the resulting equa-
tions,

1

2

d

dt
�

V

(P 21N 2 ) z h dx1�
V

D(u)(N˜PN21N˜NN2 ) z h dx

1�
V

G(P , N , b) z h dx42�
V

D(u)(P˜P1N˜N) Q˜z h dx

1
m

2
�

V

(N 22P 2 ) ˜W Q˜z h dx ,

(3.18)
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where b4
m

e
, and

G(P , N , b)4
b

2
(P 31N 3 )1 g12 b

2
h (P 2 N1N 2 P)

1(11b)(P 21N 2 )12(12b) PN .

(3.19)

We relay on the following elementary

L e m m a 3.1. If

bDb4
522k21

4
,(3.20)

there exists mD0 such that

G(P , N , b)Fm(P 21N 2 ) for all PF21, NF21 .(3.21)

P r o o f . We have

G(P , N , b)4
b

2
(P2N)2 (N1P)1b(P2N)21P 2 (N11)1N 2 (P11)12PN .

Consequently, if PF0, NF0, we get G(P , N , b)FP 21N 2. Let 21GPG0.
We have

G(P , N , b)F2
b

2
1

b

2
N 32N12

b

2 N(N1N 2 )1 (11b) N 222N12bNN .

Hence we can find CD0 such that G(P , N , b)FC(P 21N 2 ) if 21GPG0 and
NFN with ND0 sufficiently large. Since G(P , N , b)4G(N , P , b), it remains
to examine the behaviour of G in the set

A4](P , n); 0DPD21, 21ENEN(N ](P , N); 0DND21, 21EPEN( .

If (3.20) holds it is easy to check that G(P , N , b)D0 when (P , N)�¯A0](0 , 0 )(.
We claim that G(P , N , b)D0 in A; if this is not true, there is a point (PC , NC )
�A such that ˜G(PC , NC , b)40. Now the critical points of G are (0 , 0 ) and

g2 4

3
, 2

4

3
h , for all bD0, and (a(b), g(b) ), (g(b), a(b) ) where

a(b)4
2b24b 222k2b 325b 212b

4b 224b11
,
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g(b)4
2b24b 21k2b 325b 212b

4b 224b11
.

If (3.20) holds, the roots (a(b), g(b) ), (g(b), a(b) ) are either complex coniugate or
a(b)E21 (in particular a(b)421). Since G has no critical points in A , we infer
the validity of (3.21). r

Assuming hereafter (3.20), we have from (3.18), since PF21, NF21,

d

dt
�

V

(P 21N 2 ) z h dx1m�
V

(P 21N 2 ) z h dx

GC ud�
V

N˜P Q˜z hNdx1d�
V

N˜N Q˜z hNdx1�
V

N˜z h Q˜WNdxv .

(3.22)

We integrate (3.22) with respect to t over [t , t11] to obtain

�
V

[P 2 (t11)1N 2 (t11) ] z h dx2�
V

[P 2 (t)1N 2 (t) ] z h dx

1m �
t

t11

�
V

(P 21N 2 ) z h dx dtGC ud �
t

t11

�
V

N˜P Q˜z hNdx dt1

1d �
t

t11

�
V

N˜N Q˜z h Ndx dt1 �
t

t11

�
V

N˜W Q˜z hNdx dtv .

(3.23)

To estimate the terms on the right hand side we integrate (2.51) and the analo-
gous inequality for n over [t , t11] to get

d sup
tF0

�
t

t11

�
V

N˜PN2 dx dtGC(3.24)

d sup
tF0

�
t

t11

�
V

N˜NN2 dx dtGC .(3.25)

Hence

�
t

t11

�
V

N˜P Q˜z hNdx dtG u �
t

t11

�
V

N˜PN2 dx dtv
1

2
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Q u �
t

t11

�
V

N˜z hN
2 dx dtv

1

2

G
C

hd 1/2 g �
U(h , ¯V 2 )

N˜zN2 dxh
1

2 ,

where U(h , ¯V 2 )4]x�V ; dist (x , ¯V 2 )Eh(, (the various C denote positive
constants generally different). Since N˜zN is bounded and meas ]U(h , ¯V 2 )(
ECh , we deduce

d �
t

t11

�
V

N˜P Q˜z hNdx dtGCo d

h
(3.26)

and, in a similar way,

d �
t

t11

�
V

N˜N Q˜z hNdxdtGCo d

h
.(3.27)

On the other hand,

�
V

N˜W Q˜z hNdxG
1

h
�

U(h , ¯V 2 )

N˜W Q˜zNdx

G
1

h
u �

U(h , ¯V 2 )

N˜W Q˜zN2

z 2
dxv

1

2 g �
U(h , ¯V 2 )

z 2 dxh
1

2

Gh
1

2 u �
V

N˜W Q˜zN2

z 2
dxv

1

2

.

(3.28)

Since ˜W Q˜z belongs to W 1, 2 (V) and vanishes on ¯V 2 we have, by (3.16),

�
V

N˜W Q˜zN2

z 2
dxGCV˜WV2

(W 1, 2 (V) )3(3.29)

(see [9] page 65). Collecting the estimates from (3.27) to (3.29), we rewrite (3.23) as

�
V

(P 21N 2 )(t11) z h dx2�
V

(P 21N 2 )(t) z h dx

1m �
t

t11

�
V

(P 21N 2 ) z h dx dtGC u kd

kh
1khv .

(3.30)
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Owing to the fact that

N�
V

(P 21N 2 ) dx2�
V

(P 21N 2 ) z h dxNGCh ,

inequality (3.30) turns into

�
V

(P 21N 2 )(t11) dx2�
V

(P 21N 2 )(t) dx

1 �
t

t11

�
V

(P 21N 2 ) dx dtGC u kd

kh
1kh1hv .

(3.31)

If h4d 1/2 and

l(t)4 �
t

t11

�
V

(P 21N 2 ) dx dt ,

(3.31) becomes

l 8 (t)1l(t)GC(2d 1/41d 1/2 )(3.32)

and the Gronwall’s inequality implies (3.7).
To prove (3.8) when ¯V 24¯ , we simply multiply (3.10) and (3.11) by P and N

to find, again by Lemma 3.1,

(3.33)
1

2

1

dt
�

V

(P 21N 2 ) dx1d�
V

(N˜PN21N˜NN2 ) dx1m�
V

(P 21N 2 ) dxG0

which implies (3.8).

4 - Existence and uniqueness for the stationary problem with general heat-pro-

duction term

The heat generated and consumed in the process of generation-recombination
is not taken into account in the energy equation (1.7). For this reason more com-
prehensive models have been proposed in [2] and [23], where as heat production
term is taken

(4.1) W4 (mp1nn)N˜WN21u(m˜p2n˜n) Q˜W1
N0

22apn

r(p , n)
ga12

a2 u 2

a31u
h .
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Besides, the Einstein relationship between mobility and diffusivity, i.e.

B(u)4mu , D(u)4nu ,(4.2)

u absolute temperature, is not compatible, if m and n are constants, with assum-
ption (C) of Section 2. Here we present a local result of existence and uniqueness
for the stationary problem under assumptions which are consistent with (4.1),
(4.2) and also with temperature-dependent coefficients of thermal diffusion. Let
W(x) be the solution to the problem

DW40, W4W b on ¯V ,(4.3)

and put

p4
N0

ka
, n4

N0

ka
.(4.4)

Suppose k(u)�C 0 (R1 ) and

k(u)Fk 0D0 for all u�R1 .(4.5)

Let W(u , p , n , ˜W , ˜p , ˜n) be a general heat generation term and define

w4Z(u)4�
0

u

k(t) dt , F(x , w)4W(Z 21 (w), p, n, ˜W, 0 , 0 ) .(4.6)

Assume u b�C 1, a (¯V),

u bD0(4.7)

F(x , w)F0 .(4.8)

F(x , w) is measurable in x for all w

and continuous in w for almost all x�V .
(4.9)

There exist two non-negative functions C(x)�L Q (V), C1 (x)�L 2 (V) such
that

NF(x , w)NGC(x)NwN1C1 (x) .(4.10)

F is monotone in w , i.e.,

[F(x , w1 )2F(x , w2 ) ](w12w2 )F0, (w1 , w2�R1 , (x�V .
(4.11)
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The temperature u(x) corresponding to electroneutrality is given by the pro-
blem

2˜ Q (k(u)˜u)4W(u , p, n, ˜W, 0 , 0 ), u4u b on ¯V ,(4.12)

which is equivalent, by (4.6), to

2Dw4F(x , w) , w4Z(u b ) on ¯V .(4.13)

The theory of monotone operators applies to (4.13) in view of (4.9)-(4.11). If w(x)
is the unique solution of (4.13), we have u(x)4Z 21 (w(x) ). Moreover, the maxi-
mum principle implies, by (4.7) and (4.8),

u(x)D0 in V .(4.14)

Finally, we assume

B(u(x) )FB0D0 , D(u(x) )FD0D0 in V .(4.15)

If D(u) and B(u) are given by (4.2) and W by (4.1), all these hypotheses are sati-
sfied. We consider the following problem (SP):

2˜ Q (B(u)˜p)2˜ Q (mp˜W)4
N 2

0 2apn

r(p , n)
(4.16)

p4 p1j b on ¯V(4.17)

2˜ Q (D(u) ˜n)1˜ Q (nn˜W)4
N0

22apn

r(p , n)
(4.18)

n4n1z b on ¯V(4.19)

2eDW4p2n(4.20)

W4W b on ¯V(4.21)

2˜ Q (k(u) ˜(u)4W(u , p , n , ˜W , ˜p , ˜n)(4.22)

u4u b on ¯V ,(4.23)

where u b satisfies (4.7). If j b4z b40, then (p , n , W , u)4 (p, n, W, u) is a solu-
tion to problem (SP). Define

j4p2p, z4n2n, c4W2W, h4u2u(4.24)
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and u4 (j , z , c , h). In term of this new variables (SP) becomes

M1 (u)4: 2˜ Q (B(u1h) ˜z)2˜ Q [m(p1j) ˜(W1c) ]

1
a(pz1nj1jz)

r(p1j , n1z)
40

(4.25)

j4j b on ¯V(4.26)

M2 (u)4: 2˜ Q (D(u1h) ˜z)1˜ Q [n(n1z) ˜(W1c) ]

1
a(pz1nj1jz)

r(p1j , n1z)
40

(4.27)

z4z b on ¯V(4.28)

M3 (u)4: 2eDc2 (j2z)40(4.29)

c40 on ¯V(4.30)

M4 (u)4: 2˜ Q [k(u1h) ˜(u1h) ]

2W(u1h , p1j , n1z , ˜(W1c), ˜j , ˜z)40
(4.31)

h40 on ¯V .(4.32)

T h e o r e m 4.1. There exists dD0 such that, if

Vj b VC aGd , VzVC aGd ,(4.33)

problem (SP) has one and only one solution.

P r o o f . We apply the inverse function theorem in Banach spaces. Let

X4 (C 2, a (V) )23]v(x)�C 2, a (V), v40 on ¯V(2 ,

Y4 (C a (V) )43 (C 2, a (¯V) )2 , u4 (j , z , c , h)�X ,

and define the operator F : XKY ,

F(u)4 (M1 (u), M2 (u), M3 (u), M4 (u), jN¯V , zN¯V ) .

We have F(0)40. It is easy to check that F�C 1 (X , Y) and F 8 (0)(w),
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w4 (P , N , f , U) is given by

F 8 (0)(w)4 g2˜ Q (B(u) ˜P)2m˜ Q (P˜W)2mpDf

1g(P1N), 2˜ Q (D(u) ˜N)1n˜ Q (N˜W)1nnDf

1g(P1N), 2eDf2 (P2N), 2˜ Q (k(u)˜U)

2˜ Q (k 8 (u) U˜u)2Wu U2Wp P2Wn N

2 !
i41

3

(WW xi
f xi

1Wpxi
Pxi

1Wnxi
Nxi

) , PN¯V , NN¯Vh
where g4

1

b
N0 ka , b4r(p, n) and the barred partial derivatives of W are com-

puted in (u , p , n , ˜W , ˜p , ˜n)4 (u, p, n, ˜W, ˜p, ˜n). Let h4 (h1 , h2 , h3 , h4 ,
Pb , Nb )�Y. We prove that the linear functional equation

F 8 (0)(w)4h(4.34)

has one and only one solution. This equation is equivalent to the boundary value
problem:

2˜ Q (B(u) ˜P)2m˜ Q (P˜W)2mpDf1g(P1N)4h1(4.35)

2˜ Q (D(u) ˜N)1n˜ Q (N˜W)1nnDf1g(P1N)4h2(4.36)

2eDf2 (P2N)4h3(4.37)

P4Pb , N4Nb on ¯V(4.38)

f40 on ¯V .(4.39)

We do not write the equation in U which follows from (4.34) since it is uncoupled
from the system (4.35)-(4.39). Plugging (4.37) in (4.35) and (4.36), we have

L1 (P , N)42˜ Q (B(u) ˜P)2m˜ Q (P˜W)1g(aP1bN)4 h1(4.40)

L2 (P , N)42˜ Q (D(u) ˜N)1n˜ Q (N˜W)1g(cP1dN)4 h2(4.41)

P4Pb , N4Nb on ¯V ,(4.42)
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where we used the notations

a411t , b412t , c412x , d411x ,(4.43)

t4
bm

ae
, x4

bn

ae
(4.44)

h14h12
m

e
ph3 , h24h21

n

e
nh3 .(4.45)

To rewrite (4.40)-(4.42) with homogeneous boundary conditions, let us define

u14P2PA , u24N2NA ,(4.46)

l1 (x)4 h12L1 (PA, NA), l2 (x)4 h22L2 (PA, NA) ,(4.47)

where PA and NA are solutions to the problems

2DPA40, PA4Pb on ¯V(4.48)

2DNA40, NA4Nb on ¯V .(4.49)

The proof that (4.34) is an homeomorphism will follow from the existence and uni-
queness for the problem

L1 (u1 , u2 )4 l1(4.50)

L2 (u1 , u2 )4 l2(4.51)

u14u240 on ¯V .(4.52)

Let us consider the bilinear forms in (H 1
0 (V) )2

(4.53) a1 (u , v)4�
V

[B(u) ˜u1 Q˜v11mu1 ˜W Q˜v11g(au11bu2 ) v1 ] dx ,

(4.54) a2 (u , v)4�
V

[D(u) ˜u2 Q˜v22nu2 ˜W Q˜v21g(cu21du2 ) v2 ] dx .

Assume cc0; we claim that there exists l4 l such that a(u , v)4a1 (u , v)
1la2 (u , v) is coercive in (H 1

0 )2 i.e.:

a(u , u)FmVuV2
(H 1

0 )2 for all u� (H 1
0 )2 .(4.55)
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Recalling that DW40 and integrating by parts, we have

a(u , u)4�
V

[B(u)N˜u1 N21lD(u)N˜u2 N21g(au1
21 (b2lc) u1 u21ldu 2

2 ) ] dx .

If

l4
3t13tx13x11

(12x)2
,

the quadratic form

au 2
1 1 (b2lc) u1 u21ldu 2

2

is definite positive and (4.55) follows by (4.15). If c40 and bc0 we consider the
bilinear form a(u , v)4la1 (u , v)1a2 (u , v) and redefine l accordingly. When
c4b40 of course no problem arises. By the Lax-Milgram lemma there is one
and only one weak solution to problem (4.50)-(4.52) which can be regularized. This
in turn implies that (4.34) can be uniquely solved with respect to w. Therefore, if
(4.33) holds, problem (SP) has one and only one solution.
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A b s t r a c t

The nonlinear system of P.D.E. describing the electro-diffusion of ions is studied in
both the evolution and stationary case. The crucial property for proving existence of sol-
utions turns out to be the presence of an invariant region for the concentrations under
quite general hypotheses on the recombination law.
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