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1 - Introduction

In recent years it has been shown that many immunology problems can be
studied in the frame of the evolution of dominance in interacting populations [1].
This applies, in particular, to the competition between tumors and immune system
[2]-[5]. In this context, the dominance character is represented by the state of ac-
tivity of cells, that means the ability to carry out the typical functions of the spe-
cies, which corresponds to the capacity of growth for tumor cells, and of defence
for the immune system. On the other hand, the study of dominance is a very use-
ful model at a mesoscopic level, which leads to equations of the same kind as in
the kinetic theory of gases, as it was shown in [6].

In the simple model presented in [5], which, starting from a kinetic level,
yields a closed system of macroscopic balance equations, destruction and prolife-
ration terms are assumed, as typical in the kinetic frame, bilinear with respect to
the densities of interacting species.

The present paper aims at taking into account the saturation effect that reali-
stically occurs to immune system, when it is surrounded by a large number of tu-
mor cells, in defeating the tumor. To this end, we consider two different models,
proposed, respectively, by C. S. Holling [7] and by V.S. Ivlev [8] in the field of bio-
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mathematics, which change the type of nonlinearity of the evolution equations ob-
tained in our study.

The paper is organized as follows. After recalling the model of ref. [5], with
the assumptions and the notations showed therein (Sect. 2), modifications are car-
ried out which lead to equations taking into account saturation effects (Sect. 3).
The latter involve a positive parameter describing the asymptotic limit of the im-
mune system capability to destroy the tumor. The smaller such a parameter is,
the stronger saturation effects become. In Sect. 4 the mathematical problem deri-
ved from the Holling model is studied, whereas the Ivlev model is examined in
Sect. 5. Numerical comparisons between the results from these models and the
previous ones are presented in Sect. 6. It can be seen that, as expected, the possi-
bilities of recovery are better in the situation of ref. [5] than in the modified mo-
dels. Moreover, the Ivlev model is more favourable than the Holling one, with the
same value of the above-mentioned asymptotic parameter, and in both cases reco-
very is enhanced when such a value increases.

A similar deduction holds as regards a possible external treatment to support
the immune system. Numerical experiments show that the intensity of an external
source, which makes the treatment effective, depends on the initial conditions,
and is more favourable to recovery in the model of ref. [5] than in the Ivlev model,
which, in turn, is more favourable than the Holling one. Finally, it clearly appears
how, in the last two models, the intensity ot the external treatment to recover de-
creases when the asymptotic parameter value increases, that is when saturation
effects are smaller.

2 - A recall on a mathematical model for the problem

As stated in the introduction, the problem of the analysis of tumor - immune
system interactions can be reduced, from the mathematical point of view, to the
problem of the evolution of dominance in N different populations. Corresponding
to each interacting species, we consider a distribution function fi (u , t), where the
real variable u� [21, 1 ] indicates the state («dominance») of the i-th population,
relevant to the problem under examination. Functions fi (u , t) are nonnegative in
their arguments, and the quantity

ni (t)4 �
21

1

fi (u , t) du(2.1)

represents the number density of the i-th species. Now index i takes the values
from 1 to 4 , and, more precisely, i41 will refer to tumor cells, i42 to cells of the
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host background, i43 to cells of the immune system, i44 to interleukines. The
latter are particular proteins secreted by the immune system, whose task is to ac-
tivate lymphocytes, which are responsible for immunity reaction.

Let us recall the considerations related in ref. [5], leading to the problem we
are going to deal with in this paper. We consider binary interactions («collisions»)
among the different species; the variable u measures the capability of particles
(«cells») to prevail in a binary collision (we call them «active cells» when uD0,
and «passive cells» when uE0). Collisions may be of conservative type, when the
number of participating individuals is conserved, and of nonconservative type,
when such a number increases or decreases during an encounter.

By h ij (u , v)4h ji (v , u)F0 we denote the microscopic collision frequency for
conservative collisions between an (i , u) individual (i.e. an i individual with u
state) and a ( j , v) individual. Moreover c ij (u , v ; w)F0 is the probability den-
sity that, in the above-mentioned encounter, the i individual takes a state in the
interval (w , w1dw). The normalization condition

�
21

1

c ij (u , v ; w) dw41 (u , v� [21, 1] (i , j41, 2 , R , N(2.2)

must be satisfied.
Similarly, by dij (u , v)F0 we denote the collision frequency for nonconservati-

ve encounters between an (i , u) individual and a ( j , v) individual, and by
m ij (u , v)Gdij (u , v) the fraction of it relating to proliferative interactions only.
For the latter, by e ij (u , v ; w) we denote the number of i individuals ending in a
state in the interval (w , w1dw) after collision, so that

mij (u , v)4 �
21

1

e ij (u , v ; w) dwF1(2.3)

denotes the total number of individuals generated in a proliferative encounter
(i, u)2( j, v). Finally g i(u) is the possible external source of i individuals with u state.

Balance equations for N species then take the form

¯fi (u , t)

¯t

4!
j41

N

�
21

1

�
21

1

[h ij (v, w) c ij (v, w; u)1m ij (v,w) e ij (v, w; u)] fi (v, t) fj (w, t) dv dw(2.4)

2fi (u , t) !
j41

N

�
21

1

[h ij (u , v)1dij (u , v) ] fj (v , t) dv1g i (u), i41, 2 , R , N .
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Set [5] shows clear analogies with the so-called extended Boltzmann equations
for a gas mixture, in the «scattering kernel» formulation [11].

Integrating with respect to u and taking (2.1)-(2.4) into account, we obtain,
setting

G i4 �
21

1

g i (u) du , i41, R , N(2.5)

the equation set

dni (t)

dt
4!

j41

N

�
21

1

�
21

1

[m ij (u , v) mij (u , v)2dij (u , v) ] fi (u , t) fj (v , t) du dv1G i ,

i41, R , N ,

(2.6)

which is not generally closed with respect to the functions ni (t).
The question of well posedness for the mathematical problem (2.5), under sui-

table initial conditions fi (u , 0 ), has been dealt with and discussed in ref. [5]. Now
we will instead re-examine set (2.6) and recall the assumptions for the immunolo-
gical problem we are drawing our attention on.

(a) The host medium and interleukines can be regarded as background spe-
cies: they take part in collisions, but their distribution does not change. Besides,
the host population distribution («2-cells») is steady, whereas a positive external
source for interleukines («4-cells») may be present.

(b) A collision between a tumor cell («1-cell») and an immune system cell («3-
cell») results in the following situation: if the 3-cell is active (uD0), after collision
the 1-cell is destroyed and the 3-cell becomes passive; if the 3-cell is passive, new
1-cells are created (that is the tumor proliferates) and the 3-cell state decreases
further.

(c) A collision between a 3-cell and a 4-cell is conservative for both species,
and increases the 3-cell state, so that a passive cell always becomes active.

(d) A collision between a 1-cell and a 2-cell always produces new 1-cells (the
tumor proliferates).

Moreover collision frequencies are assumed as constant. Then we have

d12 (v , w)4m 12 (v , w)4m12

d13 (v , w)4m13 m 13 (v , w)4m13 U(2w)

h 31 (v , w)4m13 h 34 (v , w)4h34

c 31 (v , w ; u)40 (uD0, c 34 (v , w ; u)40 (uE0

(2.7)
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where U stands for the unit step function, m12 , m13 , h34 are positive constants,
dij4m ij4h ij40 for all the other pairs of indices, and g i is assumed to vanish for
i41, 2 , 3 .

Then set (2.4) takes the form

¯f1 (u , t)

¯t
4m12 �

21

1

�
21

1

e 12 (u , v ; w) f1 (v , t) f2 (w , t) dv dw2m12 n2 (t) f1 (u , t)

1m13 �
21

1

�
21

0

e 13 (v , w ; u) f1 (v , t) f3 (w , t) dv dw2m13 n3 (t) f1 (u , t) ,

¯f2 (u , t)

¯t
40 ,(2.8)

¯f3 (u , t)

¯t
4m13y �

21

1

�
21

1

c 31 (v , w ; u) f3 (v , t) f1 (w , t) dv dw2n1 (t) f3 (u , t)z

1h34y �
21

1

�
21

1

c 34 (v , w ; u) f3 (v , t) f4 (w , t) dv dw2n4 (t) f3 (u , t)z ,

¯f4 (u , t)

¯t
4g 4 (u) .

The distribution functions f2 and f4 are therefore determined independently of
the process, and in particular f2 is constant. Then n24k2 (constant), whereas
n4 (t)4G 4 t1k4 (k4 constant). From (2.8) we obtain, integrating with respect to u
and taking (2.2) into account,

dn1 (t)

dt
4m12 (m1221) k2 n1 (t)1m13 m13 n1 (t) �

21

0

f3 (w , t) dw2m31 n1 (t) n3 (t)

dn3 (t)

dt
40 .

(2.9)

From the second equation of (2.9) we find out, in agreement with the model, that
the total number of 3-cells is conserved (n34k34constant ). But the first equa-
tion is not self-consistent, owing to the integral on the negative half-range only.



326 G. L. CARAFFINI, M. IORI and S. OLIVIERI [6]

But a closed set can easily be obtained introducing

n3
646 �

0

61

f3 (u , t) du(2.10)

that is, considering the 3-cell active population and the passive one as distinct, and
integrating the third equation in (2.8) on suitable half-ranges.

By simple calculations, we get to

dn1 (t)

dt
4m12 (m1221) k2 n1 (t)1m13 (m1321) n1 (t) n3

2 (t)2m13 n1 (t) n3
1 (t)

dn3
1 (t)

dt
42m13 n1 (t) n3

1 (t)1h34 n4 (t) n3
2 (t)(2.11)

dn3
2 (t)

dt
4m13 n1 (t) n3

1 (t)2h34 n4 (t) n3
2 (t) .

As n3
2 (t)4k32n3

1 (t), we are led to the set of only two equations

dn1 (t)

dt
4 [m12 (m1221) k21m13 (m1321) k3 ] n1 (t)2m13 m13 n1 (t) n3

1 (t) ,

dn3
1 (t)

dt
4h34 k3 n4 (t)2h34 n4 (t) n3

1 (t)2m13 n1 (t) n3
1 (t) .

(2.12)

Sets (2.11) and (2.12) are first order ODE systems, generally non-autonomous,
becoming autonomous, and then resulting in dynamical systems, when G 440,
i.e. when interleukines are a steady population (n44k44constant). In the next
section, we will examine sets (2.11) or (2.12), when G 440, looking for possible
and significant modifications.

3 - Modified problems following Holling and Ivlev models

Let us take set (2.11) into consideration, examining the meaning of the last
term of the r.h.s. in the first equation. It represents a decrease in the number of
tumor cells due to the presence of active immune system cells. The fact that this
term, after fixing n3

1 , is proportional to n1 , corresponds to the assumption that
immune system active cells are able to destroy a quantity of tumor cells which is
proportional to the number density of the latter.

With reference to typical problems in biomathematics, such as the prey-preda-
tor problem, the above-mentioned assumption would correspond to the situation
of the Lotka-Volterra model (see, for example, ref. [7] and the bibliography
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quoted therein). The presence of such a term denotes, in particular, a situation
where a predator’s attacks increase indefinitely when the prey increases. In lite-
rature some models have been proposed, taking more realistically into account
the «saturation» effect on predators. The analogy between such a saturation ef-
fect and the limitation of the capability of immune system active cells to destroy
the tumor, when surrounded by a large number of tumor cells, seems clear.

Following a model proposed by C.S. Holling on the basis of artificial experi-
mental situations [7], we may replace in (2.11) the term m13 n1 (t) n3

1 (t) with the
term

m13
bn1 (t)

b1n1 (t)
n3

1 (t) ,(3.1)

where b is a positive constant, having the same physical dimensions as n1 . It
can easily be seen that the ratio bn1 /(b1n1 ) is always less than n1 , it behaves as
n11O(n1

2 ) when n1K0, and tends to the finite value b when n1KQ . Moreover,
when b varies, the ratio tends to n1 if bKQ , which reproduces the Lotka-Volter-
ra term.

A qualitatively analogous model, proposed by V.S. Ivlev [8] and substantially
coincident with the one proposed by K.E.F. Watt [9], on an experimental basis, al-
ways referring to the prey-predator problem (see also [10]), leads us to replace
the term m13 n1 (t) n3

1 (t) by

m13 bg12e 2
n1(t)

b h n3
1 (t)(3.2)

(bD0 constant, having the same meaning as in (3.1)). It can be seen immediately
that, also in that case, the term replacing n1 relating to (2.11) is less than n1 , it
behaves as n11O(n1

2 ) when n1K0, it tends to the finite value b when n1KQ ,
and tends to n1 when bKQ .

Sets (2.11) and (2.12), with the above modifications, read, respectively, as

dn1 (t)

dt
4m12 (m1221) k2n1 (t)1m13 (m1321) n1 (t) n3

2 (t)2m13n3
1 (t)

bn1 (t)

b1n1 (t)

dn3
1 (t)

dt
42m13 n3

1 (t)
bn1 (t)

b1n1 (t)
1h34 n4 (t) n3

2 (t)(3.3)

dn3
2 (t)

dt
4m13 n3

1 (t)
bn1 (t)

b1n1 (t)
2h34 n4 (t) n3

2 (t) ,
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and

dn1 (t)

dt
4 [m12 (m1221) k21m13 (m1321) k3 ] n1 (t)

2m13 n3
1 (t)

(m1321) b1 (m13211b) n1 (t)

b1n1 (t)
(3.4)

dn3
1 (t)

dt
42m13 n3

1 (t)
bn1 (t)

b1n1 (t)
1h34 n4 (t)[k32n3

1 (t) ]

in the case of the problem modified after the Holling model (we will call «Holling
model» for short), and as

dn1(t)

dt
4m12 (m1221) k2 n1 (t)1m13 (m1321) n1 (t) n3

2 (t)2m13n3
1 (t) bg12e 2

n1(t)

b h

dn3
1 (t)

dt
42m13 n3

1 (t) bg12e 2
n1(t)

b h1h34 n4 (t) n3
2 (t)(3.5)

dn3
2 (t)

dt
4m13 n3

1 (t) bg12e 2
n1(t)

b h2h34 n4 (t) n3
2 (t)

and

dn1 (t)

dt
4 [m12 (m1221) k21m13 (m1321) k3 ] n1 (t)

2m13 n3
1 (t)k(m1321) n1 (t)1bg12e 2

n1(t)

b hl(3.6)

dn3
1 (t)

dt
42m13 n3

1 (t) bg12e 2
n1(t)

b h1h34 n4 (t)[k32n3
1 (t) ]

in the case of the problem modified after the Ivlev model (we will call «Ivlev
model», likewise).

In the following sections we will study the two models.
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4 - Analysis of the Holling model

In this section we will study the dynamical system we obtain from (3.4) in the
case G 440 (n44k44constant), following the guidelines of ref. [5], and discuss in
particular its fixed points and their stability.

Let us use adimensional variables, setting

x14
n1

k2

, x24
n3

1

k2

(4.1)

and introducing a dimensionless time

t4m12 (m1221) k2 t(4.2)

which will be denoted again by t .
Let us also introduce the dimensionless positive parameters

A4
m13

m12

, B4
m13 (m1321)

m12 (m1221)
, X4

k3

k2

E1 .

C4
h34 k4

m12 (m1221) k2

, h4
b

k2

.

(4.3)

Set (3.4) then takes the form

x
.

14 (11BX) x12 gB1
Ah

h1x1
h x1 x2

x
.

24C(X2x2 )2
Ah

h1x1

x1 x2 .

(4.4)

The set obtained from (2.12) with the adimensionalization of variables is

x
.

14 (11BX) x12 (A1B) x1 x2

x
.

24C(X2x2 )2Ax1 x2 .
(4.5)

The phase space of (4.4) is given by the strip [0 , 1Q)3 [0 , X], and the search
for fixed points supplies the solutions

P1f (0 , X) P2f g Ch(AX21)

Ah(11BX)1C
,

h(11BX)1CX

h(A1B)1C
h .(4.6)

Point P1 exists whatever the value of parameters is, and represents the optimal
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condition where no tumor cells are present and all immune system cells are acti-
ve. Point P2 belongs to the phase space only when AF1/X , and coincides with P1

when A41/X . As regards to stability analysis, it appears to be similar to, though
quite more complicated than, the one performed in ref. [5] for set (4.5). Thus the
conclusions we can draw are analogous.

So we obtain that the point (0 , X) is unstable (saddle point) when AE1/X ,
asymptotically stable (attractive node) when AD1/X , whereas when A41/X it
presents a transcritical bifurcation [12]. Instead P2 exists only when AD1/X , and
it is always unstable (saddle point). Let us remember that the second fixed point
for (4.5), also existing when AD1/X , is

P2 f g C(AX21)

A(BX11)
,

BX11

A1B
h .(4.7)

A comparison between coordinates of P2 and P2 shows that it is always

x1
P2Ex1

P2

x2
P2Dx2

P2 .
(4.8)

It can also be seen that, when hK0, point P2 tends to P1 , whereas when hKQ ,
P2KP2. The latter consideration was fully to be expected, since when hKQ set
(4.4) tends to set (4.5). On the other hand, if h40, then the immune system does
not fight the tumor, and we have the solution

x1 (t)4x1 (0) e t1 B

C
[X2x2 (0) ](12e2Ct )

x2 (t)4X2 [X2x2 (0) ] e 2Ct
(4.9)

which clearly shows how, if x1 (0)c0 (that is if tumor cells initially exist), the tu-
mor tends to explode, notwithstanding the presence of an active immune
system.

For each hD0, the phase space is positively invariant, and the same occurs

to the rectangular domains 0Gx1Ga , bGx2GX , with aG
Ch(AX21)

Ah(11BX)
,

bF
h(11BX)1CX

h(A1B)1C
.

The vector field defined by (4.4) is dissipative in the part of the phase space
over the (cubic) curve G whose equation is

x24
(x11h)](BX112C) h2 [Ah2 (BX112C) ] x1(

Ah 21B(x11h)2
.(4.10)
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If D4BX112CD0 and hDD/A , such a curve crosses the phase space along
an arc g intersecting x1 and x2 axis, respectively, in the points

Q1f g hD

Ah2D
, 0h and Q2f g0,

D

A1B
h(4.11)

(the other intersection with x1 axis is always outside the phase space).
Let us remember that, for set (4.5), the analogous dissipative area is bounded

by the straight line G whose equation is x24 (D2Ax1 ) /(A1B), which, when
DD0, has the same intersection Q2 with the x2 axis and, for x1D0, is always
situated under curve G , which tends to G when hKQ . We argue that the dissi-
pative area for set (4.4) is more limited than for set (4.5). We can also see that it
tends to vanish for hK0 (When DE0, that is when the number of interleukines
is large, the dissipative area contains the whole phase space, both for (4.4)
and (4.5)).

Examining the trend of the vector field of (4.4) for AD1/X would denote that
the stable manifold of the saddle point should separate the phase space into two
different regions: the first is the basin of attraction of the stable node (0 , X), so
that each point initially therein converges onto the node itself asymptotically; in
the second region, on the other hand, each trajectory diverges to infinity when
tKQ. It is also evident that the first of these regions should be «the safety area»,
where the immune system would be able to defeat the tumor, whereas the second
one corresponds to a situation of unlimited increase of the tumor cells. The situ-
ation to be reached in order to increase the possibility of recovery is represented
by widening the first area and reducing the second one.

Numerical evidence confirming some of the situations discussed in the present
section and showing comparisons with the model in ref. [5] and that of Ivlev will
be presented in Sect. 6.

5 - Analysis of the Ivlev model

As shown in Sect. 3, the Ivlev model leads to sets (3.5) and (3.6). Introducing
adimensionalizations (4.1), (4.2), (4.3) again, set (3.6) takes the form

x
.

14 (11BX) x12 kBx11Ahg12e 2 x1
h hl x2

x
.

24C(X2x2 )2Ahg12e 2 x1
h h x2 .

(5.1)

In this case the phase space is also constituted by the strip [0 , 1Q]3 [0 , X],
and we still have point (0 , X) as a fixed point. To look for other possible fixed
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points, we should solve, as regards x1 coordinate, the trascendental equation

F(x1 )f kC1Ah(11BX)g12e 2 x1
h hl x12AChXg12e 2 x1

h h40 ,(5.2)

which has the solution x140 and which, taking into account that lim
x1K1Q

F(x1)41Q,

has further positive solutions if F 8 (0)E0. But we have F 8 (0)4C(12AX),
and, moreover, we can easily verify that F 9 (0)D0, F 9 (x1 )40 for one and only
one positive value x1 of x1 and F 9 (x1 )E0 for all x1D x1. Thus for x1D0 we have
one and only one solution when AD1/X , no solution when AE1/X , whereas if
A41/X the root x140 is double. On the other hand, since we have, correspond-
ing to fixed points,

x24
CX

C1Ahg12e 2 x1
h h

EX ,(5.3)

we actually obtain a second fixed point P2* belonging to the phase space when
AD1/X .

As regards the study of fixed points and of the behaviour of trajectories, we
can make the same considerations as the ones we made for the Holling model.
Concerning the search for the region where the vector field defined by (5.1) is dis-
sipative, we can see that it is situated in the part of the phase space over the curve
G*, whose equation is

x24
D2Ahg12e 2 x1

h h

Ae 2 x1
h 1B

.(5.4)

When DD0 and hDD/A , G* intersects the phase space along a curve g* which

has points Q1*f gh log
Ah

Ah2D
, 0h and Q2*f g0,

D

A1B
hfQ2 in common with

axes x1 and x2 , respectively.
It can be observed that, for x1D0, curve G* lies between G and G , so that it

can be said that the dissipative area, with the same parameter values, is halfway
between the larger one of set (4.5) and the more restricted one of set (4.4).

Finally the trend of the vector field for this model are similar to those for the
Holling model, as will be also confirmed numerically.

6 - Numerical results and comments

Various numerical experiments have been performed, using Software MA-
TLAB 4.2 Numerical Library on a personal computer, for both the Holling model
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(HOL) and the Ivlev model (IVL), comparing the results between the two models,
and between them and the model of ref. [5] (INS). The analogy of the results of
the three models from the qualitative point of view seems evident, as it was easy
to guess on account of last sections.

Let us now examine the most typical and meaningful cases. We start fixing the
values of B , C , X to 2 , 1 and 1 /3 , respectively: then we have the (transcritical) bi-
furcation point when A43. Therefore the phase space is given by [0 , 1Q)
3 [0 , 1 /3]. In fig. 1 the phase portrait is represented corresponding to A42.5,
for INS, for HOL when h40.05 and when h4100, and for IVL with the same
values of h .

The conclusion is the same in all the above situations: all trajectories diverge
to infinity, meaning that, whatever the initial point within the phase space, the tu-
mor cell number increases indefinitely, leaving no hope for recovery.

In the case A45 (then with AD1/X), point (0 , 1 /3) is an attractor for all mo-
dels, with a basin of attraction bounded by the border of the phase space and by
the stable manifold of the unstable fixed point. The latter is (2 /25 , 5 /21) for INS,

g 2h

25h13
,

5h13

3(7h11)
h for HOL. Then, whatever h is, x1

HOLEx1
INS , x2

HOLDx2
INS ,

as shown in Sect. 4, with increasing and decreasing values of x1
HOL and x2

HOL , re-
spectively, while h increases, and tending to x1

INS and x2
INS when hKQ . Moreo-

ver, numerical calculations show that x1
HOLEx1

IVLEx1
HOL and x2

HOLDx2
IVLDx2

INS

for each fixed value of h . In all cases, however, such a stable manifold bounds the
«safety area», meaning that the tumor always explodes if the initial point is on the
right of such a line, whereas the immune system is able to destroy the tumor
when such a point is situated on the left, that is in the attraction basin of the
stable fixed point.

Phase portraits corresponding to various models, all for the value A45, are
represented in fig. 2. From them we can argue that passing from INS to IVL and
to HOL the safety area gets narrower, and enlarges in the last two models when
h increases, tending towards the situation of INS when h is large enough. It ap-
pears that the stable manifold of the unstable fixed point joins this point to the
stable one, constituting a heteroclynic orbit.

It is interesting to note, examining the variation of the unstable fixed point
when parameter A varies, that the described curve is the same for all the three
models, and precisely it is an arc of the hyperbola whose equations is

x24
CX2 (BX11)x1

C2Bx1

.(6.1)
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Figure 1 - Phase portraits for AE1/X (B42, C41, X41/3).

This can be obtained analytically for INS and HOL. In the case of IVL, we can
verify that the solution (different from (0 , X)) of the equations obtained equating
to zero the righ-hand-sides of (5.1) satisfies (6.1). So we have the same unstable
fixed points for all the three models, but they are obtained for different values of
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Figure 2 - Phase portraits for AD1/X (B42, C41, X41/3).

A . More precisely, fixing the value of the other parameter and of h , we find that
A INSEA IVLEA HOL corresponding to the same point. For example, we obtain
point (2 /25 , 5 /21), corresponding to A INS45 in the above examined case, for
A HOL45.4 and A IVL45.203, when h41.
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TABLE I.

INS model HOL h40.05 IVL h40.05 HOL h4100 IVL h4100

A a b a b a b a b a b

5
10
50
100
103

104

105

106

107

0.114
0.261
0.4587
0.4938
0.5291
0.5329
0.5333
0.5333
0.5333

0.0275
0.0761
0.1617
0.1793
0.1978
0.1998
0.2000
0.2000
0.2000

0.0257
0.0791
0.2754
0.3624
0.5085
0.5307
0.5330
0.5333
0.5333

0.0062
0.0225
0.0938
0.1283
0.1893
0.1989
0.1998
0.2000
0.2000

0.039
0.1015
0.3018
0.3825
0.5122
0.5311
0.5331
0.5333
0.5333

0.0095
0.0309
0.1060
0.1382
0.1912
0.1991
0.1999
0.2000
0.2000

0.1138
0.2607
0.4585
0.4937
0.5291
0.5329
0.5332
0.5333
0.5333

0.0275
0.0760
0.1616
0.1792
0.1978
0.1998
0.2000
0.2000
0.2000

0.114
0.2608
0.4586
0.4938
0.5291
0.5329
0.5333
0.5333
0.5333

0.0275
0.0761
0.1617
0.1793
0.1978
0.1998
0.2000
0.2000
0.2000

As regards the a and b intersection value of the stable manifold (which limits
the safety area) with the straight lines x24X and x240 respectively, table I
shows the trend in the three models, which denotes how in any case they vary
monotonically on A increasing and tend to the same finite value asymptotically
when AKQ . We argue that the safety area is always limited and that, in any
case, if the initial value x10 of x1 exceeds a certain value there is no hope for
recovery, no matter how large is the value of A .

We can then examine what occurs, once the other parameters are fixed, when
either B or C varies. Bearing in mind that B measures the tendency of tumor cells
to proliferate, whereas C measures the immune system cell activation by
interleukines, we can expect a narrowing of the safety area as B increases, and a
widening as C increases. The graphs in fig. 3 confirm the above expectation.

To conclude, let us shortly refer to the case where an external treatment is
applied, for example an external source (which we will consider, for simplicity’s
sake, as a constant) for interleukines. Then we assume G 4c0 in (2.11), so that
n4 (t)4G 4 t1k4 . Setting

D4
h34 G 4

[m12 (m1221) k2 ]2
,(6.2)

sets (4.4) and (5.1) take the forms

x
.

14 (11BX) x12 gB1
Ah

h1x1
h x1 x2

x
.

24 (C1Dt)(X2x2 )2
Ah

h1x1

x1 x2

(6.3)
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Figure 3 - Phase portraits when either B or C is increased (A45, X41/3).

and

x
.

14 (11BX) x12 kBx11Ahg12e 2 x1
h hl x2

x
.

24 (C1Dt)(X2x2 )2Ahg12e 2 x1
h h x2

(6.4)

respectively. They are no longer autonomous and do not result in dynamical
systems.

The first equations in (6.3) and (6.4) do not vary with respect to (4.4) and (5.1).
Then, when AE1/X , the situation remains hopeless, whatever the initial
conditions might be. Instead, if AD1/X , it is interesting to examine the possibility
for phase trajectories to enter the (0 , X) fixed point attraction basin, even though
starting from points which, for D40, would be out of the safety area. Fixing
X41/3 , A45, B42, C41 again and considering (1 /5 , 1 /3) (outside the safety
area when D40) as a starting point, we find, for HOL, the threshold values
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Figure 4 - Phase trajectories for values of D close to the threshold (A45, B42, C41,
X41/3 , x1041/5 , x0241/3).

D *41.138 for h41, D *40.525 for h410 and D *40.486 for h4100. Then for
DED * trajectories diverge to infinity, whereas for DDD *, after a while, they
reverse and tend looping to the (0 , X) point.

In IVL and for the same value of parameters we find D *40.752, D *40.503
and D *40.484, respectively. Note that, in the case of INS, D *40.482 was found.
In fig. 4 phase trajectories relevant to values close to the threshold, for both
HOL and IVL, are shown.

These examples show how the D * value increases as h decreases, how it is
higher in HOL than in IVL (with the same value of h), and how D * values tends
to converge on each other and, when h is large enough, with the value of INS.
The latter, in turn, is always lower than the one in other models, for fixed
parameters values.
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For small h values (e.g. h40.1) D values causing tumor regression were not
found.

Moreover, on increasing initial value abscissa, the D * value appears to grow
larger and larger, in all cases.

TABLE II.

INS HOL h41 IVL h41 HOL h410 IVL h410 HOL h4100 IVL h4100

x10 D * D * D * D * D * D * D *

0.2
0.3
0.4
0.5
0.6
0.7
0.8
1.0
2.0

0.482
1.236
2.093
3.012
3.973
4.965
5.978
8.06
18.9

1.138
3.604
8.881
22.719
90.837

0.752
2.097
4.108
7.088
11.629
18.950
31.911
137.574

0.525
1.356
2.334
3.425
4.612
5.887
7.248
10.228
31.266

0.503
1.294
2.211
3.213
4.283
5.410
6.589
9.090
24.380

0.486
1.247
2.115
3.050
4.031
5.046
6.089
8.238
19.772

0.484
1.240
2.104
3.031
4.002
5.005
6.033
8.146
19.347

Table II shows the above-discussed situations, in the various models. Empty
boxes mean that we were not able to find corresponding values by our numerical
experiments. It seems that there is no saturation effects with respect to
increasing x01 , but it is clear that, in practice, D cannot exceed certain values.
Therefore, when initially the tumor is in an advanced stage, no external
intervention will lead to recovery.
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A b s t r a c t

The problem of the competition between tumor cells and immune system, discussed in
a previous paper in terms of Lotka-Volterra type interactions, is examined starting from
equations for the evolution of dominance in populations of interacting organisms. The
saturation effects in the capability of the immune system to destroy the tumor are taken
into account, on the basis of two different models proposed in the literature («Holling
model» and «Ivlev model»). In both cases, we deal with a closed set of macroscopic equa-
tions, which is examined in the frame of the theory of dynamical systems. Situations
leading to depletion of the tumor are studied, comparing the results of the different mo-
dels, also on the basis of numerical experiments.
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