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The adjoint advection-diffusion equation

in stationary and time dependent problems:

a reciprocity relation (**)

dedicated to the memory of Giulio Di Cola

1 - Introduction

Let us consider a passive tracer released in a water basin. The dispersion pro-
cess of the tracer is assumed to obey an advection-diffusion problem, described by
equations (1). Both stationary and time dependent adjoint problems associated to
(1) have been formulated. The stationary adjoint problem is defined in the usual
manner (e.g., see Axelsson and Barker, 1984, p. 122). The adjoint problem is here
interpreted as a model for an advection-diffusion process of a tracer called the
«adjoint tracer». The construction of such a model enables one to find the tracer
concentration in an assigned number of points of the definition domain by solving,
according to the boundary conditions, a simplified transport equation, with a sub-
sequent integration which takes into account the initial conditions. In particular,
the adjoint procedure is that usually applied for solving the advection-diffusion
equation by means of probabilistic methods (e.g. backward Monte Carlo and ran-
dom flights methods). This work was inspired by the papers of A. De Matteis on
the phenomenological interpretation and on the solution of the stationary adjoint
particle transport equation by Monte Carlo methods (De Matteis, 1974; De Mat-
teis and Simonini, 1978-a; De Matteis and Simonini, 1978-b). The adjoint Boltzman
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equation is there interpreted as a transport equation of particles called «adjun-
ctons», a term used by Irving (1970).

In section 2 we state the basic assumptions and equations of the Eulerian for-
mulation of the advection-diffusion problems considered in this paper. In section 3
we introduce both stationary and time dependent adjoint problems, and their phe-
nomenological interpretation is given. In section 4 the strategies to solving advec-
tion-diffusion problems by means of Monte Carlo methods are described.

2 - Eulerian formulation of advection-diffusion problems

Let V be a bounded open and connected set of R 3 representing a semi-enclo-
sed water basin. The boundary G of V is assumed to be sufficiently smooth;
moreover, G4G s0G f , where G s are the solid boundaries and G f are the fluid
boundaries. Without a real loss of generality, we assume that the air-water inter-
face is approximated by a rigid lid; thus, this boundary is included in the solid
boundaries. The large scale mean velocity field b(x)4 (b1 (x), b2 (x), b3 (x) ),
x4 (x1 , x2 , x3 ), in V is assumed to be stationary, divergence free and with zero
normal component to G s : ˜ Qb40 in V , b Qn40 on G s , where n is the outward
normal unit vector to G. We define the parts G f2 and G f1 of G f of inflow and out-
flow respectively: b QnE0 on G f2 , b QnD0 on G f1. The action of the small scale
turbulent flow is described by an eddy diffusivity diagonal matrix A , with
diagonal(A)4 (a1 , a2 , a3 ).

Let u(t , x) and f (x) be the concentration and a possible source of a passive
tracer in V , respectively. We include also a possible elimination process of the
tracer, with decay constant lF0. The tracer dispersion process is assumed to
obey the following advection-diffusion problem

¯u/¯t1L u4 f in V T4 (t0 , t1 ]3V ,

(2A˜u1bu) Qn4b * u on G T4 (t0 , t1 ]3G ,

u(t0 , x)4u0 (x) in V4V0G ,

(1)

where T4 t12 t0D0, L is the elliptic operator

L 4˜ Q (2A˜1b)1l ,(2)

b *4b *(x), x�G , specifies the behaviour of the tracer at the boundaries, and
u0 (x)F0 is the initial distribution of the tracer. The boundary condition in (1) is
illustrated in Buffoni et al. 1996, 1997. Note that if b *Fb Qn on G , then the unique
classical solution to (1), is positive: u(t , x)D0 in V (e.g. Pao, 1992, p. 54). Under
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some regularity conditions on the initial state u0 (x), the classical solution is in
class C 4C(VT )OC 1, 2 (V T ).

We assume a zero flux of the tracer through G s and a net tracer outflux from
the basin through G f , thus

b *40 on G s , b *Fmax [0 , b Qn] on G f .(3)

In particular, here we will illustrate the case when (i) there is either zero flux
or a small tracer outflux due to turbulent processes on the inflow boundary G f2 ,
and (ii) the tracer leaves the basin only under the action of advection on the out-
flow boundary G f1 ; i.e.,

b *40 on G s ; b *4eF0 on G f2 ; b *4b QnD0 on G f1 .(4)

3 - The advection-diffusion adjoint problem

3.1 - The stationary problem

Let us consider the steady state problem associated to (1)

L u4 f in V ,

(2A˜u1bu) Qn4b * u on G .
(5)

Problem (5) is called the direct problem. We recall that by repeated applica-
tion of integration by parts, we obtain the identity

�
V

uA(L u) dV4�
V

(L
A

uA) udV1�
G

(A˜uA Qn1b *uA) udG ,(6)

(uA, u�C 2 (V), with u satisfying the boundary condition in (5), L defined in (2)
and L

A
given by

L
A
4˜ Q (2A˜2b)1l .(7)

If we make the boundary integral in (6) vanish by associating a new set of
boundary conditions with L

A
, then L

A
is called the adjoint of L (e.g. Axelsson and
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Barker, 1984, p. 122). Thus, the adjoint problem associated to (5) is written
as

L
A

uA4 f in V ,

2A˜uA Qn4b *uA on G .
(8)

The boundary condition in (8) may be written in terms of the flux as (2A˜uA

2buA) Qn4 bA*uA, where bA*4b *2b Qn. From the boundary conditions in (5) and (8)
we can identify the type of flux on G f for u and uA, in relation to the parameter b *.
We obtain the following table

TABLE 1. – Type of flux on G f for the direct and adjoint problems.

b * F4b * u FA4 (b *2b Qn) uA

G f2 40 zero flux adv. flux
G f1 4b Qn adv. flux zero flux
G f2 D0 diff. flux (diff.+adv.) flux
G f1 Db Qn (diff.+adv.) flux diff. flux

Table 1 shows that the type of the flux F on G f1, 2 is the same of that of the
flux FA on G f2, 1. Combining the previous results, we thus have

P r o p o s i t i o n 1. The direct problem (5) and its adjoint (8) describe
stationary dispersion processes in V characterized by: the same eddy diffusivity
matrix A ; the large scale mean velocity field b and 2b , respectively; the same
source distribution f in V. The equality �

V

dVf (u2uA)40 holds true.

As a typical example, the boundary conditions for u and uA and their fluxes at
the boundaries F and FA, defined in table 1, for the special case characterized by
(4) are summarized in the following table

TABLE 2. – Boundary conditions (b.c.) for u and uA and fluxes at the boundaries F , FA

(defined in table 1) for the special case characterized by (4).

b.c. for u , F b.c. for uA, FA

G s 2A˜u Qn40, F40 2A˜uA Qn40, FA40
G f2 2A˜u Qn1 (b Qn2e) u40, F4eu 2A˜uA Qn2euA40, FA42b QnuA1euA

G f1 2A˜u Qn40, F4b Qnu 2A˜uA Qn2b QnuA40, FA40
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3.2 - The time dependent problem

Let t(t)�C 1 (t0 , t1 ) satisfy

t(t0 )4 t1 , t(t1 )4 t0 , dt/dtE0 .(9)

In particular we can choose t(t)4 t01 t12 t , so that dt/dt421. The variable
t is called the «adjoint time». Let u(t , x), uA(t , x)� C, and let

I4�
t0

t1

dt�
V

dVuA(¯u/¯t1L u) .(10)

Taking into account that uA¯u/¯t4¯(uAu) /¯t2u¯uA /¯t dt/dt and the identity
(6), the integral I may be written as

I4�
V

dV[uAu]t0

t11�
t0

t1

dt y �
V

dV(2dt/dt ¯uA /¯t1L
A

uA) u

1�
G

dG(A˜uA Qn1b *uA) uz .

(11)

The operator 2dt/dt ¯/¯t1L
A

in the second integral of the right side of (11) is
called the adjoint operator of the direct operator ¯/¯t1L. Assume now that
uA(t , x) satisfy the following advection-diffusion problem

2dt/dt ¯uA /¯t1L
A

uA4 f in V T ,

2A˜uA Qn4b *uA on G T ,

uA(t0 , x)4uA0 (x) in V .

(12)

Problem (12) is called the adjoint (backward) problem associated to the direct
(forward) problem defined in (1). It follows

P r o p o s i t i o n 2. Assume (9), then (12) is a well posed problem and the
solution uA(t , x) to (12) is positive in V. Thus, problem (12) describes a non
stationary dispersion process in V characterized by: the same eddy diffusivity
matrix A and velocity field 2b of the stationary adjoint problem (8); a time
variable t , the «adjoint time», which is a decreasing function of the time
variable t of the direct problem (1).

The relation between the solutions u(t , x) and uA(t , x) to (1) and (12),
respectively, is described by
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T h e o r e m 1. Assume f40 in (1) and (12). Let the Green functions,
solutions to (1) and (12) with initial conditions given by

u(t0 , x)4d(x2y) , uA(t0 , x)4d(x2y) ,(13)

be denoted by

U(t , x ; t0 , y), for tD t0 ; UA(t , x ; t0 , y), for tD t0 .(14)

Then,

uA(t1 , y)4�
V

dVU(t1 , x ; t0 , y) uA(t0 , x) ,(15)

u(t1 , y)4�
V

dVUA(t1 , x ; t0 , y) u(t0 , x) .(16)

Furthermore,

UA(t1 , x ; t0 , y)4U(t1 , y ; t0 , x) .(17)

P r o o f . Under the assumption that u(t , x) and uA(t , x) are solutions to (1)
and (12), respectively, from (10) and (11) it follows that

�
V

dV[uA(t0 , x) u(t1 , x)2uA(t1 , x) u(t0 , x) ]

1�
t0

t1

dt�
V

dV f (u2uA)40 .

(18)

By letting in (18) f40 and u4U we obtain (15). Analogously, by letting
uA4UA we obtain (16).

Moreover, the concentration u(t1 , y) may be expressed in terms of the Green
function U(t1 , y ; t0 , x) of the direct problem

u(t1 , y)4�
V

dVU(t1 , y ; t0 , x) u(t0 , x) .(19)

Thus, from equations (16) and (19), and taking into account that u(t0 , x) is an
arbitrary non negative function, it follows the equality (17). r
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R e m a r k . U(t1 , y ; t0 , x) and UA(t1 , x ; t0 , y) are density functions normalized
to a unitary source. They can be interpreted as the transition probabilities of the
tracer from the point x at time t4 t0 to the point y at time t4 t1 , and of the
«adjoint tracer» from the point y at time t4 t0 to the point x at time t4 t1 ,
respectively. Equalities of the type (17) are known as reciprocity relations. A
reciprocity theorem has been derived by Davison (1958) when treating of the
stationary one energy group integral equation of neutron transport. Relations of
this type have been applied in the solution of particle transport problems by
means of Monte Carlo methods (Maynard, 1961; De Matteis and Simonini,
1978-a).

4 - Solution of advection-diffusion problems by Monte Carlo methods

By virtue of the probabilistic interpretation of U(t1 , y ; t0 , x) and
UA(t1 , x ; t0 , y), procedures for computing u(t1 , y) given by the integral forms (16)
and (19) by means of Monte Carlo methods can be formulated. These numerical
schemes are called backward and forward procedures, and will be described in
some details in the following.

Appropriate discrete equations of (1) in the r-dimensional space (r41, 2 , 3 )
can be written, which make possible to define transition probabilities from a grid
point of the definition domain to a contiguous one, so as to realize a stochastic
solving procedure for the integral forms (16) and (19). The discrete space
equations are obtained by means of the finite volume method, or box integration
method (Varga, 1965, p. 181), and hold for ai and bi space dependent.
Discretization of the time variable is performed by forward differencing, and
evalauting the term lu at time t1Dt , where Dt is the time step size. In what
follows, for sake of simplicity, a constant step size Dxi is assumed along the
i2 th coordinate axis. For each point x of the grid the discrete equation can be
written as

(20)
u(t1Dt , x)4 (11lDt)21k!

i41

r

ai
1 u(t , x11d 1 i Dxi , R , xr1d ri Dxi )

1 !
i41

r

ai
2 u(t , x12d 1 i Dxi , R , xr2d ri Dxi )1a u(t , x)1 f (t , x) Dtl ,

where

ai
14qi

1 (12pi
1 ), ai

24qi
2 (11pi

2 ), a412 !
i41

r

(qi
11qi

2 ) ,(21)
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with

qi
1 (x)4Dt/Dxi

2 ai (x11d 1 i Dxi /2 , R , xr1d ri Dxi /2 )

qi
2 (x)4Dt/Dxi

2 ai (x12d 1 i Dxi /2 , R , xr2d ri Dxi /2 )

pi
1 (x)4bi (x) Dxi /[2ai (x11d 1 i Dxi /2 , R , xr1d ri Dxi /2 ) ]

pi
2 (x)4bi (x) Dxi /[2ai (x12d 1 i Dxi /2 , R , xr2d ri Dxi /2 ) ]

(22)

We assume that the following constraints

Npi
1NE1, Npi

2NE1, !
i41

r

(qi
11qi

2 )G1 ,

hold. It follows that the coefficients ai
1 , ai

2 and a are nonnegative and

a1 !
i41

r

(ai
11ai

2 )41. Thus, random walks on the grid of virtual particles can be

performed by assuming ai
1 and ai

2 as transition probabilities from a point x to a
contiguous one, and a as rest probability. This probabilistic interpretation of the
coefficients of equation (20) will be stated precisely in the following.

(a) Backward solving procedure

The backward procedure is apt to estimate the concentration of the passive
tracer, given by (16), at assigned points and time instants According to this
procedure, starting from a detector point at the observation time of interest t ,
random walks of virtual particles are carried out in the discretized domain going
back in time, until the initial time t0 is achieved or a boundary is reached. The
initial and boundary conditions are consequently taken into account (e.g., see
Haji-Sheikh and Sparrow, 1967).

Let tk4 t01kDt and t k4 t01 tn2 tk , (k41, 2 , R , n). Starting from the
point x at the «adjoint time» t 0 , a random walk is followed by assuming ai

1 and
ai

2 as transition probabilities from a residence point x to a contiguous one whose i
2 th coordinate is given by xi1Dxi and xi2Dxi , respectively, and a is the rest
probability. The basic solving procedure can be sintetized as follows:

W041,

Wk4 (11lDt)21 Wk21 ,

Sk4Wk f (t k , xk ) Dt , k41, 2 , R , n ,

us (tn , x)4Wn u(t n , xn )1 !
k41

n

Sk ,

(23)

where u(t n , xn )4u(t0 , xn ) is known, Wk is the statistical weight associated to the
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virtual particle at the k2 th time step, xk the k2 th residence grid point, and
us (tn , x) the concentration estimator with reference to the s2 th virtual particle
random walk. The average value of us (tn , x) over the total number of random
walks processed gives the searched estimate of u(tn , x). If a boundary point is
reached at the current time tmG tn , its contribution has to be taken into account
according to the assigned boundary conditions. Inflow, outflow and reflection
conditions, together with their combinations according to appropriate coefficients,
can be foreseen. It is worth to underline that several time instants and
observation points can be considered in each calculation. It can be noted that the
computation time depends on the number of time steps only, whatever may be the
number of grid points.

(b) Forward solving procedure

The forward procedure is worthwile to give a representation of the evolution
of the passive tracer on the whole, starting from the source. The concentration of
the tracer is computed by using equation (19). According to this procedure, taking
into account the initial conditions, random walks of virtual particles are carried
out going forward in time starting at the time t0 from the source spatial
distribution of the passive tracer, until the observation time t is achieved or a
boundary is reached. In this last case, the boundary conditions are taken into
account. (e.g., see Hunter, 1987; Buffoni et al., 1996).

Starting from the point x0 at time t0 a random walk is followed by assuming
ai

1 and ai
2 as transition probabilities from a residence point x to a contiguous one

whose i2 th coordinate is given by xi2Dxi and xi1Dxi , respectively, and a is
the rest probability. The solving procedure can now be so summarized:

V04u(t0 , x0 ),

Sk214 (11lDt)21 f (tk21 , xk ) Dt ,

Vk4 (11lDt)21 Vk211Sk21 , k41, 2 , R , n ,

us (tn , x)4Vn

(24)

where, as before, Vk is the statistical weight and xk is the k2 th visited grid point.
Smooth velocity fields are assumed. If a random walk ends at a point x at time tn ,
us (tn , x) is an estimator of u(tn , x). The average value over the walks processed
of the total density belonging to each final point will give an estimate of the
passive tracer concentration in that point at time tn .

The evolution of the dispersion process is represented as follows. Assume that
a set of N0 grid points x0

1 , x0
2 , R , x0

N0 , be representative of the source, with initial
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concentrations u0
1 , u0

2 , R , u0
N0. Let, moreover, t1 , t2 , R be the observation times.

An evolution of the initial distribution of the tracer is realized so that N0 grid
points will give rise at time t1 to N1 points, and so on:

x0
1 , x0

2 , R , x0
N0 ¨t1 x1

1 , x1
2 , R , x1

N1 ¨t2
R

with corresponding concentrations

u0
1 , u0

2 , R , u0
N0 ¨t1 u1

1 , u1
2 , R , u1

N1 ¨t2
R

(c) Remarks on the implementation of MonteCarlo simulations

When a Monte Carlo simulation, as previously described, is performed, the
time and spatial step sizes should be chosen in such a way to make the rest
probability as small as possible. Moreover, to make the method worth to be used,
as usually done in Monte Carlo simulation of particle transport problems,
analytical estimates (e.g., in the treatment of the boundary conditions) and
variance reducing techniques can profitably be adopted. As an example, in the
backward solving procedure the so called splitting technique could be used, which
allows the grid points of the definition domain to be better explored. According to
this device, at assigned times the virtual particle is splitted in more particles
which are independently followed. Statistical weight factors will take the device
into account.

As regard the number of random walks to be run, it obviously depends on the
particular problem to be solved. However, in the backward procedure it can be
said that a few thousands of them could be enough to obtain percentage standard
deviations of few per cent.

To avoid to follow inessential virtual particles, when the concentration
associated to a particle falls below a cut-off value, the walk is interrupted. To
avoid losses of concentrations, the so called russian roulette game can be played.
If Vc is the cut-off value and Vk is the actual value of the concentration, being
VkEVc , with probability Vk /Vc the concentration is restored to Vc , otherwise it is
lost.
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A b s t r a c t

Both stationary and time dependent adjoint problems associated to advection-diffu-
sion problems are formulated. The adjoint problem is then interpreted as a model for an
advection-diffusion process of a tracer called the «adjoint tracer». The construction of
such a model is a sine qua non condition for the integration of the adjoint advection-dif-
fusion equation by means of probabilistic methods. A reciprocity relation relating direct
and adjoint transition probability density functions is derived. Strategies to solving ad-
vection-diffusion problems by means of Monte Carlo methods are illustrated.

* * *


