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On uniform exponential stability

of evolution families (%)

1 - Introduction

Let X be a real or a complex Banach space. The norm on X and on the space
LX) of all bounded linear operators from X into itself will be denoted by

1[I
We recall that a family @ = {P(t, s)};> 50 of bounded linear operators is cal-
led an evolution family if the following properties are satisfied:

e;) @(t,t) =1, the identity operator on X;
ey) D(t,s) D(s, ty) =D, ty), for all t=s=1t,=0;

e3) for every xe X and every t =0 the function @(%, -) « is continuous on
[0, ] and the function @(-, t) x is continuous on [t, «);
e,) there exist M =1, w =0 such that

1) o, s)|| <Me®t=9,  for all t=5=0.

An evolution family & is said to be uniformly exponentially stable if there
exists N, v >0 such that

|&(t, s)||<Ne " ~9, forall t=5=0.

(*) Department of Mathematics, University of the West, Bul. V. Parvan, 1900-Timigoa-
ra, Roménia.
(**) Received December 20, 2000 and in revised form February 28, 2001. AMS classifi-
cation 34 D 05, 34 D 20.
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Let 7> 0. The evolution family @ is said to be z-periodic if
dt+71,s+71)=D(L, s), for all t=s=0

and it is called periodic if there is 7 >0 such that @ is t-periodic.
If T={T({)}i>¢ is a Cysemigroup on the Banach space X then:

D(t,s) =Tt —s), for all t=s=0

is a r-periodic evolution family for all 7> 0.

Important attempts in the study of uniform exponential stability have been
made in the papers [1], [6], [12]. A remarkable result has been obtained by R.
Datko ([3]) and it is given by the following theorem:

Theorem 1.1. (Datko) Let @ = {D(t, s)}i>4=0 be an evolution family on
the Banach space X. Then @ is uniformly exponentially stable if and only f for
every xeX there exists M(x) >0 such that

j||<1>(t, t)) P dt < M(x),  for all t,=0.

to
Datko’s result has been generalized by Rolewicz in [13] as follows:
Theorem 1.2. (Rolewicz) Let ¢ : R* X R—R be a function with the follo-

wing properties:

(@) for every t >0, s—q@(t, s) is a continuous, non-decreasing function
with ¢(t, 0) =0 and @(t, s) >0, for all s>0;
(11) for every s=0, t—@(t, s) is non-decreasing.

Let X be a Banach space and let @ = {D(t, s)}i>,>0 be an evolution family
on X. If for every xeX, there is a(x) >0 such that

sup [(at@), o, s) ) dt <

then @ is uniformly exponentialy stable.

Recently, for the case of Cy-semigroups, Neerven gave the following characte-
rization ([10]):
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Theorem 1.3. (Neerven) Let T = {T(t)};>¢ be a Cy-semigroup on Banach
space X and let B be a Banach function space over R, (see Section 2)
with

tlim Fp(t) = .

If for each x € X the map t—||T(t) x| belongs to B, then T is uniformly exponen-
tially stable.

In this paper we shall extend Neerven’s result for the case of evolution fami-
lies in general and for periodic ones in particular. We shall also obtain characteri-
zations of Rolewicz’s type for evolution families.

2 - Banach function spaces

In this section we recall some facts about Banach function spaces over R, .
For the proofs we refer to [7] and [14].

Let (R,, £, m) where £ is the o-algebra of all Lebesgue measurable sets
AcR, and m the Lebesgue measure. We shall denote by IIU the linear space of
all m-measurable functions f: R, —C, identifying functions which are equal
a.e.

A Banach function norm is a function N : I — R, = [0, o] with the follo-
wing properties:

ny) N(f) =0 if and only if f=0 a.e;

ny) if |f| <|g| a.e. then N(f) < N(g);

ng) N(af) = |a|N(f), for all scalars aeC and all f with N(f) < o;
ny) N(f+9) <N(f)+ N(g), for all f, ge I

Let B =By be the set defined by
B:={fedlt: |flp :=N(f) < »}.

It is easy to see that (B, |-|p) is a normed linear space. If B is complete, then
B is called Banach function space over R, .

Remark 2.1. B is an ideal in I, ie. if |f| < |g| a.e. with ge B, then also
fEB and |f|B$ |g|B

Remark 22. Iff,—fin B, then there is a subsequence (f;,) converging to f
pointwise a.e. (see [T7]).
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For a Banach function space B over R, we define

|xt0.0l, i xr0,neB

Fg:R,—>R., Fz():=
B + + B {oo’ ifx[oyt)aéB

where y (o, ;) denotes the characteristic function of the interval [0, ¢). The function
Fy is called the fundamental function of the Banach function space B.

Remark 2.3. Fp is a non-decreasing function.
In what follows we denote by B(R. ) the set of all Banach function spaces B
with the property

lim Fy(t) = =

and with S(R ) the set of all Banach function spaces B € B(R , ) with the proper-
ty that there exists a strictly increasing sequence (t,),Cc R, such that

sup (t, 1 —t,) <o and inf |yy ., [5>0.
neN neN

Example 2.1. We consider the Banach function norm N : 9T — R, defined by
o0 1 n
N =3 — [ Ifts)]ds.
n=1 nn e
We observe that if B =By then

51
Fg(n)= > =, for all neN*,
i=1j

so Be B(R.), but B¢ S§(R_).

Example 2.2. For every pe[1l, ) the space LP’(R,, C) with respect to
the norm

1, = ( [ 17 |Pdt)"

is a Banach function space. It is easy to see that F',,(t) = ¢t'7, for all ¢ > 0 and for
=7, |Xm,n+1|p=1, for all neN. So we obtain that L”(R ., C) belongs to
S(R.).
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Example 2.3. (Orlicz spaces). Let ¢ : R, — R, be a non-decreasing and
left-continuous function which is not identically 0 or « on (0, «). The Young
Sfunction associated to ¢ is given by

t
Y,(t) = jgo(s) ds.
0
Let f: R, —C be a measurable function. We define
My ()= [Y,(1fs)]) ds.
0

The set L, of all f with the property that there exists a £ >0 such that
M, (kf) < = is easily checked to be a linear space. With respect to the
norm

1, 3=inf{k>O:M¢(%f) sl]

(Lg, | |,) is a Banach function space over R, called the Orlicz space associa-
ted to ¢.

Trivial examples of Orlicz spaces are L?(R,, C), 1 <p < o. They are ob-
tained for

. 0, 0=st=<l1
@(t) =pt?™", for 1<p< o and @(t) = for p= oo.
o0 t>1

)

Proposition 2.1. If 0 < ¢(t) < % for all t >0 then the Orlicz space L, has
the following properties

1) the Young function Y, is bijective;
1) the fundamental function F, can be expressed in terms of the Y(;l by

Fr, () = , forall t>0;

1) tlim FL(p(t) = o and hence L,e B(R. ),
w) L,e 8(R.).
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Proof. 1) It is easy to see that Y, is strictly increasing, continuous with
Y,(0)=0and Y, (t) = (t — 1)@(1), for all £>1, so tlgrolo Y, (t) = «. Hence Y, is
bijective.

ii) Let ¢t > 0. Since

1 1
M(”(EX[O’”):tY(p(Z)’ for all k>0,

1 1
it follows that Mw(zx[w)) <1 if and only if 1/Y¢1(€) <k. So
1
Fp ()= ————, forall {>0.
v, (L
o\t

iii) Since Yqjl(O) =0, using (ii) it follows that tlim FL¢(t) = o0,
iv) We observe that for every neN

Lt
Y, i)

|X[n,n+1)|(p =
3 - Preliminary results
We start with following

Lemma 3.1. Let @ = {P(t, s)};>,>0 be an evolution family on the Banach
space X. If there exist 6 >0 and ce (0, 1) such that:

@ty + 0, ty)ll<c,  for all ty=0
then @ is uniformly exponentially stable.

Proof. Let v>0 such that c=e *°. For t=t,=0 there exist neN and
re [0, 0) such that ¢t =¢,+ nd + r. Then we have

|D(t, ty)|| < ||D(t, ty +no)||||@(ty + 00, ty)]
< Mewée —vnd < Me(w+v)6e —v(t—to)’

where M, o are given by (1). It follows that @ is uniformly exponentially
stable. =



[7] ON UNIFORM EXPONENTIAL STABILITY... 33

Lemma 3.2. Let B be a Banach function space over R, . If S: R, — £(X)
1s a mapping such that for all xeX the function

S;:R.—R,, S,t)=|S®
defines an element of B, then there exists M >0 such that
IS, |g<Mllxl|, for all xeX.
Proof. Let My be the set of all measurable mappings f: R, —X with | f]

e B. In My we identify the functions which are equal a.e. Thus M is a Banach
space with respect to the norm

Aoz = 1171 5-

We consider the map S: X— My defined by

S@)t)=St)x, forall t=0.

Using the closed graph theorem, it is sufficient to show that the linear map S is
closed.

Let x,—x in X and S(x,) —f in Mz. By Remark 2.2 it follows that there
exists a subsequence (x; ) such that S(xkn)% f a.e.. Since for every t=0 we
have

S, () = S(t) 1, —>S(t) @ = 8,(t),
it follows that S, =f a.e., which proves the closedness of S. m

Lemma 3.3. (Miiller) Suppose that A is a bounded operator on a Banach
space X whose spectral radius satisfies (A) = 1. Then for every e (0, 1) and
for every decreasing sequence of positive real numbers (a,) with a,—0 there
exists xe X with |jx]| =1 such that

lA" x| = ea,, for all neN.

Proof. See [9] or [11]. =

Lemma 34. Let @ = {D(t, $)};>550 be a t-periodic evolution family and
A=P(1,0). Then @ is uniformly exponential stable if and only if r(A)<1.
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Proof. We observe that A" = &(nt, 0) for all n e N*. Hence, it follows that
if @ is uniformly exponentially stable then 7(4) <1.

Conversely, if 7(A) <1 then there exists v > 0 such that 7(A) < e ™" and there
exists nye N* with

lAm||<e="™7, for all n=mn,.
For the begining we prove that there exists K >0 with
o, 0)||<Ke ™, forall t=0.

We denote by M = sup{H@(t, $)|:t,sel0, nyrl, t= s}. For te[0, nyt] we
have that

@) |D(t, 0)|| <M< Me™e .
Let t >nyt, t=nt+r with neN and r€ [0, 7). Then:

) @, 0]l < @, no)|lllenr, 0)| = [|@¢, 0)[l|[@¢er, 0)]|
S Me — VT S Mevre —vt.
Denoting by K = Me™" from the relations (2) and (3) we obtain that
|&(t, 0)||<Ke ™, for all t=0.

Let nowt=s=0,t=nt+7r,s=kr+uwithn=k and r, ue[0, 7). f n=Fk
then:

@, 5)| = ||@Cr, w)| < M < Me* e "¢~
and if n =k + 1 then:
bt )| < @, k+ Dollllek + 1) 7, )|
<|@ot - (k+ D)z, 0)||||@(7, )| < MKe™ e 7=,

It follows that @ is uniformly exponentially stable. =

4 - The main results

In this section we shall give necessary and sufficient conditions for uniform
exponential stability of evolution families in Banach spaces.



[9] ON UNIFORM EXPONENTIAL STABILITY... 35

Theorem 4.1. Let ®@ = {D(t, s)}1>4=0 be an evolution family on the Bana-
ch space X. Then @ is uniformly exponentially stable if and only if there exists a
Banach function space Be S(R.) such that:

() for every xeX and s =0 the function
fiotRi—>R,  fo () =]D(t+s,s)

belongs to B;
(11) there exists a function K:X— (0, ) such that

Ifs,2|p<K(x), for all xeX and all s=0.

Proof. Necessity. Let N, v>0 such that
@t s)|<Ne =9, for all t=s=0

and B=LP(R,, C) where pe[1, «). Then for every x X and s =0 we have
that

N

(’Vp)l/p ||x|| *

o,z lp <

Sufficiency. Since Be §(R,) there exists a strictly increasing sequence
(t,)c (0, o) such that

4) 0= s&p(twl —t,)<o and c= ir%f [%tt,,6,.0]8>0.
Let neN and s=0. For every telt,, t,,.1) we have that:
|D(t, .1 +s,s) x| < Me|d(t +s, s)
where M and w are given by the relation (1). It follows that:
Kity 6,0 OIPE, 1 + 5, 8) | < Me” || Dt +s, s) |
for all t=0. Using the relation (4) and the hypothesis we obtain that:
clot, 1+ s, s) x| < Me” K(x)

for every x e X, ne N and s = 0. By the uniform boundedness principle it results



36 M. MEGAN, B. SASU and A. L. SASU [10]

that there exists L; >0 such that
||(p(tn+1 + S, S)” S Ll

for all neN and s=0.
Let s=0 and t=t;. Then there exists an unique neN* such that t{,<t<t,,;.
Hence we deduce that:

o(s +t, )l <||@(s +t, s + )P +t,, )| < Me’ L.
Denoting by L =max {Me“’ L, Me“"} we obtain that
ot +s,s)| <L, foralt s=0.
Let teX and ne N*. For te[0, n] we have:
@ +s, s) x| < L@t +s, s)
S0
X0, @ + 5, 5) al| < Li|@(s + 1, 5)
for all £=0. It follows that
Fp(n)||®(n +s, s) al| < L|f, .|z < LK(x).

By the uniform boundedness principle we obtain that there exists K > 0 such
that

Fgn)|®n+s,s)|<K, for all s=0 and neN*.

Since Be §(R,) there exists nye N with Fgz(n,) >2K. Then we deduce
that

1
@+ s, 8)|| < o for all s=0.

Using Lemma 3.1 it follows that @ is uniformly exponentially stable. =
A theorem of Rolewicz’s type is given by

Theorem 4.2. Let @ = {P(t, s)};i>,50 be an evolution family on the Bana-
ch space X. Then @ is uniformly exponentially stable if and only if there exist a
non-decreasing function ¢ : R, —R, and K> 0 such that:

(@) @(0) =0 and @) >0 for all t>0;
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(i1) for every xeX with ||x]| <1 and every s=0

[otlot, ) al dr< k.

Proof. Necessity. Let ¢(t) =t for all £t=0. Let N, ve (0, ) such that
|&(t, s)||<Ne "~9,  forall t=5=0.

Then for every xeX with |« <1 and s =0 we have that
g N
j||q>(t, s)alldt< — .
v

Sufficiency. Let M, w given by relation (1), ¢, > 0 such that K <{,¢(1) and
0 =1/Me®".
Let xeX with |x <1, t=¢, and s=0. We have that:

|@(s +t, s) oxl| < ||D(u, s) 2, for all uel[s+t—t), s+t].

Since ¢ is non-decreasing using the relation from above it follows that

s+t
og(leis +t, ) 0ah < [ glldw, )al) dus<k.

s+it—ty

Taking in account the way that ¢, was chosen, from the last inequality we
obtain

|d(s +t,s)on]|<1, for all t=t;and s=0

SO

1
(5) |l@(s+t, 9)| < 3 for all t=t,and s=0.

1
Denoting by L = 5 = Me®» and using the relation (5) it follows that:
|l@os+t,8)| <L, foralt, s=0.

Without lost of generality we can suppose that ¢ is left-continuous (if not we
consider the function @(¢) = lim ¢(s) for ¢ >0 and the proof is the same).
s/t
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Let L, be the Orlicz space associated to ¢. For every xeX and s=0
let
foetRi—>R, fo () =Dt +s, ).

If teX\{0} and = ¥ e have:
(K +1) La|

Y, (fi,:(0) =Y, (s + t, 5) &) <[Pt +5, 5) Tl ||t + 5, 5) &)

N

s o(||dt + s, s) Z|]).

It follows that
M, (f,3) <1

so fyz€l, and |f;:|,<1. Because L

o Iis a linear space and

= ————f. . it results that f, ,e L, and
K+ 1) Il Juwele

ool < (K+1) L]

By applying Proposition 2.1 and Theorem 4.1 we conclude that @ is uniformly
exponentially stable. =

Remark 4.1. In Theorem 4.2 for ¢(t) =t> we obtain the theorem of
Datko.
The version of Theorem 4.1 for periodic evolution families is given by:

Theorem 4.3. Let @ = {D(t, s)};>s=0 be a periodic evolution family on
the Banach space X. Then @ is uniformly exponentially stable if and only if the-
re exists Be B(R.) such that for every xeX the function

fiR,—>R., f.t)=|&@,0)
belongs to B.

Proof. Necessity. If @ is uniformly exponentially stable and p e [1, o) then
for every x e X the map f, belongs to L?(R,, C).
Sufficiency. By Lemma 3.2 applied for

S:R, > LX), Sk =o(,0)
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there exists M >0 such that
(6) Ife]p < Mlal|,  for all xeX.

Suppose that @ is z-periodic. To prove that @& is uniformly exponentially
stable, according to Lemma 3.4 it is sufficient to prove that r(A) <1 where
A=9(1,0).

Suppose the contrary, ie. r(A) =1. For every peN* we consider the
sequence

1, ifn<p
ab =
0, ifn=p+1.

1
An application of Lemma 3.3 for the sequence (a?) and ¢ = 3 concludes that

there exists x,e X with prH =1 and

1
) A", | = 3 for all neN* with n<p.

If we denote by
L:=sup{||&t, s)|: t, sel0, 7], t=s}

then for every neN, xeX and te[nt,(n+1) 1) we have
® e+ 1)7, 0)af <@+ 1), DD, 0) o < L@, 0) o .
From (7) and (8) we obtain that

X0, m® S2L|D(, 0) x| = 2Lf, (),  for all t=0 and peN*.
Using the relation (6) it follows that

Fgp(pr) <2ML, for all pe N*.
This last inequality contradicts the assumption that Be B(R,). =
Theorem 44. Let ®@= {P(t, s)}i>s50 be a periodic evolution family on

the Banach space X. Then @ is uniformly exponentially stable if and only if the-
re exists a non-decreasing function ¢ : R, — R with ¢(0) =0 and ¢(t) > 0 for
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t>0 such that:

JQD(”(D(L 0 al)dt< o, foral xeX.
0

Proof. Necessity. It results for ¢(t) =t, for all t=0.
Sufficiency. Without lost of generality we may assume that ¢ is left-conti-
nuous (if not we can use ¢@(t) = lim ¢(s) and the proof is the same).
. . s/t
For the begining we prove that

tlim |®(t, 0)x|=0, for all xeX.

Let xe X\{0}. Assume that ||®(t, 0) ||~ 0 for t— . Hence there exists
£€>0 and t,— o such that:

|®(t,, 0)xf|=e, for all neN.

Without lost of generality we may assume that ¢{,=1 and ¢,,, — ¢, =1 for all
neN. Let M, w >0 given by the relation (1). If neN and te[t,—1, t,] then
using

|@(t,,, 0) f < [|@(t,, v |&(t, 0) x| < Me®|D(t, 0) «f

we obtain that
o, 0) x| = £ for al telt,—1,t,] and neN.
Me(l)

Hence we have

foe) tﬂ
oo e 8
[ellow, 0ahdi= 3 [ gllow, 0ald= 3 fp( ” ) =
o n:()tﬂ—l n=0 Me

which is a contradiction.
Using the uniform boundedness principle it follows that there exists L >0
such that

|@(t, 0) 2| < Lljx||, for all t=0 and xeX.
Let L, be the Orlicz space associated to ¢ and for every xeX let

fo: R, —R,, fx(t)=||¢(t,0) 90”
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For all £t =0 we have that:
fo(®)

V(L) = [ gs)ds <£(0) (£0) < Ll 9(£.0).

0

Then we obtain that
M, (f.) = [Y(£0) dt < Ll [ o2, 0) o) dt < .
0 0

It follows that f, e L, for all x e X. Using Theorem 4.3 and Proposition 2.1 it
results that @ is uniformly exponentially stable. =

Remark 4.2. Generally, if the periodic evolution family @ = {®D(t, $)}i>50

is uniformly exponentially stable and ¢ : R, — R, is a non-decreasing function
with @(0) =0 and ¢(t) >0, for t>0 it does not result that

[gtllot, 0) al) dt < =
0

for e X\{0}. This fact is illustrated by the following example
Example 4.1. Let X=R and
D(t,s)x=e " ¥g, forall t=s=0 and all xeR.

It is obviously that @ is a periodic evolution family which is uniformly exponen-
tially stable.
We consider

0, t=0
1 1
~ L icfo, _]
¢:R,—R,, pt) = Int e
1
et t> —
e

Then ¢ is a continuous non-decreasing function with ¢(0) =0 and ¢(¢) > 0, for
t>0.
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Let x e R*. Then

[t @, 0)a))di= [ gte " |a|) dt
0 0

_ j j CD(Z/)

0

1
where ax=min{|x|, —}. Since for every ee (0, a,) we have
e

J(p(y) J—dy In lnl —lIn lni
yl% € Ay

it follows that

(1]

(2]

(3]

[4]

(6]

[7]

(8]

oo, 0)aydi=c0, for all weR*.
0
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Abstract

The aim of this paper is to obtain necessary and sufficient conditions for uniform
exponential stability of evolution families. We obtain generalizations of some theorems
due to Datko, Neerven and Rolewicz.



